This disclosure relates to a heated enclosure with lighting, which may be a food display case with LED lighting.
Like many types of lighting, LED diodes generate heat when at a brightness appropriate for lighting. Heat can also be a problem for LED diodes and circuitry. LED lighting becomes less efficient when the junction temperature increases. Higher junction temperature also tends to degrade the life or performance of LED lighting over time. Junction temperature is a function of the ambient temperature surrounding the LED, the current through the LED, and the presence and quality of a heatsink in or around the LED. Because of the role ambient atmospheric temperature plays in LED efficiency, LED lighting is generally prescribed for low temperature environments with application to higher temperature environments to be avoided.
A solution is needed for using LED lighting within heated enclosures.
In some respects disclosed herein is a container for objects to be maintained in a heated environment, having an enclosure having a top and an interior space; a canopy within the enclosure and separated from the top by a gap; a support surface in a heated space below the canopy, which is adapted to support objects; a heat-sensitive light source comprising a light-generating element positioned to direct light into an area beneath the canopy; and a heat sink coupled to the light source and positioned at least partially in the gap between the canopy and the top.
In other respects disclosed herein is a food display case having a display cabinet having a display wall and a second wall; a heating element positioned to maintain the temperature inside the display cabinet above the temperature of the surrounding environment; a heat-sensitive light-generating element positioned within the display cabinet; and a heat sink positioned outside of the display cabinet and connected to the light-generating element.
In other respects disclosed herein is a food display case having a heated compartment and an LED light within the heated compartment, the LED light connected to a heat sink that is disposed outside of the heated compartment.
In other respects disclosed herein is a food display case, having a food display cabinet; a heating element capable of elevating the temperature within the food display cabinet above ambient temperature; a top extending at least partially over the food display cabinet, which top contains an interior space; an LED diode connected to the top, which LED diode is within the food display cabinet and positioned to light objects within the food display cabinet; a heat sink within the interior space of the top, which heat sink is thermally connected to the LED diode; and a fan adapted to circulate air drawn from outside the food display case over the heat sink.
A partially-open enclosure 10 may be configured as a “self-service” case or an employee-serviced case. Employee-serviced cases are generally shown in the figures. In the self-service case, the front of the unit, which is the side intended to face customers, is generally open across a large percentage of its area, to allow one or more customers to reach into the heated space, possibly at the same time, without either opening a door or window, or requesting service from an employee. Doors and windows, or static or movable glass panels, may be included if desired. In the employee-serviced configuration, the front of the unit is typically enclosed by a pane 14 of transparent material such as glass, whereby customers may see the items inside the heated space 12 but are not able to retrieve them directly. The customer typically inquires of an employee for a particular item, following which the employee reaches in to the unit from an opening in the back (which may be closable by a door or window, such as a sliding rear access panel 16) to retrieve the product for the customer. Either configuration is amenable to the discussion herein.
In some embodiments, the heated enclosure 10 has an inner case 18 defining the heated space, and an outer casing 20 partially or wholly encompassing the inner case. For example, the inner case 18 may be the interior panels seen when looking into the food display case. The inner case 18 may have shelves, racks, and other support surfaces 22 for organizing products and labels. In some embodiments the outer casing 20 is or includes the exterior façade of the food display case. The exterior façade may be stainless steel panels or other materials that are cleanable using standard non-toxic soaps or cleaners. In some embodiments, mechanical and electrical parts, wiring, and other components as well as framing and other structural elements may be disposed between the inner case and the outer casing. Such embodiments keep the structural and electrical functional components out of sight and allow the visible portions of the outer casing 20 and the inner case 18 to provide an attractive presentation to the viewer. For some embodiments, the top 24 of the food display case 10 has the appearance of a counter top. Because of the need for wiring to lights or mechanicals between the inner case 18 and the outer casing 20, the top 24 of the food display case 10 may have a gap 26 between the inner top surface, or canopy 28, of the inner case 18 and the outer casing 20, sometimes on the order of a few inches. The canopy 28 is shown in
In some embodiments a heating element 30 may be disposed within the inner case 18 itself. The heating element 30 may be a ceramic heater, a heat lamp, a solar collector, a heat pump, a gas burner, or other heat source. In other embodiments, the heating element 30 may be disposed between the outer casing 20 and the inner case 18 in such a manner that the heat generated provides indirect heating into the inner case, such as by convection from beneath the inner case or by a blower directing heated air into the case. In some embodiments, the heating element 30 is a ceramic heater disposed within the inner case 18 itself, above the food product. Such an embodiment is shown in
The enclosure 10 has one or more lighting units 34, shown in
The lighting units 34 may also be partially or completely disposed within the inner case. Flanges 38 or portions of light façade 36 may be visible on the canopy 28 inside the inner case 18, for example to facilitate attachment of the lighting unit 34 to the canopy 28 or to seal the opening into which the lighting unit 34 seats against the internal air in the inner case 18. A lens 40 may cover the lighting elements 36, to shield it from touching and food contamination. The lens 40 may or may not substantially insulate the lighting elements 36 from heat within the inner case 18. The LED diodes 36 may be within the heated inner case 18, whether covered by a lens or not. Lighting elements 36 that are covered by clear, transparent, or translucent lens, are considered within the heated inner case 18.
Particularly where the lighting element 36 is an LED diode, but also for other forms of lighting units 34, it is desirable to alleviate the heat conveyed to the lighting unit 34 from the heat within the inner case 18, as well as the heat generated by the lighting element 36 itself. A heat sink 42 may be affixed in thermal communication with the lighting unit 34. In some embodiments, the heat sink 42 is in close thermal communication to portions of the lighting unit 34 that are most sensitive to heat, such as the lighting element 36 itself (such as the diodes of an LED). The heat sink 42 may also be in thermal communication with other portions of the lighting unit 34 such as electronics associated with the control and operation of the lighting unit 34. In some embodiments, the heat sink 42 is at least partially outside of the inner case 18. In other embodiments, the heat sink 42 is mostly, almost entirely, or entirely outside of the inner case 18, and separated from the heated air that is within the inner case 18. In some embodiments, only so much of the heat sink 42 as is necessary to be in thermal communication with the lighting elements 36 of the lighting unit 34 is exposed to the air within the inner case 18. In some embodiments, the heat sink 42 may be located within the gap 26 between the inner case 18 and the outer casing 20, as shown for example in
The heat sink 42 may be located adjacent to and in thermal communication with the lighting element 36 of the lighting unit 34 (e.g., the LED diodes), yet thermally separated from the heated air present in the inner case 18. It is not necessary that the inner case 18 be hermetically sealed, or that the air around the heat sink 42 be incapable of exchanging with air that has been in the inner case 18, but it may be advantageous to limit the direct air flow, or to provide that the pathway for air between the heated environment of the inner case 18 and the area around the heat sink 42 is sufficiently distant that the air arriving at the heat sink 42 has had the opportunity to have cooled substantially toward ambient temperatures (e.g., by distance or by mixing with other air) before arriving at the heat sink 42.
As shown in
In other embodiments the heat sink 42 may be screwed together with the LED or other lighting element 20, or attached to the LED or lighting element 20 by some other mechanism.
The efficiency of the heat sink 42 may be increased by moving air over the heat sink 42. In some embodiments the air may be room temperature, or otherwise the temperature of the ambient air. In other embodiments the air may be cooled prior to introducing it into proximity with the heat sink 42, which may further increase the efficiency of the heat sink 42. This can be accomplished by placing a fan 48 with its airflow directed across the surface of the heat sink 42, and particularly the fins 50 of the heat sink 42. Where the heat sink 42 has been placed between the inner case 18 and the outer casing 20, the fan 48 need not even be visible, but can be concealed if desired. For example, a channel 52 for airflow may be built into the area containing the heat sink 42, as shown in
To provide further protection to the lighting unit 34, a switch can be installed that is responsive to temperature of the diode, the heat sink 42, or the area around the lighting unit 34 or a portion of it (such as the diode or lighting element 36). In the event the temperature exceeds a desired threshold, the switch can cut power to the lighting unit 34 to prevent its operation in the over-temperature state. In other embodiments the switch may cut power to the entire apparatus. For LED lighting, the desired threshold might be advantageously set at or around the temperature of 75° C., or such other temperature as conditions and the lighting unit recommend.
The figures and certain embodiments described above concern a gap 26 or shelf above the canopy 28 of the inner case 18 for mounting LED lighting units 34 enclosed within heatsinks 42 and capable of moving air through the space to increase the heating dispersion efficiency of the heat sinks around the LED lights. In other embodiments a similar shelf and space may be placed inside the inner case 18, forming one or more additional sets of shelves with lighting and heat sink capacity.
Some embodiments, or portions thereof, might be alternately or additionally described in the following ways. These descriptions are not exhaustive.
Some embodiments may be in the form of a container for objects to be maintained in a heated environment, having an enclosure having an interior space and a top; a canopy within the enclosure and separated from the top by a gap; a support surface in the space below the canopy, which is adapted to support objects; a light source having a light-generating element positioned to direct light into an area beneath the canopy; a heat sink coupled to the light source and positioned at least partially in the gap between the canopy and the top. Some of such embodiments may include a light-generating element which is or includes an LED diode. In some such embodiments, the gap between the canopy and the top is separated from the internal environment of the container. In some such embodiments, physical structures impede airflow directly from the internal environment of the container into the space between the canopy and the top. Some embodiments also comprise one or more walls enclosing the space between the canopy and the top, which walls limit a freedom of airflow into the space.
Other embodiments might be in the form of a container having an opening in the container through which objects may be retrieved by a user; and, at least one aperture in at least one of the walls, which aperture is located at a position or distance from the opening sufficient to limit air from the interior space entering the gap without first having reached approximately a temperature of the ambient air outside of the interior space. Among such embodiments, the opening may be configured to be substantially continuously open. The opening might be on a self-service side of the container configured to be substantially continuously open, whereby users can retrieve objects from the interior space without a door or window first being opened. Alternately, the opening could be a closable doorway or window.
In some embodiments the container may be in the nature of a food service display case that is adapted to be positioned between an employee-serviced location of a store and a customer area of a store, and wherein the opening is on the employee-serviced side of the container. In some embodiments, the vent may be on an opposite side of the container from the opening, and facing an opposite direction from the opening. In some embodiments, the vent may be on a back of the container, and the opening may be on a front of the container. An embodiment may further comprise a fan placed to force air into the vent. An embodiment might comprise a fan adapted to create positive pressure in the gap relative to the ambient pressure outside the container by circulating ambient air into the gap. A fan in any embodiment may be positioned to cause air to flow over the heat sink. In some embodiments, the fan may be positioned to circulate air from a vent on a back side of the container into the gap, across a surface of the heat sink, and out from the gap through an opening other than the vent.
Some embodiments of a container as discussed herein comprise a display side adapted to face potential purchasers, which display side allows objects present in the container to be viewed from outside the container. In some embodiments, walls join the top to the canopy, whereby the gap between the top and the canopy is substantially enclosed. For some embodiments, the wall on the display side of the container is free of air passages. For some embodiments, the walls adjacent to the wall on the display side each are also free of air passages. The container might also comprise an intake vent in at least one of the walls, an exhaust vent in at least one of the walls, and a fan disposed to circulate air into the space via the intake vent and out from the space via the exhaust vent. For this or other embodiments, the wall on the display side of the container may be free of intake vents and/or the wall on the display side of the container may be free of intake vents. For some embodiments, the fan is positioned to direct airflow over the heat sink
In some embodiments of a container as discussed in this document, the heat sink is disposed entirely within the gap.
Some embodiments may be described as a food display case having a display cabinet; a heating element positioned to maintain the temperature inside the display cabinet above the temperature of the surrounding environment; a light-generating element positioned within the display cabinet; and a heat sink positioned outside of the display cabinet and connected to the light-generating element. Some of such embodiments may further comprise an outer casing around the display cabinet, and a fan between the outer casing and the display cabinet, wherein the fan is positioned to force air from the surrounding environment past the heat sink. Additionally or alternately, some of such embodiments may further comprise an intake vent in fluid communication with the fan, which intake vent is positioned on a side of the food display case, e.g., adapted to face away from customers.
Some embodiments might be in the form of a food display case having a heated compartment and an LED light within the heated compartment, with the LED light connected to a heat sink that is disposed outside of the heated compartment. In some such embodiments, the food display case may further comprise a fan positioned to direct airflow from a source other than the heated compartment over the heat sink.
Some embodiments may be in the form of food display case, having a food display cabinet; a heating element capable of elevating the temperature within the food display cabinet above ambient temperature; a top extending at least partially over the food display cabinet, which top contains an interior space; an LED diode connected to the top, which LED diode is within the food display cabinet and positioned to light objects within the food display cabinet; a heat sink within the interior space of the top, which heat sink is thermally connected to the LED diode; and a fan adapted to circulate air drawn from outside the food display case over the heat sink.
Some embodiments may be in the nature of component for a food display case (for example, a top panel, a side panel, etc.), having a first panel (e.g., a top surface, adapted to face outward from the food display case); a second panel separated from the first panel by a distance; a channel located between the first panel and the second panel; a lighting unit attached to the second panel in a position to direct light in a direction away from the first panel; a heat sink within the channel, which is thermally coupled to the light unit; and a fan positioned to circulate air from outside the component through the channel and across the heat sink. In some such embodiments, the lighting unit may comprise an LED. In some embodiments, the lighting unit may be connected to a thermal switch that is adapted to interrupt electrical power to the lighting unit when temperatures exceed a desired maximum.
Number | Name | Date | Kind |
---|---|---|---|
7954979 | Sommers et al. | Jun 2011 | B2 |
8021023 | Liu | Sep 2011 | B2 |
8128251 | Huang et al. | Mar 2012 | B2 |
9157675 | Howington et al. | Oct 2015 | B2 |
9482436 | Hettinger | Nov 2016 | B1 |
9557004 | McGrath | Jan 2017 | B1 |
9615676 | Clark et al. | Apr 2017 | B2 |
9885469 | Baumeister | Feb 2018 | B2 |
20020005686 | Nuttall et al. | Jan 2002 | A1 |
20080192508 | Busby | Aug 2008 | A1 |
20120125911 | Shaffer | May 2012 | A1 |
20120127729 | Brown | May 2012 | A1 |
20140292168 | Nevarez | Oct 2014 | A1 |
20150198366 | Sanders et al. | Jul 2015 | A1 |
20160100698 | Clark et al. | Apr 2016 | A1 |
20160320069 | Hettinger | Nov 2016 | A1 |
20170350603 | Je | Dec 2017 | A1 |
20180000259 | Cichuta et al. | Jan 2018 | A1 |
20180127150 | Adanur et al. | May 2018 | A1 |
Number | Date | Country |
---|---|---|
108577363 | Sep 2018 | CN |
2119968 | Nov 2009 | EP |
2481321 | Aug 2012 | EP |
2867581 | Nov 2016 | EP |
2016200327 | Dec 2016 | JP |
2012165125 | Dec 2012 | WO |
2017149787 | Sep 2017 | WO |
WO-2018001796 | Jan 2018 | WO |
Entry |
---|
PCT/US2019/058349, Written Opinion of the International Searching Authority, dated Feb. 7, 2020. |
Number | Date | Country | |
---|---|---|---|
20200128972 A1 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
62751417 | Oct 2018 | US |