Light emitting diode (LED) luminaires have proven advantageous over traditional and conventional lighting device by providing comparable illumination level outputs at significantly lower power consumption. LED lighting units are designed for both indoor and outdoor lighting purposes. To increase the overall lumens output, a plurality of LED light engines can be placed into a single luminaire unit and at close proximity to each other. This placement can lead to over-heating of the LED wafers and presents a challenge in maintain a suitable operable temperature.
Conventional LED lamps can include a cylindrical enclosure functioning as a heatsink and a plurality of LEDs mounted on an outer wall of the enclosure. The LEDs are arranged in a plurality of lines along a lateral side of the enclosure and around the enclosure. The enclosure can be open at one end with an air-port, or chimney, so that heat generated by the LEDs is dispersed to external air flow via convection.
In some units, the enclosure can be close-ended with heatsinks mounted (or integrally formed) on an exterior surface to reduce the internal temperature of the enclosure. Using traditional external heatsink fins may compromise the aesthetics of the fixture. These external heatsinks, typically with ridges and/or fins on an external surface, may develop dirt and water deposits that lead to reduction in thermal cooling properties and a commensurate increase in the LED failure rate.
Other conventional attempts to maintain a suitable interior operating temperature include heatsinks internal to the LED housing's enclosure. The fins of these heatsinks do not contact the housing's surface itself, which greatly reduces their thermal cooling performance. The heat radiated by these heatsinks increases the ambient temperature within the housing. To overcome this drawback, the enclosure is made large enough to obtain a sufficient heat dissipating area, making the LED luminaire itself inordinately large, heavy and bulky.
In accordance with embodiments, an internal heatsink structure in an LED Luminaire is capable of dissipating heat from the LED board without the necessity of forming protruding fins on an outer, external, surface of the luminaire. In accordance with embodiments, a finned and/or ribbed structure is in thermal, mechanical connection to an LED light source (LED engine, wafer, lamp, etc.) within the luminaire. This internal structure is in thermal, mechanical connection with an interior surface of the LED luminaire external housing, so that heat generated by the LED light source is transferred to the ambient environment. The internal fins/ribs, spread the heat from the LED board or LED light source (typically comprising concentrated LED heat point sources) to a much greater area on the housing external surface.
In accordance with embodiments, the internal inter-surface structure connecting the LED light source to the external environment can have walls, e.g., interwoven walls formed by about perpendicular intersections between sets of about parallel walls. The walls may define channels to allow heat to spread in a direction parallel to the natural flow of heat from the LED light source when the luminaire is in its normal operating position.
Embodying implementations can be capable of dissipating heat from the mounting surface carrying the LED light source(s) (e.g., LED wafer, LED light engine, etc.) without the necessity for having any protruding fins on the exterior surface of the luminaire. In some implementations the mounting surface can be a printed circuit board (PCB) made of a glass-reinforced expoxy laminate (e.g., FR4 designation, etc.). In other implementations the LED light source can be a chip-on-board (COB) light source module.
Embodying luminaires employ an arrangement of thermally-conductive walls (i.e., the internal inter-surface structure) interior to the luminaire, with one end (e.g., the top) of such walls being in thermal contact, and/or communication, with an internal, upper part of the housing of the luminaire (e.g., the part which comprises the outer upper portion of the luminaire), and another end (e.g., the bottom) of such walls being in thermal contact (e.g., contacting or touching), and/or communication, with the LED board. This arrangement of walls allows heat to be transferred from the LED board through the internal inter-surface structure to an external surface of the housing, where the heat is dissipated to the ambient environment.
In accordance with implementations, the walls of the internal inter-surface structure may be arranged in a variety of patterns, which may be optimized to facilitate heat transfer. The internal walls may sometimes be alternatively referred to as “fins”, but the use of the term “fins” in relation to internal walls, should not be confused with any “fins” which prior art outdoor luminaire may possess on their exterior; the exemplary internal walls or fins disclosed herein, are typically not visible from the exterior of the luminaire, since they are internal to the housing.
Embodiments of the present disclosure typically provide an external surface of an outdoor luminaire which is smooth, or at least, does not comprise any structure that is prone to water and/or dirt deposition. In accordance with some implementations, the external surface of the housing can have dimples, scoops, depressions, and the like for aesthetic considerations. Exemplary luminaires nevertheless are effective in dissipating heat to the environment due to the spread distribution of heat from the LED light source to the housing's external surface achieved by the internal inter-surface structure. This is due to the presence of the internal walls, which may spread heat from the relatively concentrated heat source of the individual LEDs or the LED board, to a much greater area on the outer surface of the housing of the luminaire.
In accordance with implementations, a heat spreader plate can be situated between the LED PCB and the internal walls. This heat spreader plate is of a heat conductive material (e.g., metal, thermally conductive plastic compound, etc.) that spreads the concentrated heat generated by the LED light sources laterally along the heat spreader plate. In accordance with implementations, a thermally conductive paste can be applied to surfaces of the heat spreader plate to aid in the heat transfer from the LED light sources to the walls of the internal inter-surface.
In certain embodiments, the exterior or external upper surface of the housing of the luminaire may comprise a pattern, such as a series of troughs or trenches which may give a ribbed appearance. However, even in the presence of such a pattern on an exterior external upper surface of the housing, the deposition of dirt is inhibited since the pattern is relatively smooth, with few or no sharp angles to trap dirt. Thus, the term “smooth” as used in the present disclosure does not mean that there are no bumps or troughs on the exterior of the housing; rather it refers to any shape of the exterior surface that is sufficiently smooth to inhibit the trapping of dirt.
In accordance with embodiments of this disclosure, the internal walls thermally connect the exterior surface of the luminaire with the light engine mounted on the LED board. Additionally, the internal walls may be capable of spreading heat to exterior portions of the surface of the luminaire where ambient air flow is the greatest. Optionally, the end of the interior walls which is in thermal contact with the LED board may be physically contacted with a heat-spreader—e.g., a slab of metal or other thermally-conductive material physically interposed between the plurality of internal walls and the LED board.
The disclosed smooth exterior surface of the luminaire is less prone to allow deposition of water and dirt, which is undesirable thermally and aesthetically. Owing to the channels that are formed between the internal walls, the weight of the luminaire can be reduced relative to a conventional internal heatsink arrangement that merely comprises a solid block of heat-conductive material (e.g., metal). The interior walls of the present disclosure are in thermal contact with both the exterior surface of the luminaire, and with the LED board, thus enhancing the cooling performance relative to internal fins that do not contact an exterior surface of the luminaire.
This heat spreader plate is in thermal contact with one side of internal inter-surface structure 235. The heat spreader plate and the internal inter-surface structure can be made from metal or a thermally conductive polymer. In some implementations, the material can have a thermal conductivity greater or equal to about 50 Watts per meter Kelvin (W/mK). The internal inter-surface structure can be produced by die-casting, sandcasting, injection molding, etc.
Internal to the luminaire housing within the electrical compartment is LED driver electronics 320 (e.g., power supply). On an underside of the luminaire housing can be seen the ribbing of the internal inter-surface structure 335, which draws heat from heat spreader plate 340 to an external surface of luminaire housing 330. In some implementations, this ribbing can be fins or honeycombs to better laterally flow heat from the point source of the LED engine(s) mounted on LED PCB 350. This lateral heat flow reduces the peak heat intensity by increasing the surface volume that is exposed to the heat source.
The light emitted by the LED light sources can pass through optical element 360 (e.g., a diffuser, lens, etc.), which can shape the emitted light pattern. Light transmissive cover 370 can protect the optical element. This transmissive cover can be translucent, or transparent formed from any glass or plastic material.
Distal surface 346 of the heat spreader plate is in contact with the internal inter-surface structure 335, which may include heatsink fins, ribbing, honeycomb, and/or the like. This internal inter-surface structure includes heat channels that flow the heat away from the LED heat point source to an interior of the luminaire's housing 330.
The heat spreader plate spreads the heat from the heat point sources laterally (perpendicular to an axis of the heat's natural flow when the luminaire is in a normal operating position), so as to reduce the heat concentration.
The shape and construction of the internal inter-surface structure can include rib channels and/or honeycomb walls that can conduct heat from the LED point source heat spots away from the MCPCB. As this heat is conducted away from the LEDs (as represented by arrows A and B), the ribbed construction and the spreader plate act to spread the heat perpendicular to an axis of the MCPCB. The internal inter-surface structure can connect the heat sources with as many surfaces in contact with the external environment as possible.
In accordance with embodiments, the housing outer surface and the light engine are thermally connected. The fins, ribbing, honeycombs, of the internal inter-surface structure are capable of spreading the heat to the external points of the housing outer surface, where the ambient air flow is the greatest. This ambient air flow draws the heat from the internal volume of the luminaire into the external environment (as represented by arrows C and D).
In accordance with embodiments, the luminaire structure is substantially closed to external air flow. However the luminaire can include a door or cover hatch that makes internal ingress possible for maintenance, repair, and replacement of internal components. Embodying LED luminaires are thermally-cooled without a need for external air convection via an air port, vent, or chimney.
Although specific hardware and methods have been described herein, note that any number of other configurations may be provided in accordance with embodiments of the invention. Thus, while there have been shown, described, and pointed out fundamental novel features of the invention, it will be understood that various omissions, substitutions, and changes in the form and details of the illustrated embodiments, and in their operation, may be made by those skilled in the art without departing from the spirit and scope of the invention. Substitutions of elements from one embodiment to another are also fully intended and contemplated. The invention is defined solely with regard to the claims appended hereto, and equivalents of the recitations therein.
This patent application claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Patent Application Ser. No. 62/112,067, filed Feb. 4, 2015, titled “Led Luminaire with Internal Heatsink,” the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
7637633 | Wong | Dec 2009 | B2 |
7674016 | Zhang et al. | Mar 2010 | B2 |
7686469 | Ruud | Mar 2010 | B2 |
D660495 | Walker et al. | May 2012 | S |
8485691 | Hamel et al. | Jul 2013 | B2 |
D694449 | Walker et al. | Nov 2013 | S |
8680754 | Premysler | Mar 2014 | B2 |
8757842 | Ter-Hovhannisyan | Jun 2014 | B2 |
8783917 | Mrakovich | Jul 2014 | B2 |
9121580 | Bryant | Sep 2015 | B1 |
9163808 | Lehman | Oct 2015 | B1 |
9383090 | Scarlata | Jul 2016 | B2 |
9605821 | Al-Gaadi | Mar 2017 | B2 |
9752768 | Roh | Sep 2017 | B2 |
20090168417 | Zhang | Jul 2009 | A1 |
20090213588 | Manes | Aug 2009 | A1 |
20090303715 | Takasago | Dec 2009 | A1 |
20100238671 | Catone et al. | Sep 2010 | A1 |
20110026251 | Liu | Feb 2011 | A1 |
20110044043 | Wong | Feb 2011 | A1 |
20110233568 | An et al. | Sep 2011 | A1 |
20120262917 | Courcelle | Oct 2012 | A1 |
20140049961 | Wilcox | Feb 2014 | A1 |
20140254156 | Hsu et al. | Sep 2014 | A1 |
20160178181 | LaDuca | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
101144602 | Mar 2008 | CN |
201344410 | Nov 2009 | CN |
203115720 | Aug 2013 | CN |
2133621 | Dec 2009 | EP |
2998032 | May 2014 | FR |
2494171 | Mar 2013 | GB |
2011216497 | Oct 2011 | JP |
100895516 | Apr 2009 | KR |
100924593 | Oct 2009 | KR |
2013025252 | Feb 2013 | WO |
Entry |
---|
PCT Search Report and Written Opinion issued in connection with corresponding PCT Application No. PCT/US2015/067997 dated Mar. 16, 2016. |
Number | Date | Country | |
---|---|---|---|
20160223178 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
62112067 | Feb 2015 | US |