When illuminating a parking lot, a street or even the inside of a building, it is oftentimes desirable to provide generally uniform illumination over the target area. Designers of parking lots, streets and buildings typically specify a minimum illuminance (lumens per square foot or meter) required throughout the target area. The illuminance at locations on the target area that exceeds the specified minimum can be considered as wasted illuminance. It is desirable to redirect the light that would have been directed toward areas that exceed the minimum illuminance to reduce the amount of energy required to illuminate the entire target area.
Illumination is inversely proportional to the square of the distance between the point light source and a point on the surface that is to be illuminated, i.e. the target area. Because of this law, a light fixture placed x distance (feet or meters) above a planar target area will require eight times the luminous intensity in a direction that is offset 60° from the vertical axis as compared to the light output in the vertical axis in order to provide the same illuminance at each location on the plane. Known light sources, incandescent and arc type lamps, account for this by designing a reflector that directs more light toward the periphery of the target area. This design can be accomplished by assuming that the incandescent or arc type light source is a point light source and then appropriately shaping the reflector to accommodate this point light source.
Light emitting diodes (“LEDs”), on the other hand, are typically not powerful enough so that a single LED, which could act as the point light source similar to the incandescent and arc type lamps, provides sufficient illumination over a large target area. This is especially the case where the LED is positioned several feet or meters above the target area. Moreover, LEDs typically do not emit light in a spherical pattern, such as incandescent and arc-type lamps, thus making it difficult to design an appropriate reflector.
To provide sufficient illumination for the target area multiple LEDs can be required to provide the sufficient amount of lumens to provide the minimum illuminance to meet the project specifications for the target area. LEDs are typically mounted on a printed circuit board (“PCB”) and when a sufficient amount of LEDs are provided on the PCB, however, the size of the PCB required and the number of LEDs required makes it difficult to consider the plurality of LEDs in aggregate as a single point light source. In view of this, it has been known to provide separate optics, either refractive of reflective, for each LED to redirect the light emanating from each LED. Providing a separate optic for each LED can be expensive and also make design of the fixture difficult, especially where it is desirable to provide a light fixture that is easily scalable so that it can be used in a number of different applications. Additionally, the number of LEDs that are required to meet illuminance specifications and the spacing required between adjacent LEDs can result in a very large light fixture.
A luminaire that can provide a beam pattern having a substantially uniform illuminance across a target plane includes a first plurality of LEDs mounted on a support facing a target plane, a second plurality of LEDs mounted on the support facing the target plane and at least one reflector fixed with respect to the support. Respective centers of the first LEDs are each spaced substantially equidistantly from a fixed point a distance d1. The at least one reflector includes a first reflective surface of revolution with respect to a line intersecting the fixed point that cooperates with each of the first LEDs and a second reflective surface of revolution with respect to the line intersecting the fixed point that cooperates with each of the second LEDs. The reflective surfaces are configured to direct light emitted from the respective LEDs toward the target plane.
A luminaire that can provide a beam pattern having a substantially constant illuminance across a target plane can also include a substantially planar PCB, a first set of LEDs mounted on the PCB along an arc of a first circle having a radius r1, a second set of LEDs mounted on the PCB along an arc of a second circle having a radius r2, and at least one reflector fixed with respect to the PCB. The first circle is concentric with the second circle about a center point and r1>r2. The at least one reflector includes a first reflective surface cooperating with each of the first set of LEDs and a second reflective surface cooperating with each of the second set of LEDs. Each of the reflective surfaces is a surface of revolution with respect to an axis intersecting the center point and normal to the PCB.
Another example of a luminaire includes a first set of LEDs, a first reflective surface cooperating with the first set of LEDs, a second set of LEDs and a second reflective surface cooperating with the second set of LEDs. The first reflective surface and the first set of LEDs cooperate to direct light from the first set of LEDs to form a first generally annular beam pattern on a target plane, where a peak of luminous intensity of light from the first set of LEDs is at a first angle of incidence. The second reflective surface cooperates with the second set of LEDs to direct light from the second set of LEDs to form a second generally annular beam pattern on the target plane, where a peak of luminous intensity of light from the second set of LEDs is at a second angle of incidence. The first angle of incidence is greater than the second angle of incidence. The second angle of incidence is a function of overlap of the first generally annular beam pattern on the second annular beam pattern and a height at which the LEDs reside over the target plane. The luminaire generates a combined beam pattern including the first generally annular beam pattern and the second generally annular beam pattern having a generally uniform illumination across at least a majority of a combined beam pattern on the target plane.
With reference to
With reference to
With reference to
The reflector/PCB assembly 14 in the depicted embodiment also includes LEDs mounted to a mounting surface 52 of a PCB 54. In the depicted embodiment the LEDs all face toward the target plane TP (
The LED sets 56, 58 and 62 can also be positioned to form other patterns, especially where the reflectors may take a configuration other than circular. For example, where the reflectors may take a polygonal configuration, the LEDs can take the same polygonal configuration. This may be the case where the polygonal configuration has a regular polygon configuration with a large number of sides so that the polygon begins to approximate the dimensions of an inscribed circle of the polygon.
As more clearly seen in
The outer LED set 56 is disposed on the PCB 54 so that their centers form a circle that is concentric about a central axis VA of the luminaire 10, which is parallel with the pole axis PA when the luminaire is mounted to a pole (see
The outer LED set 56 and the first and second reflective surfaces 36, 38 are configured and positioned with respect to one another to direct light toward an area of the target plane TP that is angularly offset from the pole axis PA. The angular offset is the internal angle measured between the vertical axis VA of the luminaire, which is typically parallel to the pole axis PA, and the angle at which light is reflected from a respective reflective surface. More particularly, since eight times the lumen output is required to illuminate the area of the target plane that is angularly offset 60° from the pole axis PA as compared to the area of the target plane directly beneath the luminaire 10, the first reflector surface 36 and the second reflector surface 38 have a conic section configuration (more specifically a parabolic configuration in a cross section taken normal to the line on which the outer LED set 56 resides—see
Likewise, the intermediate LED set 58 and the third and fourth reflective surfaces 42, 44 are configured and positioned with respect to one another to direct light toward an area of the target plane TP that is angularly offset from the pole axis PA. The third reflector surface 42 and the fourth reflector surface 44 have a conic section configuration (more specifically a parabolic configuration in a cross section taken normal to the line on which the intermediate LED set 58 resides—see
Accordingly, the outer LED set 56 and the intermediate LED set 58 can illuminate, generally, the same portion of the target plane. If desired, however, the shape of the reflectors can be altered so that the first LED set 56 illuminates a first portion or swath of the target plane and the second LED set 58 illuminates a second portion or swath of the target plane. Moreover, the shape of the individual reflectors can be altered to direct light where it is most needed to provide the most uniform illumination over the entire target plane.
The inner LED set 62, which is in the form of an array and centrally disposed on the mounting surface 52 of the PCB 54, along with the fifth reflective surface 46, direct light to illuminate the central area of the target plane TP, i.e. the circular area of the target plane between the 60° offset location of the target plane and the pole axis PA. Much of the target plane that is illuminated between the portion of the target plane that offset 60° to the left in
The design of the luminaire is scalable. If more light intensity is needed at the target plane TP, more LEDs (or higher powered LEDs) can be added to the luminaire 10. By using the reflectors and situating the LEDs in rings, or lines, around the central LED array, i.e. the central LED set 62 in the depicted embodiment, the additional rings or lines of LEDs can be used to illuminate the portion of the target plane that requires a greater lumen output to maintain uniform illuminance across the target plane. If more light intensity is needed at the outer edges of the target plane, then additional LED rings, e.g. in addition to the outer LED set 56 and the intermediate LED set 58, and additional reflectors can be added to the luminaire 10.
In addition to being scalable, the luminaire 10 can also be designed to provide a beam pattern that is a shape other than circular. For example, the reflector/PCB assembly 14 can be cut in half, e.g. at the axis VA in
With reference to
At step 106, the “perfect distribution” of intensity over the target plane TP for uniform illumination across the target plane is determined. With reference to
With reference back to
Where multiple LED sets are required, at step 118, the first subset of LEDs can be provided in a line offset from the array (the outer LED set 56 can be positioned away from the central LED set 62). At step 122, a first reflector is configured to reflect the light from the first subset of LEDs (which coincides with the outer LED set 56) (
At step 124, a second reflector is configured to reflect light from the first subset of LEDs toward α°. In other words, with reference back to
At step 126, a second subset of LEDs (which can also be placed in a ring around the first subset as well as the central array) is provided in a line offset from the first subset of LEDs. For example, with reference to
At step 130, a third reflector is configured to direct light from the second subset of LEDs toward α° and at step 132 a fourth reflector is configured to reflect light from this second subset of LEDs towards α°. For example, with reference back to
Light distribution from this luminaire is then compared to the perfect distribution at step 134. For example, simulated data, which can be derived using known computer modeling programs, is shown at line 135 in
With reference back to step 114, if the required offset or additional LEDs do not make the luminaire too big, then at step 142 a first reflector is configured for the additional set of LEDs. The design of this reflector is similar to the step 118 described above. Additionally, at step 144 a second reflector is configured to reflect light from the additional set of LEDs toward α° and then this design luminaire is compared to the perfect distribution.
With reference back to
A spherical cover 170 attaches to the fixture housing 12 to cover the reflector/PCB assembly 14. A retaining ring 172 is used to affix the electrical cover 170 to the fixture housing 12. The spherical cover 170 is designed so that light is neither reflected nor refracted as it passes through the spherical cover 170. Accordingly, in this instance the cover 170 has a spherical shape to accommodate the polar angles at which light is being emitted from the reflector/PCB assembly 14.
As mentioned above, the design for the luminaire 10 is scalable. Moreover, the luminaire can be slightly reconfigured to utilize refractive optics instead of reflective optics. In such an instance, lenses, which would be circular if a circular beam pattern were desired, would be provided over the rings of LEDs to refract the light towards the desired angle. If a narrower beam pattern is desired, the optics, whether it be a reflective or refractive optics, can be configured to direct the light at angles that are greater than 60° or less than 60°. The embodiment shown and described is one specific example of a luminaire that can provide a general uniform illumination across a target plane.
With reference to
In the depicted embodiment, the heat sink 212 is aluminum, although other heat conductive materials can be used. Heat is drawn from the printed circuited board assembly 214 into the heat sink 212. The heat sink 212 includes a generally planar base surface 226. The heat sink 212 is formed having a central pedestal 228 that has approximately the same area as a printed circuit board 232 of the PCB assembly 214. The PCB assembly 214 attaches to the heat sink 212 contacting the pedestal 228, which extends slightly above and normal to the planar base surface 226 of the heat sink 212. A channel 234 extends into the heat sink from the planar base surface 226 and surrounds the pedestal 228. The channel 234 is configured to receive the gasket 224. The heat sink 212 also includes a plurality of fins 236 that extend away from and normal to the main planar surface 226.
With reference to
The luminaire 210 in
An innermost plurality of LEDs 240, hereafter also referred to as the first set of LEDs, have their centers spaced substantially equidistantly from a fixed point 242. An intermediate plurality of LEDs 244, hereafter also referred to as the second set of LEDs, also have their centers spaced substantially equidistantly from the fixed point 242. The second set of LEDs 244 is spaced farther from the fixed point 242 as compared to the first LED set 240. Another intermediate plurality of LEDs 246, hereafter also referred to as the third set, have their centers spaced substantially equidistantly from the fixed point 242. The third set of LEDs 246 is spaced farther from the fixed point 242 as compared to the second LED set 244. The first set of LEDs 240, the second set of LEDs 244 and the third set of LEDs 246 can form a central array of LEDs disposed on a mounting surface, e.g. PCB 232, to generate a first beam pattern, which in the depicted embodiment will be generally circular, on the target plane.
A fourth plurality of LEDs 248, hereafter also referred to as the fourth set, have their respective centers each being spaced substantially equidistantly from the fixed point 242. The fourth set of LEDs 248, which can also be referred to as a peripheral array of LEDs, is spaced farther from the fixed point 242 as compared to the third LED set 246.
In the depicted embodiment, the LED sets 240, 244, 246 and 248 form rings around the fixed point 242. These rings can also be multi-sided regular polygons. Where the inscribed circle of the regular polygon begins to approximate the same radius as the circumscribed circle for the regular polygon, the LED set begins to more closely approximate a circle.
In the depicted embodiment, the fourth plurality of LEDs 248 is a truncated ring in that the LEDs follow only a portion of an arc of a circle having its center at the fixed point 242. More particularly, the fourth LED set 248 is divided into four subsets that will illuminate the corners of a square shaped beam pattern. The fourth set of LEDs 248 can also approximate a truncated regular polygon.
The LEDs in each of the sets face the target plane to emit direct light towards the target plane. An electrical connector 252 attaches to the printed circuit board 232 and also to an electrical wire (not shown) to provide electricity to the LEDs.
The reflector 216 in the depicted embodiment includes a plurality of reflective surfaces that cooperate with the LEDs to direct light from the LEDs towards the target plane. The reflector 216 is a molded integral plastic piece having metalized reflective surfaces. Alternatively, the reflector can be a multi-piece metal assembly or a cast metal piece, for example.
With reference to the embodiment depicted in
In the depicted embodiment, the sixth reflective surface 274 and the seventh reflective surface 276 are divided into four separate surfaces that each follow the arc of a circle having its center at the fixed point 242. Additional side, generally radially aligned, reflective surfaces 278 and 282 (see
The LED sets 240, 244 and 246 and the reflective surfaces 262, 264, 266, 268 and 272 radially inward from the sixth reflective surface 274 generate a generally circular beam pattern on a target plane that is vertically spaced from and generally normal to the axis 260. The fourth LED set 248 and the sixth reflective surface 274 and the seventh reflective surface 276 along with the side reflective surfaces 278 and 282 that are associated with the fourth LED set 248 cooperate with one another to generate a truncated annular beam pattern on the target plane. This allows the beam pattern that is generated by this luminaire 210 to approximate a square. The fourth LED set 248 and the sixth reflective surface 274, the seventh reflective surface 276, and the respective side surfaces 278 and 282 direct the light diagonally toward the corners of the square shaped beam pattern. The fourth LED set 248 and the sixth reflective surface 274, the seventh reflective surface 276, and the respective side surfaces 278 and 282 form a plurality of, more particularly four, peripheral arrays of LEDs disposed on the mounting surface of the PCB around the central array to generate an additional beam pattern that when combined with the beam pattern from the central array generate a square, or rectangular, shaped beam pattern.
In the depicted embodiment, the reflective surfaces form rings around the fixed point 242. Similar to the LED sets, these rings can also be multi-sided regular polygons. Where the inscribed circle of the regular polygon begins to approximate the same radius as the circumscribed circle for the regular polygon, the LED set begins to more closely approximate a circle.
One manner of providing a beam pattern having a substantially constant illuminance across a target plane is to begin by designing a first LED array, which in the depicted embodiment can include LED sets 240, 244 and 246, and at least one optic, e.g. reflective surfaces 262, 264, 266, 268 and 272, to generate a first beam pattern, e.g. circular, on the target plane. Knowing the pole height and the desired planar surface area that is to be illuminated, the required intensity distribution can be plotted based on the known function E=Icos3⊖/h2, where E is illumination (lumen/ft2 or lumen/m2), and I is the luminous intensity (cd). The required intensity distribution for the inscribed circle of a square shaped beam pattern is shown at line 330 in
The third set of LEDs 246, which is the outermost ring of the array that generates a circular beam pattern, cooperates with fourth reflective surface 268 and the fifth reflective surface 272 to direct at least a majority of the luminous intensity from the third LED set 246 toward the target plane at an angle of incidence that is based on the design parameters (for example the desired illuminance) for the target plane. More particularly, a peak of the luminous intensity of light from the third set of LEDs 246 (see line 332 in
The desired angle(s) of incidence for light emanating from the third LED set 246 is a function of the height at which the luminaire 210 is spaced from the target plane (h) and the desired planar surface area that is to be illuminated by the luminaire based on the known function E=Icos3⊖/h2, where E is illumination (lumen/ft2 or lumen/m2), and I is the luminous intensity (cd) of the total number of LEDs in the third set 246. The maximum angle of incidence ⊖ for the third LED set 246 is based on the surface area of the target plane and can be found by tan ⊖=r/h, where r is the radius of the circle for a circular pattern or the radius of the inscribed circle for a square pattern. Modeling can be performed to provide the desired illumination around the periphery of the circular target plane having the radius r, or the square target plane having the inscribed circular radius of r.
The second set of LEDs 244, which is the intermediate ring of the central array, cooperates with the second reflective surface 264 and the third reflective surface 266 to direct at least a majority (and a peak—see line 334 on
The second reflective surface 264 and the third reflective surface 266 have a conic section shaped configured to redirect light from the second set of LEDs 246 at a desired angle as measured inside from the pole axis of the pole to which the luminaire will mount. The desired incident angle for light emanating from the second LED set 246 is a function of the height at which the luminaire is spaced from the target plane (h) and the desired planar surface area that is to be illuminated by the luminaire 210 taking into account the light that is impinging on the target plane from the third LED set 246. Line 336 on
The first set of LEDs 240 provide a majority of light that lands directly vertically below the fixture. Light intensity from the first LED set is depicted at line 338 The first reflective surface 262 cooperates with the first LED set 240 to provide the desired illumination directly below, or nearly directly below (or above if the luminaire were used to illuminate a ceiling for example) the luminaire.
As can be seen in
As discussed above, the luminaire 210 is designed to generate a substantially square pattern on the target plane. In the depicted embodiment, the fourth set of LEDs 248 cooperating with the sixth reflective surface 274 and the seventh reflective surface 276 are configured to direct light toward the corners of the square shaped pattern. This being the case, the fourth set of LEDs 248 cooperate with the sixth reflective surface 274 and the seventh reflective surface 276 to direct light at an incident angle that is greater than the third LED set 246. Again, the desired incident angle for light emanating from the fourth LED set 246 is a function of the height at which the luminaire is spaced from the target plane (h) and the desired planar surface area that is to be illuminated by the luminaire. The incident angle for the fourth LED set 248 is greater than the incident angle for the third LED set 246 because the luminous intensity from the fourth LED set 248 is directed towards the radius for the circle that circumscribes the generally square pattern of the target plane. The same design for the inscribed circular area for the square shaped pattern can be followed to light the corner areas of the square pattern.
Light intensity directed towards the corners of the square shaped pattern is accounted for in a similar manner to the inscribed circle of the square pattern. The light intensity required by the fourth set of LEDs 248 is dependent upon the intensity distribution from the central array of LEDs, i.e. LED sets 240, 244 and 246, subtracted from the required intensity distribution for uniform illuminance in the diagonal direction of the substantially square shaped beam pattern. The fourth LED set 248 and the respective reflective surfaces 274 and 276 are truncated so that the beam pattern is not completely circular, which would direct too much light beyond the square shaped pattern.
The space between the reflective surfaces in the depicted embodiment, which is an annular space with respect to the fixed point 260, determines the amount of direct light that impinges upon the target plane. This can be modified as desired. For example, one of the reflective surfaces that cooperates with each ring of LEDs can be removed. In the depicted embodiment, the height that the reflective surfaces extend normally from the plane in which the LEDs reside is the same for each reflective surface.
The lens 218 cooperates with the LEDs to allow the LEDs to generate the desired beam pattern. The lens 218 has a much lower profile as compared to the lens 170 in the embodiment described above. The lens 218 includes a central circular planar section 290 that cooperates with the first set of LEDs 240. The central section 290 is shaped so that light from the first set of LEDs 240, both direct and reflected light, passes through the central section with little or no refraction.
The lens 218 also includes a first (innermost) annular section 292 that generally follows a surface of revolution (having a small thickness in a generally radial direction) with respect to the central axis 260 of the luminaire 210. The central section 290 transitions into the first annular section 292 where the outermost edge of the first reflective surface 262 and the second reflective surface 264 contact or nearly contact the lens 218 (see
Going radially outwardly the first annular section 292 transitions into a second annular 294 that follows the contour of the third reflective surface 266. Accordingly, the second annular section 294 also follows a surface of revolution (having a small thickness) with respect to the central axis 260 of the luminaire. Since the second annular section 294 follows the contour of the third reflective surface 266, the second annular section is perpendicular to light rays that reflect off of the third reflective surface 266 from the second set of LEDs 244. As more clearly seen in
The second annular section 294 transitions into the third annular section 298 where the outermost edge of the third reflective surface 266 and the fourth reflective surface 268 meet and contact or nearly contact the lens 218 (see
The third annular section 298 transitions going radially outwardly into a fourth annular section 302 that follows the contour of the fifth reflective surface 272. Accordingly, the fourth annular section 302 also follows a surface of revolution (having a small thickness) with respect to the central axis 260 of the luminaire. Since the fourth annular section 302 follows the contour of the fifth reflective surface 272, the fourth annular section is perpendicular to light rays that reflect off of the fifth reflective surface 272 from the third set of LEDs 246. As more clearly seen in
The fourth annular section 302 transitions into curved outer truncated annular (fifth) sections 306 and planar outer sections 308 where the outermost edge of the fifth reflective surface 272 and the sixth reflective surface 274 meet and contact or nearly contact the lens 218 (see
The fifth annular section 306 transitions going radially outwardly into a sixth annular section 312 that follows the contour of the seventh reflective surface 276. Accordingly, the sixth annular section 312 also follows a surface of revolution (although truncated and having a small thickness in a radial direction) with respect to the central axis 260 of the luminaire. Since the sixth annular section 312 follows the contour of the seventh reflective surface 276, the sixth annular section is perpendicular to light rays that reflect off of the seventh reflective surface 276 from the fourth set of LEDs 248.
Radial sections 314 and 316 interconnect the fifth annular section 306 and the sixth annular section 312. These radial sections follow the contour of the radial reflective surfaces 278 and 282 that interconnect the sixth reflective surface 274 and the seventh reflective surface 276. The lens 218 also includes a skirt portion 320 that is generally perpendicular to the planar outer section 308. The skirt includes openings that can receive a vent and a grommet that receives an electrical conductor to provide electricity to the luminaire 210.
The broad concepts discussed herein will be apparent to those skilled in the art after having read this description. Rather than using an optic for each LED or a macro optic for the entire array, the luminaire described uses a hybrid approach that creates portions of the beam pattern from portions of the LED array. The light is redirected from these portions of the LED array using reflectors that are aimed to purposely fill portions of the beam pattern. The design can be modular to provide a “D” shaped beam pattern, for example, as well as other beam patterns. The invention has been particularly described with reference to one embodiment and alternatives have been discussed. The invention, however, is not limited to only the particular embodiment described or the alternatives described herein. Instead, the invention is broadly defined by the appended claims and the equivalents thereof.
This is a continuation-in-part application of co-pending U.S. Utility patent application Ser. No. 11/778,502, filed Jul. 16, 2007 and entitled “LED LUMINAIRE FOR GENERATING SUBSTANTIALLY UNIFORM ILLUMINATION ON A TARGET PLANE,” the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5642933 | Hitora | Jul 1997 | A |
5929788 | Vukosic | Jul 1999 | A |
6163100 | Morizaki et al. | Dec 2000 | A |
6679618 | Suckow et al. | Jan 2004 | B1 |
20030193807 | Rizkin et al. | Oct 2003 | A1 |
20060198141 | Peck et al. | Sep 2006 | A1 |
20060198148 | Peck | Sep 2006 | A1 |
20060209541 | Peck | Sep 2006 | A1 |
20070002572 | Ewig et al. | Jan 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20090021933 A1 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11778502 | Jul 2007 | US |
Child | 12021262 | US |