The present invention relates to a circuit device for providing energy to a series of light emitting diodes and an assembly including such circuit devices and light emitting diodes. The present invention relates to a light emitting diode (LED) assembly for direct replacement of a tubular fluorescent light bulb.
The widespead use of fluorescent tubes for general purpose lighting has several drawbacks. One significant drawback is their use of rare-earth and other toxic phosphors to generate light. This provides a problem when tubes which have ceased to function require disposal. The phosphors can present a toxic waste situation which must be dealt with. Also, because the envelope of the tube is thin glass, the potential for accidental breakage, with attendant problems of scattering toxic material, is high. For this reason, in food-related and other industries where potential contamination is a risk, special plastic protective sleeves are required to be placed on all fluorescent tubes. A drawback to the use of these sleeves is that they trap heat generated by the tube and increase the operating temperature of the tube which decreases the useful life of the device.
The ballasts used in fluorescent fixtures present an inductive load to the line resulting in a lower than unity power factor. While fluorescent lighting is longer lasting and more efficient than incandescent bulbs, the tubes have a short life relative to solid state lighting devices. Based on an eight hour per day use, LED lighting will have an average usable life ten times that of a fluorescent light source.
With the introduction of high current, high output LEDs, the use of these devices in general purpose lighting has become feasible. One area of general lighting which could benefit from this technology is fluorescent lighting. Heretofore, tubes meant to accomplish this were unable to work with standard magnetic or electronic ballasts, and required replacement or complete rewiring of the lighting fixture.
In one implementation, an LED lighting device for replacing a fluorescent tube in a fluorescent lighting fixture having fluorescent fixture connectors and one or more of a standard fluorescent ballast and a magnetic fluorescent ballast is provided. The LED lighting device includes a plurality of light emitting diodes; a pair of contact pins at each end of the lighting device, said contact pins configured for mating with the fluorescent fixture connectors of the fluorescent lighting fixture; and drive circuitry connected with said plurality of light emitting diodes and at least one contact pin of said pair of contact pins, said drive circuitry configured to provide an operating current to said plurality of light emitting diodes and to operate with a standard fluorescent ballast and a magnetic fluorescent ballast such that the lighting device is operable when connected to a fluorescent lighting fixture having a standard fluorescent ballast and operable when connected to a fluorescent lighting fixture having a magnetic fluorescent ballast.
In another implementation, an LED lighting device is provided. The LED lighting device includes a plurality of light emitting diodes; a pair of end caps, each of said pair of end caps disposed at an end of the lighting device; a male bi-pin fluorescent fixture connector disposed on each of said pair of end caps, each male bi-pin fluorescent fixture connector configured to mate with a fluorescent fixture connector of a fluorescent fixture having a standard electronic fluorescent ballast and to mate with a fluorescent fixture connector of a fluorescent fixture having a magnetic fluorescent ballast; and drive circuitry connected with at least one contact pin of said male bi-pin fluorescent fixture connectors and said plurality of light emitting diodes, said drive circuitry configured to provide an operating current to said plurality of light emitting diodes when said at least one contact pin is connected to a fluorescent fixture having a standard electronic fluorescent ballast and to provide an operating current to said plurality of light emitting diodes when said at least one contact pin is connected to a fluorescent fixture having a magnetic fluorescent ballast.
In yet another implementation, an LED lighting device is provided. The LED lighting device includes a pair of end caps, each of said pair of end caps disposed at an end of the lighting device; a housing extending between said pair of end caps; a plurality of light emitting diodes arranged in a single row between said pair of end caps, said housing comprising a plurality of fins extending radially outward from three sides of said plurality of light emitting diodes; a male bi-pin fluorescent fixture connector disposed on each of said pair of end caps, each male bi-pin fluorescent fixture connector configured to mate with a fluorescent fixture connector of a fluorescent fixture having a standard fluorescent ballast and to mate with a fluorescent fixture connector of a fluorescent fixture having a magnetic fluorescent ballast; and drive circuitry connected with at least one contact pin of said male bi-pin fluorescent fixture connectors and said plurality of light emitting diodes, said drive circuitry configured to provide an operating current to said plurality of light emitting diodes when said at least one contact pin is connected to a fluorescent fixture having a standard fluorescent ballast and to provide an operating current to said plurality of light emitting diodes when said at least one contact pin is connected to a fluorescent fixture having a magnetic fluorescent ballast.
In still another implementation, a circuit arrangement is provided. The circuit arrangement provides the proper drive to a multiplicity of LEDs, connected in a series string, by deriving the drive from standard magnetic or electronic ballast and commonly used fluorescent fixture wiring. Another circuit provides the capability of operation with any fixture wiring variation. Yet another circuit provides protection against the ballast generating a high “strike” voltage in the event that an LED fails open. Still another embodiment is shown which provides dimming capability for the light. Still yet another embodiment shows the interface circuitry for remotely dimming the LED light.
In yet still another implementation, no glass or other easily breakable materials are utilized and no toxic substances are used. Therefore, there is no need for heat trapping protective sleeves or other covering devices to be used. A further implementation provides for means to remove the heat generated by the LEDs and thereby increase the useful life of the devices. In still a further implementation, the filter capacitance at the input offsets, to some degree, the inductive load presented by the ballast and bring the input power factor closer to unity.
For the purpose of illustrating the invention, the drawings show aspects of one or more embodiments of the invention. However, it should be understood that the present invention is not limited to the precise arrangements and instrumentalities shown in the drawings, wherein:
10 Contact Pin
20 End Cap
30 Heat Sink
40 Bridge Rectifier
45 Bus Wire
50 Input Capacitor
55 Input Circuit Board
60 LED
70 LED Circuit Board
90 Thermally Conductive Isolator
100 Shut Down Triac
110 Overvoltage Sense Zener Diode
120 Current Setting Resistor
125 Control Circuit Board
130 NPN Power Transistor
140 Base Drive Resistor
150 Diode
200 N Channel MOSFET
210 P Channel MOSFET
220 Microprocessor
240 Voltage Regulator
250 Input Zener Diode
260 Filter Capacitor
270 Capacitor
280 Base Drive Resistor
290 NPN Transistor
300 Diode
310 Resistor
320 NPN Transistor
330 Resistor
340 Diode
350 Resistor
360 PNP Transistor
370 Zener Diode
380 Interface Device
Referring now to the drawings,
The operation of example LED drive circuits within the present invention will now be described in detail while referencing the embodiments of
Should an LED in the series string fail as an open circuit, the ballast will sense that there is no current flowing and apply a high voltage “strike” voltage. This would normally cause the fluorescent tube to light. A “strike” voltage could cause serious damage to other components. To prevent this, the drive circuit shown in
It will be apparent to anyone skilled in the art that the embodiment of
Although the description above contains specific heat sink, mounting, and assembly designs, these should not be construed as limiting the scope of the invention but as merely providing an illustration of the currently preferred embodiment.
Further, although various circuit configurations have been shown and described above there are numerous variations which can be used with the present invention, the specific design of which will be evident to one skilled in the art given the detailed description herein.
Thus, although the present invention has been described in relation to particular embodiments therof, many other variations and modifications will become apparent to those skilled in the art. It is preferred, therefore, that the present invention be limited not by the specific disclosure herein, but only by the appended claims.
This application is a continuation application of U.S. patent application Ser. No. 11/361,656, filed Feb. 23, 2006 entitled “Circuit Devices Which Include Light Emitting Diodes, Assemblies Which Include Such Circuit Devices, and Methods for Directly Replacing Fluorescent Tubes,” which is incorporated herein by reference in its entirety. This application claims the benefit and priority of U.S Provisional Application Ser. No. 60/657,100 filed Feb. 28, 2005 entitled “Fluorescent Replacement Using Light Emitting Diodes,” which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60657100 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11361656 | Feb 2006 | US |
Child | 12534580 | US |