The present invention generally relates to the field of lighting devices, and more particularly, to a system and method of controlling lighting fixtures for coordinating precise brightness and color schedules so as to closely resemble sunlight on a cloudless day in spectral characteristics.
With growing demand for energy efficient lighting, new lighting technologies such as LEDs offer distinct opportunities due to their customizable colors and precision in control. As the white LED lighting market grows, advancing the state of the art entails a seamless integration of artificial light with natural light and healthful lighting through dynamic lighting.
One particular niche of such LED design and control is in the generation of artificial sunlight for variety of reasons, especially for treating human ailments, e.g., circadian rhythm disorders, seasonal affection disorders, shift work conditions, etc.
U.S. Pat. No. 6,350,275 (Vreman et al.) relates to a pair of personal glasses with built in LED's within 3 cm of the eye which directs red and blue light into the user's eyes to treat circadian rhythm disorders. However, this invention is limited to one user, must be worn during the working period and does not simulate natural sunlight.
The following patents propose similar methods of treating circadian rhythm disorders, but wherein they do not replicate natural sunlight conditions, involve a portable or wearable device, involve treatment periods which are intermittent and require that the patient engage with the device, or involve chromatic properties of treatment light which are not defined: U.S. Pat. No. 5,503,637 (Kyricos, et al.); U.S. Pat. No. 6,053,936 (Koyama, et al.); U.S. Pat. No. 5,197,941 (Whitaker); U.S. Pat. No. 5,545,192 (Czeisler, et al.); U.S. Pat. No. 5,176,133 (Czeisler, et al.); and U.S. Pat. No. 5,304,212 (Czeisler, et al.).
Examples of other lighting control systems are mentioned below:
U.S. Pat. No. 7,014,336 (Ducharme, et al.) relates to active circuitry with a feedback mechanism for reading the light in the room and actively adjusts. In particular, the invention relates specifically to color temperature variable lighting fixtures but without relating a specific region of the blackbody curve or chromaticity diagram. It also does not appear to teach or suggest a method for automatically adjusting the color temperature and brightness of the lighting fixtures without user input.
U.S. Pat. No. 7,213,940 (Van De Ven et al.) involves reducing light with specific coordinates (dimming and feedback) utilizing different families of LED emitters and adjusts for specific output at constant color temperature at a sacrifice of brightness. This patent is also static embedded systems with controls within the fixture. This invention relates to a variable color temperature adjustable over time with active controls. In particular, the invention involves a specific 5-sided bounding box on the CIE (Commission Internationale de l'Eclairage) 1931 chromaticity diagram. It specifies that a first group of lighting elements must have chromaticity coordinates at a first point (defined) and a second group must have coordinates falling within the defined box. Additionally, this patent relates to a lighting fixture producing a fixed color temperature.
U.S. Pat. No. 7,354,172 (Chemel, et al.) relates to rendering lighting conditions based on a reference color gamut common to many lighting units in a network using white and monochromatic LEDs. This patent does not specifically define the color gamut or the colors or chromaticity coordinates the fixture operates at, and does not appear to teach or suggest a means by which brightness and color are autonomously and dynamically changed with time.
U.S. Pat. No. 6,459,919 (Lys, et al.) discloses illumination of living tissues where known light parameters relate to a condition of the living tissue. This is discussed in the context of using light to identify abnormal features and pathological conditions of tissues, living matter, and other materials. The therapeutic applications mentioned in the background extend only to diagnostic methods, and do not appear to teach or suggest using lighting conditions to stimulate a biological response.
U.S. Pat. No. 6,441,558 (Muthu, et al.) relates to a fixture employing red, green, and blue LEDs and a control mechanism such that the fixture outputs a constant color temperature and brightness.
U.S. Pat. No. 6,340,868 (Lys, et al.) relates to lighting units on a network capable of receiving addressing commands and controls for controlling a plurality of LEDs in each unit. However, this invention does not deal with methods by which lighting conditions are changed (i.e., color schedules), specific chromatic regions the fixtures recreate, or methods to ensure color consistency (i.e., feedback loops or sensors).
U.S. Pat. No. 7,173,384 (Plotz, et al.) relates to recreating a predetermined region on a CIE chromaticity diagram using pulse width channels of red, green, and blue LEDs arranged in channels of up to six.
U.S. Pat. No. 7,067,995 (Gunter, et al.) discloses the use of a temperature sensor and calibrations, along with sensor calibration data storage at various reference temperatures as a means of correcting color fluctuations related to the thermal state of the LEDs.
U.S. Pat. No. 6,992,803 (Chang) relates to a feedback mechanism which calculates the chromaticity coordinates of each lighting element in a lighting fixture to calculate the proper operating conditions necessary to reproduce a specific chromaticity coordinate.
U.S. Pat. No. 6,683,419 (Kriparos) discloses a method by which LEDs, with linear dimming—brightness curves, mimic incandescent bulbs, which have exponential dimming—brightness curves. The invention involves the dimming-brightness relationship in an LED fixture and does not appear to teach or suggest changing color with dimming level.
U.S. Pat. No. 7,327,337 (Callahan) involves a series of lighting devices connected to a two wire power bus in which the color modulation signals are transmitted through the power connection and demodulated in the lighting device.
U.S. Pat. No. 6,806,659 (Mueller, et al.) covers a lighting control network for LED luminaries as well as various LED lighting fixtures for several applications. See also U.S. Patent Publication No. 20040178751 (Mueller, et al.).
U.S. Pat. No. 4,962,687 (Belliveau, et al.) deals with variable colors in a lighting system achieved by dimming circuitry within fixtures. It does not appear to cover specific chromatic regions rendered using a control feedback loop.
U.S. Pat. No. 5,350,977 (Hamamoto, et al.) involves a variable color temperature fixture, and does not incorporate a means of autonomously and dynamically changing the color temperature and or brightness with respect to the time of day or geographic location.
U.S. Pat. No. 5,357,170 (Luchaco, et al.) claims a control system where preset conditions can be changed by the occupant by moving a physical member or slider control to change the maximum brightness levels of the system. This patent does not appear to address color modulation over time or lighting schedules or programs.
U.S. Pat. No. 7,288,902 (Melanson) deals first with a lighting fixture with two unique lighting elements, each possessing a fixed color temperature, which are then dimmed at different ratios relative to the AC power dimming level to achieve a variable color temperature with dimming level. This patent claims only “white” and “yellow” LEDs, and does not appear to teach or suggest the ratios or specific chromatic region rendered by the lighting device. This patent also does not appear to teach or suggest any method by which a control system can interface with a fixture, or any method by which the brightness and color temperature of the fixture can be controlled independently.
U.S. Pat. No. 6,720,745 (Lys, et al.) discloses the use of the RS-485 standard to control a plurality of LED devices.
U.S. Pat. No. 7,215,086 (Maxik), issued relates to integrating the fixture designs within the Lutron Circuits to achieve dimming levels below 5% through pulse modulation. This invention utilizes a square wave which has been discussed in prior art.
U.S. Pat. No. 5,193,900 (Yano, et al.) discloses a device which detects natural light and mechanically actuates a filter on an artificial light source.
U.S. Pat. No. 6,554,439 (Telcher, et al.) teaches a method of treating circadian rhythm disorders using light sources and a rotating filter.
U.S. Pat. No. 7,446,303 (Maniam, et al.) discloses an ambient light sensor suitable for determining lighting conditions, but does not practice a lighting device or a system of lighting devices.
U.S. Pat. Nos. 7,387,405 and 7,520,634 (Ducharme, et al.) pertain to a system of lighting devices capable of producing a broad range of lighting conditions, however they do not utilize a specific collection of at least three lighting elements of a characteristic chromaticity (as is disclosed in the present application, as will be discussed later), and do not teach a method by which the user can prescribe a particular flux of blue light within white light.
U.S. Pat. No. 7,319,298 (Jungwirth, et al.) relates to a luminaire system which produces light of a desired chromaticity and luminous flux output with varying ambient temperature. The prior art teaches a method by which the luminaire regulates chromaticity throughout changing temperatures using sensors.
U.S. Pat. No. 5,721,471 (Begemann, et al.) discloses a lighting system which manipulates artificial lighting based on actual lighting conditions, determined either by a light sensor exposed to natural light or by the calendar day and time of day. It also discusses modification to artificial lighting conditions based on a modification to present mean day-lighting levels. In contrast (as will be discussed in detail later), the present invention relates a desired result or circadian response to the generation of signals to control lighting devices and the ultimate generation of artificial light. This method of input is based on user preference rather than a prescriptive input based on a default time of day or existing lighting conditions for a fixed geographic location. The present invention allows the user to adjust for jet lag after travel, maintain the lighting conditions of a fixed geographic location throughout any location, coordinate the circadian rhythm to a cycle other than 24 hours, or specify a desired circadian response or condition.
U.S. Pat. No. 7,679,281 (Do Hyung, et al.) teaches a lighting device with three lighting elements, two of which comprise an LED chip combined with a phosphor of a specific composition and a third LED chip which emits light in the visible range of 580 nm or more. This third lighting device emitting visible light of 580 nm is described as a lighting element which produces light of 3000K or less, however no specific spectral distributions of light are disclosed. In contrast (and as will be discussed in detail later), the present invention relates to a collection of lighting elements with specific chromaticity characteristics such that the flux of blue light can be precisely controlled through independent modulation of each lighting element while maintaining high color rendering index of the artificial white light. The selection of the lighting elements in the present invention may comprise any collection of lighting elements which produce light in the characteristic chromaticity regions described in
U. S. Patent Publication No. 20030133292 (Mueller, et al.) discloses many applications of color temperature variable lighting. Daylight simulation and circadian rhythm disorder treatment is not mentioned.
U. S. Patent Publication No. 20030100837 (Lys, et al.) relates to therapeutic effects achieved with LED devices; it claims: an LED system for generating a range of colors within a color spectrum, selecting from the range of colors a set of colors, whereby the set of colors produces in the patient a therapeutic effect, and illuminating an area of the patient with the set of colors for a period of time predetermined to be effective in producing the therapeutic effect. The patent does not appear to identify the range of colors which produce the therapeutic effect, nor does it appear to identify a period of time or method of modulation of the light to facilitate this therapeutic effect.
See also the following U.S. patent publications regarding LED lighting controls: U.S. Patent Publication Nos. 20050253533 (Lys, et al.); 20050236998 (Mueller, et al.); 20050231133 (Lys); 20050218870 (Lys); 20050213353 (Lys); 20050200578 (Lee, et al.); 20050151489 (Lys); 20040212321 (Lys, et al.); and 20040105264 (Spero).
However, despite the foregoing, there remains a need for a system and method that generates broad spectrum white light of color temperatures 1800K to 6500K in interior spaces using general lighting fixtures (e.g., for treating circadian rhythm disorders) and wherein brightness and color are autonomously and dynamically changed with time and while using combinations of white LEDs and color LEDs. Furthermore, there remains a need for such a system and method that does not require calculating chromaticity coordinates but rather uses calibration values of sensor outputs at specific color temperatures and preferably, for controlling a feedback loop, and a color matching algorithm.
The invention also comprises a novel method to control lighting devices (e.g., novel methods of interpreting given user input into control signals which translate to a specific point on the daylight locus or color temperature) as well as a novel lighting device. This is significant because variable color temperature fixtures (e.g., those shown in the prior art) are designed to be controlled, operated, or programmed by lighting designers or advanced users. As will be discussed in detail below, the present invention incorporates methods by which simple inputs are translated into appropriate signals for controlling a multi-channel lighting device. These simple inputs may comprise
These inputs can be manually inputted to the system or they can be automatically fed to the system from sensors (e.g., clocks, global positioning systems, etc.).
A further input to this novel system is the flux of color light, and more preferably, the flux of blue light flux of blue light (specifically 464 nm). Furthermore, “blue light”, referred to as specifically 464 nm light, is meant to be interpreted to be broad spectrum blue light with a concentration (spectral peak) at approximately 464 nm.
Also note that a lighting system with a shorter range of 3500-5000K for example can still satisfy the requirements to coordinate circadian rhythms by regulating output of blue light (specifically the flux of 464 nm light). It is within the scope of the invention that a lighting device comprising at least three lighting elements of characteristic chromaticity illustrated in
In one example, the circadian rhythm of a subject is regulated or affected by artificial light where the flux of blue light (specifically 464 nm) is adjusted through changes in color temperature, brightness, or both. This example teaches that even warm white light contains a quantity of blue light which can influence a circadian response, and that light of a constant color temperature can be modulated in intensity to induce a circadian response.
It should be noted that because the prior art does not take into account the flux of light in the blue region (specifically 464 nm) in white light control mechanisms, methods, and systems, it is possible that prescriptive efforts to regulate a subject's circadian rhythm can have undesirable results since all white light contains blue light. Because of this, simple modulation of color temperature alone is not adequate to affect a desired circadian response.
Note the fact that users may want to adjust lighting to emulate very warm, dimmed incandescent lighting with a characteristic color temperature of 1800-2400K. This characteristic color temperature also contains a very small fraction of irradiance in the blue region (in particular the 464 nm wavelength) compared to light in the 5000-6500K region. A lighting system of fixtures capable of producing light in the 1800-2400K region offers the user more options to coordinate lighting in such a way that the circadian rhythm is not disrupted by blue light.
A system is disclosed for artificially generating sunlight in accordance with a daytime locus using spectral characteristics that resembles sunlight (including other variations of daytime sunlight such as diffuse lighting, e.g., cloudless, partially cloudy, overcast, foggy, rainy, snowy, etc.). The system automatically controls at least one lighting fixture substantially along a daytime locus (e.g., white light of color temperature from 1800K to 6500K) to generate the artificial sunlight.
A method is disclosed for artificially generating sunlight in accordance with a daytime locus using spectral characteristics that resembles sunlight (including other variations of daytime sunlight such as diffuse lighting, e.g., cloudless, partially cloudy, overcast, foggy, rainy, etc.). The method comprises: providing a plurality of channels of lighting elements (e.g., at least three channels); activating the plurality of channels to generate a composite light mixture; detecting the composite light mixture; and controlling the plurality of channels of lighting elements based on the detected composite light mixture to generate artificial sunlight mixture (e.g., white light of color temperature from 1800K to 6500K) along the daytime locus.
An artificial sunlight system is disclosed wherein the system comprises a lighting fixture whose light output is automatically controlled to reduce the effects of, or treat, one of the group of circadian rhythm disorders, shift work dysfunction and seasonal affective disorder by operating along a daytime locus (e.g., white light of color temperature from 1800K to 6500K) to provide compensating artificial sunlight.
A method is disclosed for artificially generating sunlight in accordance with a daytime locus (e.g., white light of color temperature from 1800K to 6500K) using spectral characteristics that resembles sunlight (including other variations of daytime sunlight such as diffuse lighting, e.g., cloudless, partially cloudy, overcast, foggy, rainy, etc.). The method comprises: providing a plurality of channels of lighting elements; activating the plurality of channels to generate a composite light mixture; detecting the composite light mixture; and controlling the plurality of channels of lighting elements based on the detected composite light mixture to generate artificial sunlight along the daytime locus for reducing the effects of, or treating, one of the group of circadian rhythm disorders, shift work dysfunction and seasonal affective disorder by operating along the daytime locus to provide compensating artificial sunlight.
A system for artificially generating sunlight in accordance with a daytime locus (e.g., white light of color temperature from 1800K to 6500K) using spectral characteristics that resembles sunlight (including other variations of daytime sunlight such as diffuse lighting, e.g., cloudless, partially cloudy, overcast, foggy, rainy, snowy, etc.). The system automatically controls at least one lighting fixture substantially along the daytime locus to generate the artificial sunlight wherein the system automatically changes brightness levels and color levels of a plurality of lighting element channels within the at least one lighting fixture that generates broad spectrum white light of color temperatures from 1800K to 6500K in accordance with a user-selected input. Furthermore, the system controls a total flux of blue light (e.g., 464 nm) from a relative level of 1 to 100% of a maximum blue light flux within the broad spectrum white light.
A method is disclosed for artificially generating sunlight in accordance with a daytime locus (e.g., white light of color temperature from 1800K to 6500K) using spectral characteristics that resembles sunlight (including other variations of daytime sunlight such as diffuse lighting, e.g., cloudless, partially cloudy, overcast, foggy, rainy, snowy, etc.). The method comprises: providing a plurality of channels of lighting elements (e.g., at least three channels); activating the plurality of channels to generate a composite light mixture; detecting the composite light mixture; controlling a total flux of blue light (e.g., 464 nm) which can be adjusted from a relative level of 1 to 100% of a maximum blue light flux of said composite light mixture; and controlling said plurality of channels of lighting elements based on said detected composite light mixture to generate artificial sunlight along the daytime locus having a broad spectrum white light of color temperatures from 1800K to 6500K.
It should be understood that although the preferred color temperature range of operation of the present system and method is 1800K to 6500K, this is by way of example only and may vary. The important feature of the present invention is the artificial generation of a whole range of sunlight scenarios (such as diffuse lighting, e.g., cloudless, partially cloudy, overcast, foggy, rainy, snowy, etc.) which includes any type of sunlight that occurs during the daytime using direct lighting. Thus, it is within the broadest scope of the present invention to include the artificial generation of all kinds of sunlight, including diffuse lighting (e.g., diffuse UV radiation) via the system/method of the present invention.
In addition, the phrase “daylight locus” as used throughout this Specification is close in proximity to the Planckian Blackbody Curve.
The invention will be described in conjunction with the following drawings in which like reference numerals designate like elements and wherein:
Although there are many uses of the invention of the present application, one of the most important is circadian rhythm applications. Circadian rhythm disturbances may be circadian rhythm imbalances, hormonal imbalances activated by exposure to light, shift work condition, or seasonal affective disorder. In particular, the invention of the present application comprises a lighting system which can treat and prevent circadian rhythm disorders. Also included within the broadest aspect of this invention are other applications where prevention of shift work dysfunction, seasonal affective disorder, and circadian rhythm disorders is mission critical, such as military applications (including navy vessels) and manned aerospace applications. Furthermore, the utility of the present invention can be invoked in geographic locations where the sky is often overcast or sunlight is scarce. The invention would equally apply to travelers since jet lag is related to the circadian rhythm. This application has customers in the passenger rail industry, airline industry, and hospitality industry.
Furthermore, the benefits of low glare, high CRI (Color Rendering Index) daylight white lighting extend beyond health benefits. Studies have shown increases in productivity, retail sales, and classroom performance in daylight-lit spaces. For these reasons, the present invention can provide greater efficiencies in retail applications, office and commercial applications, and education/higher education applications. In fact, retailers may find it useful to display their products in the optimal type of light, to further enhance every bit of the shopping experience. Restaurants which serve patrons from morning through the evening often use several circuits of incandescent lights or dimmers to change the lighting conditions throughout the day. A lighting system, such as the present invention, that keeps patrons comfortable at breakfast while being able to deliver a warm intimate atmosphere at cocktail hour is particularly appealing in this regard.
In
For the purposes of describing white light, it is useful to truncate the CIE 1931 chromaticity diagram to the region of interest. The diagram in
Bounding boxes 230, commonly referred to as “bins” by those versed in the art, are represented on an x-y chromaticity diagram 231. A bounding box, or bin, can be described by four coordinate points on the chromaticity diagram. A bin describes a sampling of lighting elements possessing a distribution of chromaticity characteristics defined within the bounding box, and various nomenclature systems may be used to describe individual bounding boxes or bins, a term used by those practiced in the art. A sampling of many lighting element's chromaticity characteristics can be plotted on a chromaticity coordinate system and arranged into bins, where the chromaticity characteristics are determined by optical testing. The dimensions of the bin (area on the x-y chromaticity chart) describes the variation in the spectral distribution for a given sample of similar lighting elements.
Any lighting element is subject to various modes of optical decay, dissipation, or degradation. These modes of decay may be related to brightness decreases (lumen decay) or spectral shifts throughout the lifetime of the lighting element. Spectral shifts may also occur due to the thermal state or variations in the operating voltage of a lighting element. Many solid state lighting elements produce broad spectrum light by down converting high frequency monochromatic light (herein referred to as excitation source) into broad spectrum lower frequency emission using specialized downconverters or lumiphors. These downconverters may consist of phosphors, quantum dots, organic semiconducting materials, photonic crystals, nano photonic crystals, and other photonic crystals. These various downconverters are subject to modes of degradation or decay, such as quantum efficiency decay, spectral shifting, thermal decay, oxidation, excitation peak shifts, and emission shift to name a few.
Four lighting element at points 231, 232, 233, and 234 possessing unique specific chromaticity coordinates are represented at an initial condition in
In a second condition, one or a combination of several operating attributes has changed from the initial condition. Changing one or a combination of these attributes causes a change in the lighting element's optical chromaticity coordinate, shown in
In the case of degradation due to operating time, the relationship between the excitation and emission spectrum is described by
In an initial condition where lighting elements are at an operating lifetime of 0 hours, the excitation intensity is at a higher level 220 than the excitation intensity in a degraded state, 222. Similarly, the broad band converted light goes from an initial high intensity 219 to a lower intensity in a degraded state 221.
Similarly, these key components may be arranged in an alternate fashion. Another such lighting fixture embodiment 319A is represented in
In lighting fixtures 319/319A containing a plurality of lighting elements 250/250A, two elements possessing unique spectral characteristics can be placed in close proximity where the light emitted travels into a cavity and is reflected off of one or more surfaces, mixing the light.
Channel 1 (cool white) comprising bounding box on x,y chromaticity diagram with four points given by (x,y). lighting elements comprising channel 1 possess chromaticity characteristics falling within the bounding box 275:
Point one having x,y chromaticity coordinates of 0.30, 0.33;
Point two having x,y chromaticity coordinates of 0.35, 0.37;
Point three having x,y chromaticity coordinates of 0.35, 0.34; and
Point four having x,y chromaticity coordinates of 0.31, 0.31.
Channel 2 (warm white) comprising bounding box on x,y chromaticity diagram with four points given by (x,y). lighting elements comprising channel 2 possess chromaticity characteristics falling within the bounding box 276:
Point one having x,y chromaticity coordinates of 0.37, 0.39;
Point two having x,y chromaticity coordinates of 0.48, 0.43;
Point three having x,y chromaticity coordinates of 0.46, 0.39; and
Point four having x,y chromaticity coordinates of 0.36, 0.35.
Channel 3 (amber) 277: comprising bounding box on x,y chromaticity diagram with four points given by (x,y). lighting elements comprising channel 3 possess chromaticity characteristics falling within the bounding box
Point one having x,y chromaticity coordinates of 0.54, 0.42;
Point two having x,y chromaticity coordinates of 0.55, 0.45;
Point three having x,y chromaticity coordinates of 0.60, 0.40; and
Point four having x,y chromaticity coordinates of 0.57, 0.40.
Channel 1 (very cool white) comprising bounding box on x,y chromaticity diagram with four points given by (x,y). LED emitters comprising channel one possess chromaticity characteristics falling within the bounding box 282:
Point one having x,y chromaticity coordinates of 0.30, 0.33;
Point two having x,y chromaticity coordinates of 0.35, 0.37;
Point three having x,y chromaticity coordinates of 0.35, 0.34; and
Point four having x,y chromaticity coordinates of 0.31, 0.31.
Channel 2 (neutral) comprising bounding box on x,y chromaticity diagram with four points given by (x,y). lighting elements comprising channel one possess chromaticity characteristics falling within the bounding box 283:
Point one having x,y chromaticity coordinates of 0.35, 0.37;
Point two having x,y chromaticity coordinates of 0.41, 0.41;
Point three having x,y chromaticity coordinates of 0.40, 0.37; and
Point four having x,y chromaticity coordinates of 0.35, 0.34.
Channel 3 (warm white) comprising bounding box on x,y chromaticity diagram with four points given by (x,y). lighting elements comprising channel one possess chromaticity characteristics falling within the bounding box 284:
Point one having x,y chromaticity coordinates of 0.41, 0.41;
Point two having x,y chromaticity coordinates of 0.48, 0.43;
Point three having x,y chromaticity coordinates of 0.46, 0.39; and
Point four having x,y chromaticity coordinates of 0.40, 0.37.
Channel 4 (amber) comprising bounding box on x,y chromaticity diagram with four points given by (x,y). lighting elements comprising channel one possess chromaticity characteristics falling within the bounding box 285:
Point one having x,y chromaticity coordinates of 0.54, 0.42;
Point two having x,y chromaticity coordinates of 0.55, 0.45;
Point three having x,y chromaticity coordinates of 0.60, 0.40; and
Point four having x,y chromaticity coordinates of 0.57, 0.40.
As mentioned previously, one of the unique aspects of the present invention is the ability to control lighting devices, and more specifically, (as will be discussed in detail below), controlling the brightness levels and the color levels of a plurality of lighting element channels. And as also mentioned earlier, this control is effected by permitting inputs to be made (either manually or automatically):
i. dimming level;
j. dimming level and color temperature level;
k. time of day;
l. time zone;
m. geographic location;
n. desired circadian response;
o. present activity (e.g., sleep, reading, working, studying, eating, resting, etc.); and
p. angle of sun.
A ninth input is the flux of color light, i.e., being able to control the total flux of a specific color light from a relative level of 1-100% the maximum color flux of the lighting fixture through control of each individual lighting element.
This is especially important for the flux of blue light (viz., 464 nm). It should be noted that a lighting system with a shorter range of 3500-5000K for example can still satisfy the requirements to coordinate circadian rhythms by regulating output of blue light (specifically the flux of 464 nm light). It is within the scope of the invention that a lighting device comprising at least three lighting elements of characteristic chromaticity illustrated in
In one example, the circadian rhythm of a subject is regulated or affected by artificial light where the flux of blue light (specifically 464 nm) is adjusted through changes in color temperature, brightness, or both. This example teaches that even warm white light contains a quantity of blue light which can influence a circadian response, and that light of a constant color temperature can be modulated in intensity to induce a circadian response.
The present invention implements a prescriptive control of the blue light component of the overall white light emission. By way of example only, a combination of at least three lighting fixtures can be controlled whereby the total flux of blue light can be adjusted from a relative level of 1-100% the maximum blue flux of the lighting device through control of each individual lighting element. Therefore, for example, where three lighting fixtures emit white light at 20 lux, 200 lux and 2000 lux, respectively, the blue light component for each fixture can be controlled at a 25% relative level, namely, 5 lux, 50 lux and 500 lux, respectively.
As shown in
Similarly, the lighting elements 308 can be grouped or consolidated into one or more devices 305 such as a multi channel amplifier, multi channel driver, or other controller coupled with an analog to digital converter circuit before coupling with the controller 309. To those known in the art, it is apparent that there are several ways of multiplexing these channels, and illustrated within are a few common examples. In particular,
As shown in
For some types of optical sensors such as photodiodes, a transimpedance amplifier may be necessary to convert current to voltage for the controller to process feedback data.
As mentioned previously, three unique spectral sensors (A, B and X) are in close proximity to the at least three channels 301 comprising a plurality of lighting elements (250). However, it should be understood that the number of sensors is not limited to three (hence, the sequence, A, B and X, with indicating an infinite number of sensors). In fact, it is within the broadest scope of the invention to include at least two sensors. Similarly, it should be understood that the number of channels is not limited to three (hence the sequence of 1, 2, μ). In fact, it is within the broadest scope of the invention to include at least three channels.
In this embodiment, a first group or channel of lighting elements is activated 330, illustrated by the
As shown in
As shown in
With a communications network in place linking multiple lighting fixtures, several time-color profiles can be assigned to one or more of these fixtures. In one embodiment, a simple schedule described in
It should be noted that the communication system:
In another embodiment described by
Settings, profiles, preferences, and other functions such as off and on may be controlled using a push button interface installed in an interior.
Since the light fixture's brightness level is variable, the light falling on the sensor may not be within the transimpedance amplifier's current threshold. This is why it is useful to change the resistor 504 resistance value to properly suit the sensing range of the fixture.
By way of example only, one application of the system/method of the present invention is the generation of an enriched light at 460 nm at an irradiance of 300 μW/cm2 for use in treating clinical jaundice in newborns. Approximately 60% of all newborns become clinically-jaundiced sometime during the first week of life and phototherapy is indicated to help the neonatal liver clear bilirubin from their blood, as recommended by the Academy of Pediatrics.
Another exemplary application of the system/method of the present invention is the generation of an enriched light of 290 nm-315 nm to aid in Vitamin D production. This is an issue especially in the winter months as many people do not go outdoors and receive adequate sunlight exposure. This is also becoming an issue in the summer months too, as many elderly are staying out of the sun and closing their shades to save on energy costs. Seasonal Affective Disorder is usually treated with a light therapy of as much as 10,000 lux at 30 inches from the body for at least 30 minutes per day. In contrast, the light box therapy used currently is more focused on total lux versus the quality of the light to match a full sunlight spectrum.
Thus, it should be understood that another exemplary application of the system/method of the present invention is Circadian Rhythm manipulation. For example, the present invention can implement Circadian Rhythm manipulation for the following individuals or scenarios:
It should be noted that the lighting elements discussed above may comprise chip-type light emitting diodes (LEDs), packaged LED emitters, arrays of chip type LED emitters incorporated into a single package, or collections of packaged LED emitters attached to a common board or light engine. These LED emitters may be coated with materials intended to convert high frequency light into low frequency broad spectrum light, such as YAG:Ce phosphors, phosphor coatings, phosphor films, or lenses containing phosphor dispersions. Additionally, quantum dot photonic crystals, photonic nanocrystals, or semiconducting nanoparticles may be incorporated into lighting elements by means of coating, film, or filled lens material to convert high frequency light into lower frequency light. By extension, lighting elements may incorporate a blend of lumiphors or conversion materials, where each component converts light to a unique lower frequency color. More than one lumiphor may be incorporated into lighting devices where lumiphors are applied in sequence to different regions of the light emitting component, analogous to sub pixels on a video display. Lighting elements may also comprise devices employing organic semiconducting materials, such as organic light emitting diodes (OLEDS), or phosphorescent materials which emit either white or narrow band light in specific regions in the spectrum.
It should be further noted that intensity of channels or groups of lighting elements may be changed by pulse width modulation, current modulation, or other means of duty cycle modulation.
The sensors identified in
It should be further noted that it is within the broadest scope of the present invention to include various types of optical sensors and optical sensor output formats. For example, the optical sensors of the present invention may include analog optical sensors that output voltages or digital sensors that output data and/or frequency. Thus, optical sensors that output chromaticity coordinates as opposed to voltage, frequency or other output formats (e.g., other data) are all within the broadest scope of the invention. This also includes various sensor processing mechanisms such as voltage/frequency/current signals that are representative of optical data that can be correlated with known optical data (e.g., via look-up tables or other correlation methods).
It should also be noted that although the preferred system and method of the present invention utilize feedback control, it is within the broadest scope of the present invention to include a light fixture system or light fixture method that uses no feedback control to artificially generate the daylight locus.
It should be further noted that it is within the broadest scope of the present invention to include the use of the more recent CIE 1960 chromaticity diagram, in addition to the CIE 1931 chromaticity diagram mentioned previously, with regard to the system/method operation of the present invention.
While the invention has been described in detail and with reference to specific examples thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.
The various embodiments described above can be combined to provide further embodiments. U.S. patent application Ser. No. 15/187,317, filed Jun. 20, 2016, U.S. Pat. No. 9,392,665, issued Jul. 12, 2016; U.S. Pat. No. 9,125,257, issued Sep. 1, 2015; U.S. Pat. No. 8,836,243, issued Sep. 16, 2014; U.S. Pat. No. 8,436,556, issued May 7, 2013 and U.S. Provisional Application No. 61/249,858, filed Oct. 8, 2009, are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, applications and publications to provide yet further embodiments.
These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
This application is a continuation of U.S. application Ser. No. 15/421,046, filed Jan. 31, 2017, now issued as U.S. Pat. No. 10,477,640, which is a continuation of U.S. application Ser. No. 15/187,317, filed Jun. 20, 2016, now issued as U.S. Pat. No. 9,642,209, which is a continuation of U.S. application Ser. No. 14/805,243, filed Jul. 21, 2015, now issued as U.S. Pat. No. 9,392,665, which is a continuation of U.S. application Ser. No. 14/486,753, filed Sep. 15, 2014, now issued as U.S. Pat. No. 9,125,257, which is a continuation of U.S. application Ser. No. 13/863,589, filed Apr. 16, 2013, now issued as U.S. Pat. No. 8,836,243, which is a continuation of U.S. application Ser. No. 12/900,158, filed Oct. 7, 2010, now issued as U.S. Pat. No. 8,436,556, which are all hereby incorporated herein by reference in their entirety. This application claims benefit of U.S. Provisional Application No. 61/249,858, filed Oct. 9, 2009, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
628351 | O'Neill | Jul 1899 | A |
828733 | Fuller | Aug 1906 | A |
853033 | Roberts | May 1907 | A |
1648277 | Korb | Nov 1927 | A |
2184644 | Homberger | Dec 1939 | A |
3621838 | Graham | Nov 1971 | A |
3678337 | Grauvogel | Jul 1972 | A |
4308911 | Mandl | Jan 1982 | A |
4638853 | Papak | Jan 1987 | A |
D295934 | Dyrhood | May 1988 | S |
4803625 | Fu | Feb 1989 | A |
4828609 | Anderson | May 1989 | A |
4858609 | Cole | Aug 1989 | A |
4882166 | Graham | Nov 1989 | A |
4893291 | Bick | Jan 1990 | A |
4911166 | Leighton | Mar 1990 | A |
4911737 | Yehl | Mar 1990 | A |
4930505 | Hatje | Jun 1990 | A |
4938582 | Leslie | Jul 1990 | A |
4962687 | Belliveau | Oct 1990 | A |
D312018 | Giesy | Nov 1990 | S |
5006985 | Ehret | Apr 1991 | A |
5010777 | Yehl | Apr 1991 | A |
5043840 | Yehl | Aug 1991 | A |
5079682 | Roberts | Jan 1992 | A |
5092669 | Anderson | Mar 1992 | A |
5121030 | Schott | Jun 1992 | A |
5176133 | Czeisler | Jan 1993 | A |
5193900 | Yano | Mar 1993 | A |
5197941 | Whitaker | Mar 1993 | A |
5214736 | Uemiya | May 1993 | A |
D335978 | Grahn | Jun 1993 | S |
D345071 | Gould | Mar 1994 | S |
5292345 | Gerardo | Mar 1994 | A |
5304212 | Czeisler | Apr 1994 | A |
5344068 | Haessig | Sep 1994 | A |
5350977 | Hamamoto | Sep 1994 | A |
5357170 | Luchaco | Oct 1994 | A |
5395042 | Riley | Mar 1995 | A |
5433923 | Wolverton | Jul 1995 | A |
D364762 | Compton | Dec 1995 | S |
D365484 | Trattner, Jr. | Dec 1995 | S |
5473537 | Glazer | Dec 1995 | A |
5503637 | Kyricos | Apr 1996 | A |
5545192 | Czeisler | Aug 1996 | A |
5589741 | Terman | Dec 1996 | A |
5692501 | Minturn | Dec 1997 | A |
5721471 | Begemann | Feb 1998 | A |
D396581 | Schubert | Aug 1998 | S |
5791982 | Curry | Aug 1998 | A |
5805267 | Goldman | Sep 1998 | A |
D401085 | Grant | Nov 1998 | S |
5892690 | Boatman | Apr 1999 | A |
5919217 | Hughes | Jul 1999 | A |
5937387 | Summerell | Aug 1999 | A |
5963294 | Schiffer | Oct 1999 | A |
6053936 | Koyama | Apr 2000 | A |
6055480 | Nevo | Apr 2000 | A |
D424356 | Hahn | May 2000 | S |
6118230 | Fleischmann | Sep 2000 | A |
6135970 | Kadhiresan | Oct 2000 | A |
6166496 | Lys | Dec 2000 | A |
6197094 | Thofelt | Mar 2001 | B1 |
6235046 | Gerdt | May 2001 | B1 |
6238337 | Kambhatla | May 2001 | B1 |
6269339 | Silver | Jul 2001 | B1 |
6290140 | Pesko | Sep 2001 | B1 |
6331160 | Bardy | Dec 2001 | B1 |
6340868 | Lys | Jan 2002 | B1 |
6344641 | Blalock | Feb 2002 | B1 |
6348867 | Myllymaeki | Feb 2002 | B1 |
6350275 | Vreman | Feb 2002 | B1 |
6387844 | Fujishima | May 2002 | B1 |
6441558 | Muthu | Aug 2002 | B1 |
6448550 | Nishimura | Sep 2002 | B1 |
6459919 | Lys | Oct 2002 | B1 |
6498440 | Stam | Dec 2002 | B2 |
6507159 | Muthu | Jan 2003 | B2 |
6507709 | Hirai | Jan 2003 | B2 |
6525658 | Streetman | Feb 2003 | B2 |
6535190 | Evanicky | Mar 2003 | B2 |
6554439 | Teicher | Apr 2003 | B1 |
6567009 | Ohishi | May 2003 | B2 |
6583720 | Quigley | Jun 2003 | B1 |
D477158 | Calcerano | Jul 2003 | S |
6589912 | Kawai | Jul 2003 | B2 |
6607484 | Suzuki | Aug 2003 | B2 |
6610127 | Lu | Aug 2003 | B2 |
6623512 | Heller | Sep 2003 | B1 |
6661798 | Sano | Dec 2003 | B2 |
6683419 | Kriparos | Jan 2004 | B2 |
6691070 | Williams | Feb 2004 | B1 |
6720745 | Lys | Apr 2004 | B2 |
6727091 | Darlington | Apr 2004 | B2 |
6738551 | Noda | May 2004 | B2 |
6755783 | Cosentino | Jun 2004 | B2 |
6772016 | Oern | Aug 2004 | B1 |
6782351 | Reichel | Aug 2004 | B2 |
6806659 | Mueller | Oct 2004 | B1 |
6878191 | Escaffre | Apr 2005 | B2 |
6879451 | Hewlett | Apr 2005 | B1 |
6888453 | Lutz | May 2005 | B2 |
6888779 | Mollicone | May 2005 | B2 |
6992803 | Chang | Jan 2006 | B2 |
7014336 | Ducharme | Mar 2006 | B1 |
7038399 | Lys | May 2006 | B2 |
7065280 | Ogawa | Jun 2006 | B2 |
7067995 | Gunter | Jun 2006 | B2 |
D526512 | Hahn | Aug 2006 | S |
7092101 | Brady | Aug 2006 | B2 |
7097111 | Riley | Aug 2006 | B2 |
D530940 | Raile | Oct 2006 | S |
7145295 | Lee | Dec 2006 | B1 |
7145614 | Lee | Dec 2006 | B2 |
7173384 | Ploetz | Feb 2007 | B2 |
7213940 | Van De Ven | May 2007 | B1 |
7215086 | Maxik | May 2007 | B2 |
7224282 | Terauchi | May 2007 | B2 |
7256554 | Lys | Aug 2007 | B2 |
7274160 | Mueller | Sep 2007 | B2 |
7288902 | Melanson | Oct 2007 | B1 |
7298871 | Lee | Nov 2007 | B2 |
7302313 | Sharp | Nov 2007 | B2 |
7308296 | Lys | Dec 2007 | B2 |
7319298 | Jungwirth | Jan 2008 | B2 |
7324874 | Jung | Jan 2008 | B2 |
7327337 | Callahan | Feb 2008 | B2 |
7348949 | Lee | Mar 2008 | B2 |
D566428 | Kester | Apr 2008 | S |
7354172 | Chemel | Apr 2008 | B2 |
7358679 | Lys | Apr 2008 | B2 |
7364583 | Rose | Apr 2008 | B2 |
7387405 | Ducharme | Jun 2008 | B2 |
7446303 | Maniam | Nov 2008 | B2 |
7453217 | Lys | Nov 2008 | B2 |
7457834 | Jung | Nov 2008 | B2 |
7520634 | Ducharme | Apr 2009 | B2 |
7536388 | Jung | May 2009 | B2 |
7545267 | Stortoni | Jun 2009 | B2 |
7553039 | Harris | Jun 2009 | B2 |
7557521 | Lys | Jul 2009 | B2 |
7572028 | Mueller | Aug 2009 | B2 |
7573210 | Ashdown | Aug 2009 | B2 |
7577915 | Hunter | Aug 2009 | B2 |
7647285 | Heckerman | Jan 2010 | B2 |
7652582 | Littell | Jan 2010 | B2 |
7659673 | Lys | Feb 2010 | B2 |
7679281 | Kim | Mar 2010 | B2 |
7680745 | Hunter | Mar 2010 | B2 |
7689437 | Teller | Mar 2010 | B1 |
7759854 | Miller | Jul 2010 | B2 |
7767280 | Klasen-Memmer | Aug 2010 | B2 |
7772965 | Farhan | Aug 2010 | B2 |
7827039 | Butcher | Nov 2010 | B2 |
7828205 | Cronin | Nov 2010 | B2 |
7839275 | Spalink | Nov 2010 | B2 |
7848945 | Rozell | Dec 2010 | B2 |
D632102 | Sato | Feb 2011 | S |
D634952 | Gile | Mar 2011 | S |
7901071 | Kulas | Mar 2011 | B1 |
7953678 | Hunter | May 2011 | B2 |
7967731 | Kil | Jun 2011 | B2 |
7973759 | Huang | Jul 2011 | B2 |
7977904 | Berman | Jul 2011 | B2 |
8028706 | Skene | Oct 2011 | B2 |
8038615 | Gobeyn | Oct 2011 | B2 |
8064295 | Palmer | Nov 2011 | B2 |
8100552 | Spero | Jan 2012 | B2 |
8143792 | Joo | Mar 2012 | B2 |
8159150 | Ashdown | Apr 2012 | B2 |
8188873 | Barth | May 2012 | B2 |
8200744 | Jung | Jun 2012 | B2 |
D666123 | Sichello | Aug 2012 | S |
8253349 | Shteynberg | Aug 2012 | B2 |
8271575 | Hunter | Sep 2012 | B2 |
8321192 | Boyce | Nov 2012 | B2 |
8352408 | Guillama | Jan 2013 | B2 |
8358214 | Amigo | Jan 2013 | B2 |
8359208 | Slutzky | Jan 2013 | B2 |
8390207 | Dowling | Mar 2013 | B2 |
8429223 | Gilley | Apr 2013 | B2 |
8446275 | Utter, II | May 2013 | B2 |
8497871 | Zulch | Jul 2013 | B2 |
8508169 | Zaharchuk | Aug 2013 | B2 |
8515785 | Clark | Aug 2013 | B2 |
8527213 | Kailas | Sep 2013 | B2 |
8558466 | Curasi | Oct 2013 | B2 |
8609121 | Averett | Dec 2013 | B2 |
8660861 | Chun | Feb 2014 | B2 |
8690771 | Wekell | Apr 2014 | B2 |
8707619 | Edwards | Apr 2014 | B2 |
8716952 | Van De Ven | May 2014 | B2 |
8795169 | Cosentino | Aug 2014 | B2 |
8801636 | Lewicke | Aug 2014 | B2 |
8855757 | Kapoor | Oct 2014 | B2 |
8862532 | Beaulieu | Oct 2014 | B2 |
8870740 | Clegg | Oct 2014 | B2 |
8924026 | Federspiel | Dec 2014 | B2 |
8961414 | Teller | Feb 2015 | B2 |
9010019 | Mittelmark | Apr 2015 | B2 |
9015610 | Hunter | Apr 2015 | B2 |
9020647 | Johnson | Apr 2015 | B2 |
9044567 | Poirrier | Jun 2015 | B2 |
D734958 | Gosling | Jul 2015 | S |
D737078 | McKinney | Aug 2015 | S |
9098114 | Potter | Aug 2015 | B2 |
9104183 | Zheng | Aug 2015 | B2 |
9118499 | Hunter | Aug 2015 | B2 |
9147296 | Ricci | Sep 2015 | B2 |
9226371 | Mohan | Dec 2015 | B2 |
9230064 | Yanev | Jan 2016 | B2 |
9248309 | Pugh | Feb 2016 | B2 |
9360731 | Berman | Jun 2016 | B2 |
9370689 | Guillama | Jun 2016 | B2 |
D761598 | Goodman | Jul 2016 | S |
9420667 | Mohan | Aug 2016 | B2 |
9429009 | Paulk | Aug 2016 | B2 |
9430617 | Brust | Aug 2016 | B2 |
9430927 | Yu | Aug 2016 | B2 |
9715242 | Pillai | Jul 2017 | B2 |
9730298 | Vangeel | Aug 2017 | B2 |
9952614 | Hunter | Apr 2018 | B2 |
20020096121 | Ingman | Jul 2002 | A1 |
20020119281 | Higgins | Aug 2002 | A1 |
20020128864 | Maus | Sep 2002 | A1 |
20020163529 | Evanicky | Nov 2002 | A1 |
20020187082 | Wu | Dec 2002 | A1 |
20030100837 | Lys | May 2003 | A1 |
20030133292 | Mueller | Jul 2003 | A1 |
20030209501 | Leung | Nov 2003 | A1 |
20040002792 | Hoffknecht | Jan 2004 | A1 |
20040060677 | Huang | Apr 2004 | A1 |
20040065098 | Choi | Apr 2004 | A1 |
20040105264 | Spero | Jun 2004 | A1 |
20040160199 | Morgan | Aug 2004 | A1 |
20040176666 | Chait | Sep 2004 | A1 |
20040178751 | Mueller | Sep 2004 | A1 |
20040212321 | Lys | Oct 2004 | A1 |
20040245351 | Orfield | Dec 2004 | A1 |
20040264193 | Okumura | Dec 2004 | A1 |
20040267385 | Lingemann | Dec 2004 | A1 |
20050110416 | Veskovic | May 2005 | A1 |
20050151489 | Lys | Jul 2005 | A1 |
20050177957 | Long | Aug 2005 | A1 |
20050191505 | Akarsu | Sep 2005 | A1 |
20050200578 | Lee | Sep 2005 | A1 |
20050213353 | Lys | Sep 2005 | A1 |
20050214533 | Shimosaki | Sep 2005 | A1 |
20050218870 | Lys | Oct 2005 | A1 |
20050225976 | Zampini | Oct 2005 | A1 |
20050231133 | Lys | Oct 2005 | A1 |
20050236998 | Mueller | Oct 2005 | A1 |
20050253533 | Lys | Nov 2005 | A1 |
20060000257 | Samadpour | Jan 2006 | A1 |
20060002110 | Dowling | Jan 2006 | A1 |
20060017928 | Crowther | Jan 2006 | A1 |
20060018118 | Lee | Jan 2006 | A1 |
20060103728 | Ishigami | May 2006 | A1 |
20060111944 | Sirmans, Jr. | May 2006 | A1 |
20060158881 | Dowling | Jul 2006 | A1 |
20060172579 | Murphy | Aug 2006 | A1 |
20060207730 | Berman | Sep 2006 | A1 |
20060246149 | Buchholz | Nov 2006 | A1 |
20070001617 | Pogodayev | Jan 2007 | A1 |
20070024210 | Zwanenburg | Feb 2007 | A1 |
20070115665 | Mueller | May 2007 | A1 |
20070162858 | Hurley | Jul 2007 | A1 |
20070228999 | Kit | Oct 2007 | A1 |
20080031832 | Wakefield | Feb 2008 | A1 |
20080103561 | Moscovici | May 2008 | A1 |
20080158871 | McAvoy | Jul 2008 | A1 |
20080224121 | Bose | Sep 2008 | A1 |
20080225021 | Hekstra | Sep 2008 | A1 |
20080238335 | Lee | Oct 2008 | A1 |
20080246629 | Tsui | Oct 2008 | A1 |
20080294012 | Kurtz | Nov 2008 | A1 |
20080297027 | Miller | Dec 2008 | A1 |
20090065596 | Seem | Mar 2009 | A1 |
20090068089 | Hussain | Mar 2009 | A1 |
20090104086 | Zax | Apr 2009 | A1 |
20090128044 | Nevins | May 2009 | A1 |
20090169425 | Park | Jul 2009 | A1 |
20090223126 | Garner | Sep 2009 | A1 |
20090241496 | Pintault | Oct 2009 | A1 |
20090242485 | Cabados | Oct 2009 | A1 |
20090243517 | Verfuerth | Oct 2009 | A1 |
20090292180 | Mirow | Nov 2009 | A1 |
20100021710 | Hunt | Jan 2010 | A1 |
20100060185 | Van Duijneveldt | Mar 2010 | A1 |
20100119461 | Bicard-Benhamou | May 2010 | A1 |
20100146855 | Ma | Jun 2010 | A1 |
20100169108 | Karkanias | Jul 2010 | A1 |
20100189429 | Butterworth | Jul 2010 | A1 |
20100197495 | Filippini | Aug 2010 | A1 |
20100207544 | Man | Aug 2010 | A1 |
20100217099 | Leboeuf | Aug 2010 | A1 |
20100300856 | Pance | Dec 2010 | A1 |
20110043137 | Negley | Feb 2011 | A1 |
20110084614 | Eisele | Apr 2011 | A1 |
20120011033 | Salgia | Jan 2012 | A1 |
20120158203 | Feldstein | Jun 2012 | A1 |
20120206726 | Pervez | Aug 2012 | A1 |
20120279120 | Prescott | Nov 2012 | A1 |
20120298599 | Sichello | Nov 2012 | A1 |
20130035208 | Dalebout | Feb 2013 | A1 |
20130081541 | Hasenoehrl | Apr 2013 | A1 |
20130102852 | Kozloski | Apr 2013 | A1 |
20130141235 | Utter, II | Jun 2013 | A1 |
20130208576 | Loree, IV | Aug 2013 | A1 |
20130229114 | Eisele | Sep 2013 | A1 |
20140058566 | Rains, Jr. | Feb 2014 | A1 |
20140067130 | Pillai | Mar 2014 | A1 |
20140093551 | Averett | Apr 2014 | A1 |
20140099348 | Averett | Apr 2014 | A1 |
20140283450 | Darlington | Sep 2014 | A1 |
20140298719 | Mackin | Oct 2014 | A1 |
20140318011 | Järvinen | Oct 2014 | A1 |
20150015152 | Aboulnaga | Jan 2015 | A1 |
20150052975 | Martin | Feb 2015 | A1 |
20150066578 | Manocchia | Mar 2015 | A1 |
20150102730 | Eisele | Apr 2015 | A1 |
20150126806 | Barroso | May 2015 | A1 |
20150212057 | Darveau | Jul 2015 | A1 |
20150382427 | Eisele | Dec 2015 | A1 |
20160231014 | Ro | Aug 2016 | A1 |
20160253802 | Venetianer | Sep 2016 | A1 |
20170053068 | Pillai | Feb 2017 | A1 |
20170068782 | Pillai | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
2307458 | Nov 2001 | CA |
2740939 | Mar 2010 | CA |
1150882 | May 1997 | CN |
1544222 | Nov 2004 | CN |
101421558 | Apr 2009 | CN |
202551821 | Nov 2012 | CN |
103277870 | Sep 2013 | CN |
1067825 | Jan 2001 | EP |
1821582 | Aug 2007 | EP |
2082620 | Jul 2009 | EP |
2132960 | Dec 2009 | EP |
2431541 | Mar 2012 | EP |
2488912 | Aug 2012 | EP |
S60110520 | Jun 1985 | JP |
H0552361 | Mar 1993 | JP |
H0658593 | Mar 1994 | JP |
H06159763 | Jun 1994 | JP |
H06225858 | Aug 1994 | JP |
H09303842 | Nov 1997 | JP |
H10238089 | Sep 1998 | JP |
2000130828 | May 2000 | JP |
2000294388 | Oct 2000 | JP |
2001224078 | Aug 2001 | JP |
2001286226 | Oct 2001 | JP |
2001314882 | Nov 2001 | JP |
2002042546 | Feb 2002 | JP |
2002059152 | Feb 2002 | JP |
2003042507 | Feb 2003 | JP |
2003042509 | Feb 2003 | JP |
2003083590 | Mar 2003 | JP |
2003232559 | Aug 2003 | JP |
2004053130 | Feb 2004 | JP |
2005040769 | Feb 2005 | JP |
2005177726 | Jul 2005 | JP |
2005211319 | Aug 2005 | JP |
2005235634 | Sep 2005 | JP |
2006210045 | Aug 2006 | JP |
2006522699 | Oct 2006 | JP |
2006321721 | Nov 2006 | JP |
2007170761 | Jul 2007 | JP |
2007184436 | Jul 2007 | JP |
2008125541 | Jun 2008 | JP |
2008157548 | Jul 2008 | JP |
2008204640 | Sep 2008 | JP |
2010182661 | Aug 2010 | JP |
2010239878 | Oct 2010 | JP |
2011146137 | Jul 2011 | JP |
2012001931 | Jan 2012 | JP |
20000009824 | Feb 2000 | KR |
20010048235 | Jun 2001 | KR |
20030074107 | Sep 2003 | KR |
20050003899 | Jan 2005 | KR |
100771486 | Oct 2007 | KR |
100804892 | Feb 2008 | KR |
101102733 | May 2011 | KR |
20120004243 | Jan 2012 | KR |
101135926 | Apr 2012 | KR |
20130124184 | Nov 2013 | KR |
0039964 | Jul 2000 | WO |
2004037301 | May 2004 | WO |
2007026387 | Mar 2007 | WO |
2008043396 | Apr 2008 | WO |
2008102308 | Aug 2008 | WO |
2008120127 | Oct 2008 | WO |
2008135093 | Nov 2008 | WO |
2009004433 | Jan 2009 | WO |
2009030641 | Mar 2009 | WO |
2009044330 | Apr 2009 | WO |
2010046875 | Apr 2010 | WO |
2010087386 | Aug 2010 | WO |
2010115720 | Oct 2010 | WO |
2011033377 | Mar 2011 | WO |
2011046875 | Apr 2011 | WO |
2012104773 | Aug 2012 | WO |
2012151407 | Nov 2012 | WO |
2013014337 | Jan 2013 | WO |
2013049297 | Apr 2013 | WO |
2015130786 | Sep 2015 | WO |
Entry |
---|
Allergy Buyers Club, “Philips Wake Up Light Dawn Simulators Alarm Clocks,” retrieved from http://www.allergybuyersclub.com/philips-wake-up-light-dawn-simulator-alarm-cloc ks.html, retrieved on Aug. 13, 2012, 2 pages. |
American Ultraviolet, “Handheld Germicidal Fixtures,” retrieved from http://americanultraviolet.com/germicidal_solutions/commercial_products/handheld . . . , retrieved on Aug. 13, 2012, 1 page. |
American Ultraviolet, “In Room Germicidal Solutions,” HVAC MRS (0810/2.5M), retrieved from http://www.americanultraviolet.com, 2 pages. |
Australian Examination report No. 1, dated Dec. 13, 2017, for Australian Application No. 2017200995, 6 pages. |
Averett et al., “Titanium Dioxide Photocatalytic Compositions and Uses Thereof,” U.S. Appl. No. 61/482,393, filed May 4, 2011, 25 pages. |
Brookstone, “Tranquil Moments® Advanced Sleep Sounds,” 2012, retrieved from http://www.brookstone.com/tranquil-moments-advanced-sleep-sound . . . , retrieved on Apr. 28, 2014, 3 pages. |
Canadian Office Action, dated Jul. 18, 2017, for Canadian Application No. 2,946,367, 3 pages. |
Canadian Office Action, dated Jul. 25, 2017, for Canadian Application No. 2,940,766, 6 pages. |
Chinese Office Action, dated May 5, 2016, for Chinese Application No. 201380051774.0, 10 pages. |
Communication pursuant to Article 94(3) EPC, dated Mar. 15, 2018, for European Application No. 15 754 628.4-1222, 9 pages. |
Communication pursuant to Rule 164(1) EPC, dated Mar. 30, 2016, for European Application No. 13833105.3-1853 / 2891019, 9 pages. |
Delos, “Delos and MGM Grand Las Vegas Introduce First-Ever Stay Well Rooms,” Sep. 20, 2012, retrieved from http://delosliving.com/staywell/delos-mgm-grand-las-vegas-introduce-first-ever-stay-well- . . . retrieved on May 14, 2014, 4 pages. |
Delos, “Delos Announces First-Ever Well™ Certified Office at CBRE Headquarters in Los Angeles,” Nov. 19, 2013, retrieved from http://delosliving.com/press-release/delos-the-pioneer-of-wellness-real-estate-a nnounces-fi . . . , retrieved on May 14, 2014, 4 pages. |
Delos, “MGM Grand and Delos Complete Expansion of Stay Well Experience and Introduce New Stay Well Lounge,” Feb. 26, 2014, retrieved from http://delosliving.com/press-release/mgm-grand-and-delos-complete-expansion-of-s tay-we . . . , retrieved on May 14, 2014, 4 pages. |
Delos, “World's First Well® Certified Restaurants Introduced by Delos and Lyfe Kitchen,” Dec. 4, 2013, retrieved from http://delosliving.com/press-release/worlds-first-well-certified-restaurants-int roduced-by-d . . . retrieved on May 14, 2014, 4 pages. |
Delos, “World's First Wellness-Infused Student Housing Model in Philadelphia for St. Joseph's University Introduced by Delos and Cross Properties,” Nov. 25, 2013, retrieved from http://delosliving.com/press-release/delos-the-pioneer-of-wellness-real-estate-a nd-cross-pr . . . , retrieved on May 14, 2014, 4 pages. |
Delos, “Introducing Wellness Real Estate—Can Your Home Actually Improve Your Health?,” May 1, 2012, retrieved from http://delosliving.com/press-release/can-your-home-actually-improve-your-health/ , retrieved on May 14, 2014, 3 pages. |
Eisele et al, “LED Lighting System,” Notice of Allowance, dated Apr. 21, 2015, for U.S. Appl. No. 14/486,753, 9 pages. |
Eisele et al, “LED Lighting System,” Notice of Allowance, dated Mar. 14, 2016, for U.S. Appl. No. 14/805,243, 6 pages. |
Eisele et al, “LED Lighting System,” Notice of Allowance, dated May 13, 2014, for U.S. Appl. No. 13/863,589, 6 pages. |
Eisele et al, “LED Lighting System,” Office Action, dated Feb. 4, 2015, for U.S. Appl. No. 14/486,753, 7 pages. |
Eisele et al, “LED Lighting System,” Office Action, dated Jul. 26, 2012, for U.S. Appl. No. 12/900,158, 13 pages. |
Eisele et al, “LED Lighting System,” Office Action, dated Jun. 5, 2013, for U.S. Appl. No. 13/863,589, 6 pages. |
Eisele et al, “LED Lighting System,” Office Action, dated Nov. 1, 2013, for U.S. Appl. No. 13/863,589, 7 pages. |
Eisele et al, “LED Lighting System,” Office Action, dated Oct. 22, 2015, for U.S. Appl. No. 14/805,243, 18 pages. |
Eisele et al, “LED Lighting System,” Preliminary Amendment, filed Dec. 30, 2014, for U.S. Appl. No. 14/486,753. |
Eisele et al, “LED Lighting System,” Preliminary Amendment, filed Sep. 15, 2015, for U.S. Appl. No. 14/805,243, 9 pages. |
Eisele et al, “LED Lighting System,” Response, filed Jan. 27, 2014, for U.S. Appl. No. 13/863,589, 3 pages. |
Eisele et al, “LED Lighting System,” Response, filed Jan. 5, 2016, for U.S. Appl. No. 14/805,243, 3 pages. |
Eisele et al, “LED Lighting System,” Response, filed Mar. 6, 2015, for U.S. Appl. No. 14/486,753, 3 pages. |
Eisele et al, “LED Lighting System,” Response, filed Sep. 4, 2013, for U.S. Appl. No. 13/863,589, 3 pages. |
Eisele et al., “LED Lighting System,” Amendment, filed Oct. 24, 2012, for U.S. Appl. No. 12/900,158, 12 pages. |
Eisele et al., “LED Lighting System,” U.S. Appl. No. 61/249,858, filed Oct. 8, 2009, 58 pages. |
Eisele et al., “LED Lighting System,” Notice of Allowance mailed Jan. 9, 2013, for U.S. Appl. No. 12/900,158, 9 pages. |
Eisele et al., “LED Lighting System,” Second Preliminary Amendment filed Dec. 30, 2014, for U.S. Appl. No. 14/486,753, 9 pages. |
European Search Report for EP Application No. 15160578.9, dated Aug. 11, 2015, 8 pages. |
Extended European Search Report and Lack of Unity of Invention Sheet B, dated Jul. 28, 2016, for European Application No. 13833105.3, 17 pages. |
Extended European Search Report, dated Feb. 1, 2018, for European Application No. 17167920.2-1213, 10 pages. |
Extended European Search Report, dated Jul. 12, 2017, for European Application No. 15754628.4—1958, 11 pages. |
Extended European Search Report, dated May 28, 2018, for European Application No. 16737803.3-1222/3245631, 7 pages. |
Extended European Search Report, dated Nov. 5, 2014, for European Application No. 12779504.5-1352, 6 pages. |
Fabrictech International, “PureCare™ Antibacterial Silver,” retrieved from http://www.fabrictech.com/shop/purecaresilver.html, retrieved on Aug. 13, 2012, 1 page. |
Fabrictech International, “Total Health & Wellness Protection Package-Save 25%,” retrieved from http://www.fabrictech.com/shop/custom-package/total-healthawellness-protection.h tml, retrieved on Aug. 13, 2012, 3 pages. |
Goodman, “Green Wall Frame,” Amendment After Allowance, filed May 11, 2016, for U.S. Appl. No. 29/528,147, 8 pages. |
Goodman, “Green Wall Frame,” Notice of Allowance, dated Feb. 11, 2016, for U.S. Appl. No. 29/528,147, 11 pages. |
GSky Plant Systems, Inc., “Smart Wall Cabinet,” 2012, retrieved from http://gsky.com/green-walls/smartwall/, retrieved on Apr. 29, 2015, 3 pages. |
International Search Report and the Written Opinion of the International Searching Authority, dated Jun. 8, 2015, for International Application No. PCT/US2015/017528, 20 pages. |
International Search Report and Written Opinion of the International Searching Authority, dated Aug. 29, 2016, for International Application No. PCT/US2016/034416, 22 pages. |
International Search Report, dated Apr. 28, 2016, for International Application No. PCT/US2016/013215, 5 pages. |
International Search Report, dated Dec. 26, 2013, for International Application No. PCT/US2013/057070, 4 pages. |
International Search Report, dated Feb. 4, 2011, for International Application No. PCT/US2010/051791, 2 pages. |
Japanese Office Action dated Apr. 25, 2017 for JP Application No. 2015-529995, with English summary, 14 pages. |
Jernigan, “Light studies focus on circadian rhythms,” BioPhotonics, Jul. 2009, retrieved from http://www.photonics.com/Article.aspx?PID=l&VID=43&IID=396&AID=38995, retrieved on Nov. 3, 2014, 2 pages. |
Jernigan, R., “Light Studies Focus on Circadian Rhythms,” Photonics Showcase, Nov. 2009, p. 12. |
Jones, “Chapter 4—Acoustical Treatment for Indoor Areas,” in Handbook for Sound Engineers, Ballou (ed.), Burlington, MA, Focal Press, 2008, 65-94. |
Land, “Using Vitamin C to Neutralize Chlorine in Water Systems,” Recreation Management Tech Tips, Apr. 2005, retrieved from http://www.fs.fed.us/t-d/pubs/html/05231301/05231301.html, retrieved on Mar. 1, 2016, 6 pages. |
Macary et al., “Systems, Methods and Articles for Monitoring and Enhancing Human Wellness,” U.S. Appl. No. 15/543,114, filed Jul. 12, 2017, 113 pages. |
Mold Inspection California, “Killing Mold With Ozone & Thermal Heat,” retrieved from http://moldinspectioncalifornia.com/kill_mold_with_ozone.html, 3 pages. |
NaturVention, “Science,” URL=https://www.naturvention.com/technology-and-science/science/, download date Apr. 5, 2016, 4 pages. |
NaturVention, “Technology,” URL=https://www.naturvention.com/technology-and-science/, download date Apr. 5, 2016, 6 pages. |
Notice of Allowance, dated Jun. 26, 2017, for U.S. Appl. No. 14/012,444, Pillai et al., “Systems, Methods and Articles for Enhancing Wellness Associated With Habitable Environments,” 2 pages. |
Notice of Allowance, dated Jun. 6, 2017, for U.S. Appl. No. 14/012,444, Pillai et al., “Systems, Methods and Articles for Enhancing Wellness Associated With Habitable Environments,” 2 pages. |
Office Action, dated May 21, 2018, for U.S. Appl. No. 15/121,953, Pillai et al., “Systems and Articles for Enhancing Wellness Associated With Habitable Environments,” 38 pages. |
OxiTitan, “Light Powered Protection,” retrieved from http://www.oxititan.com, retrieved on Aug. 13, 2012, 2 pages. |
Pervez et al., “Photonic Crystal Spectrometer,” U.S. Appl. No. 61/278,773, filed Oct. 12, 2009, 78 pages. |
Pervez et al., “Photonic Crystal Spectrometer,” U.S. Appl. No. 61/349,570, filed May 28, 2010, 52 pages. |
Pillai et al., “Systems, Methods and Articles for Enhancing Wellness Associated With Habitable Environments,” Amendment, filed Jul. 21, 2016, for U.S. Appl. No. 14/012,444, 25 pages. |
Pillai et al., “Systems, Methods and Articles for Enhancing Wellness Associated With Habitable Environments,” Office Action, mailed Mar. 22, 2016, for U.S. Appl. No. 14/012,444, 29 pages. |
Pillai et al., “Systems, Methods and Articles for Enhancing Wellness Associated With Habitable Environments,” Preliminary Amendment, filed Mar. 25, 2015, for U.S. Appl. No. 14/012,444, 149 pages. |
Pillai et al., “Systems, Methods and Articles for Enhancing Wellness Associated With Habitable Environments,” U.S. Appl. No. 15/409,233, filed Jan. 18, 2017, 84 pages. |
Pillai et al., “Systems, Methods and Articles for Enhancing Wellness Associated With Habitable Environments,” U.S. Appl. No. 15/421,022, filed Jan. 31, 2017, 84 pages. |
Preliminary Amendment, filed Jul. 12, 2017, for U.S. Appl. No. 15/543,114, Macary et al., “Systems, Methods and Articles for Monitoring and Enhancing Human Wellness,” 10 pages. |
Summons to attend oral proceedings issued in EP Application No. 15160578.9 on Jul. 25, 2018. |
Suryadevara, N.K. et al., “Sensor data fusion to determine wellness of an elderly in intelligent home monitoring environment”, Instrumentation and Measurement Technology Conference, Graz: IEEE, (May 13, 2012), ISSN 1091-5281, pp. 947-952, XP032451677. |
Vitashower Corp., “Products,” retrieved from http://www.vitashowercorp.com/products.html, retrieved on May 13, 2014, 8 pages. |
Vitashower Corporation, “Ascorbic Acid Reduction of Residual Active Chlorine in Potable Water Prior to Halocarboxylate Determination,” from Urbansky et al., Journal of Environmental Monitoring 2(3):253-256, 2000, retrieved from http://www.vitashowercorp.com/research.html, retrieved on May 13, 2014, 2 pages. |
Vitashower Corporation, “Frequently Asked Questions,” 2003, retrieved from http://www.vitashowercorp.com/FAQs.html, retrieved on May 13, 2014, 3 pages. |
Vitashower Corporation, “Welcome to Vitashower Corporation,” 2003, retrieved from http://www.vitashowercorp.com/index.html, retrieved on May 13, 2014, 4 pages. |
Wikipedia, “Thermostat,” as archived on Jan. 24, 2014, URL=https://en.wikipedia.org/w/index.php?title=Thermostat&oldid=592239648, download date Jun. 30, 2017, 10 pages. |
Written Opinion of the International Searching Authority, dated Apr. 28, 2016, for International Application No. PCT/US2016/013215, 16 pages. |
Written Opinion of the International Searching Authority, dated Dec. 26, 2013, for International Application No. PCT/US2013/057070, 5 pages. |
Non-Final Office Action issued in U.S. Appl. No. 17/022,262 dated Dec. 9, 2020 (11 pages). |
Number | Date | Country | |
---|---|---|---|
20200022236 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
61249858 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15421046 | Jan 2017 | US |
Child | 16564803 | US | |
Parent | 15187317 | Jun 2016 | US |
Child | 15421046 | US | |
Parent | 14805243 | Jul 2015 | US |
Child | 15187317 | US | |
Parent | 14486753 | Sep 2014 | US |
Child | 14805243 | US | |
Parent | 13863589 | Apr 2013 | US |
Child | 14486753 | US | |
Parent | 12900158 | Oct 2010 | US |
Child | 13863589 | US |