This application claims foreign priority of Chinese Patent Application No. 202221570832.3, filed on Jun. 22, 2022 in the China National Intellectual Property Administration, the disclosures of all of which are hereby incorporated by reference.
There are many types of lighting products in the LED industry. The LED lighting referred to in the present invention is a strip-shaped lighting of uniform light emission with a waterproof shell from the appearance, and because the waterproof shell of the LED lighting is made of a flexible material, such as silica gel and PVC, the LED lighting has certain flexibility. At present, this type of lightings is generally called “silica gel light strip” or “neon light strip” or similar names in the LED industry. The conventional technical solution of this type of products in the industry is a (flexible) FPCBA light strip, electronic components such as a LED lighting, a resistor, a diode, a triode and an IC are arranged on the light strip to realize a current loop through a reasonable electronic wiring diagram, and the FPCBA forms a flexible waterproof shell on a surface of the light strip through co-extrusion, sleeving, glue dripping or glue filling in sleeve, so that different Ingress Protection (IP) levels are reached according to different processes. This type of products is generally used for building edging, city lighting, landscape lighting and the like in the market, and needs linear lighting to achieve the effects of lighting, edging and beautifying, belonging to a type of linear lighting products in the industry. Moreover, at present, linear scene applications of this type of products in the industry in the market mainly comprise linear application, lateral bending plane curve application and top bending plane curve application, and spatial curve application for some products. However, at present, difficulties of industrial products in market application are mainly as follows: 1. the products in spatial curve application have poor mounting reliability, and may easily lead to functional failures such as failed lighting of a section of a product during mounting; and 2. characteristics of the products with the single side bending or top bending plane curve application restrict a mounting behavior to a certain extent, and the products are required to be mounted according to the product characteristics, so that a yield of mounting of the products can be improved, but there are certain limitations in application scenes, and it is still unable to better avoid the phenomenon of mounting failure when there is an installer who does not understand the product characteristics. The application scenes of this type of city edging and lighting products are usually large in scale, so that once there is a functional problem, very troublesome after-sales services may be caused. Therefore, based on the above industry disadvantages, the present invention provides a new product technical solution, which can not only satisfy the bending of side bending and top bending plane curves at the same time, but also distort spatial curves at will to a greater extent to meet the needs of various existing application scenes under the condition of satisfying a bending diameter.
FPCBA: Flexible Printed Circuit Board Assembly, which refers to a whole manufacturing process of a blank board of a FPCB (Flexible Printed Circuit Board) through loading by a SMT or plugging in by DIP.
SMT: Surface Mounted Technology.
Aiming at the problems in the prior art, the present invention provides a LED lighting capable of being bent and twisted at will, and aiming at the application defects of existing lighting products of the same type, a lighting structure and a process design are improved, so that the lighting may be bent and twisted in any direction, thus meeting application needs of products in spatial curve modeling, and improving product reliability.
In order to achieve the above object, the technical solution used in the present invention is as follows.
A LED lighting capable of being bent and twisted at will comprises a flexible sleeve, a FPCBA assembly and a lead, wherein the FPCBA assembly is formed by sequentially mounting multiple groups of LED independent circuits on a strip-shaped FPCB by a SMT, a plurality of arc-shaped notches are evenly arranged on long edges of two sides of the FPCB at intervals, a back surface of the FPCB is provided with a positive electrode bonding pad and a negative electrode bonding pad corresponding to each group of LED independent circuits respectively, two leads are provided, one lead is communicated with all positive electrode bonding pads in a welded mode and the other lead is communicated with all negative electrode bonding pads in a welded mode, and the flexible sleeve wraps and packages the FPCBA assembly and the leads, and reserves a power wire at an end portion.
Specifically, the LED independent circuit comprises a plurality of LED luminous elements connected in series and a peripheral electronic element.
Specifically, the arc-shaped notch corresponds to a position between two adjacent LED luminous elements on the FPCB.
Specifically, the FPCB is provided with a cuttable position between each group of LED independent circuits, and a bottom portion of the flexible sleeve is provided with a cuttable window corresponding to the cuttable position.
Specifically, the positive electrode bonding pad and the negative electrode bonding pad on the back surface of the FPCB are also provided with a tin melting space, so as to improve welding reliability of the FPCB and the lead.
Specifically, a top surface of the flexible sleeve corresponding to the LED luminous elements is configured as a light guiding surface, and a side surface and a bottom surface of the flexible sleeve are provided with a light shielding body.
Specifically, the light guiding surface is configured as a serrated optical refracting surface.
Specifically, the flexible sleeve is manufactured by a secondary extrusion process, a transparent material is co-extruded with the FPCBA assembly connected with the leads to form a matrix wrapping the leads and the FPCBA assembly in first extrusion, and the same material is co-extruded with the matrix to form the flexible sleeve with the light guiding surface in second extrusion.
Specifically, one group of exposed cutting extension wires is arranged on the bottom surface of the flexible sleeve by each specified distance, and the cutting extension wires are connected with the leads in the position.
Compared with the prior art, the present invention has the following beneficial effects.
In the above drawings, the names of parts corresponding to the reference numerals are as follows:
1 refers to flexible sleeve, 2 refers to light shielding body, 3 refers to lead, 4 refers to cuttable window, 5 refers to light guiding surface, 6 refers to power wire, 7 refers to plug, 8 refers to mounting clasp, 9 refers to cutting extension wire, 10 refers to FPCBA assembly, 11 refers to LED independent circuit, 12 refers to FPCB, 13 refers to arc-shaped notch, 14 refers to cuttable position, 15 refers to positive electrode bonding pad, 16 refers to negative electrode bonding pad, 17 refers to matrix, and 18 refers to light diffusing body.
The present invention is further described hereinafter with reference to the drawings and embodiments, and implementations of the present invention comprise, but are limited to, the following embodiments.
As shown in
In further configuration, one group of exposed cutting extension wires 9 is arranged on the bottom surface of the flexible sleeve by each specified distance, and the cutting extension wires are connected with the leads in the position. A part of colloid may be cut off in a position on the bottom surface after packaging to bridge the cutting extension wire to the lead in manufacturing, so as to facilitate a user to replenish power or access a power supply after cutting.
The above embodiments are only the preferred embodiments of the present invention, and do not limit the scope of protection of the present invention. However, any changes made by adopting the design principle of the present invention and performing non-creative work on this basis should be within the scope of protection of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
202221570832.3 | Jun 2022 | CN | national |