The present invention relates to a battery operated light. More particularly, the present invention relates to an generally spherical LED light having the appearance of an antique water mine with multiplicity of magnetic tipped horns which provide a multiplicity of attachment locations points and hence a multiplicity of lighting directions.
Flashlights, drop lights and other battery operated lights are often used and are well known. The use of LED (light emitting diode) components in such battery operated lighting devices is also well known. However, it is typical of users of such lights to require them while working in tight, confined, low-light, night time, or power-out conditions and their remains room for improvement in such devices. There also remains room for improvement in the aesthetics of such devices.
Often users of such lights have a difficult time holding the flash light or drop light at the desired angle in order to properly illuminate the work area. It is also often difficult to fit a flash light or drop light in many very tight and cramped work areas. Thus, it would be desirable to have a light which could be used in tight and cramped work areas and which had means for facilitating its positioning or attachment to a supporting structure and further had means for facilitating its aiming in a multiplicity of directions.
The present invention provides a “hands free” LED light that enables its users to aim the direction of light and accurately illuminate their work areas. The appearance of the product of the present invention resembles a conventional spiked military naval military mine although the size of the product of the present invention will usually be relatively small. The light of this invention has a plurality of spikes or horns, the tips of which are well adapted for carrying a magnet. The light of this invention has a generally spherical body with the plurality of spikes extending radially outwardly therefrom, with the spikes extending in many different directions and at different angles from the spherical body which carries at least one LED light source. The user can magnetically attach the light to any ferromagnetic surface and easily aim the light at their work area using one of the many magnetic spikes. The spikes also serve as positioning legs enabling the user to position the light in various directions on flat surfaces. The spikes also keep the product from rolling even if it is placed on a non-magnetic surface and still permit the light to be aimed in different directions.
The LED mine light of the present inventions has many desired features which will be useful to end users in low light situations. It does not require the user to carry an additional outside power source. It creates a brightly lit work area and the ability to accurately aim the light and magnetically attach to ferromagnetic surfaces. It is also aesthetically pleasing and, to some extent, has the appearance of a novelty item. These and other advantages will be appreciated by those skilled in the art from the accompanying drawings taken in conjunction with the following specification and claims.
An LED light device has a generally spherical body with a a plurality of projections, referred to herein as horns, radiating outwardly therefrom, each of said horns having a distal end and at least one of said horns having a magnet at its distal end. The body encloses a power source and carries at least one LED light aimed outwardly therefrom.
Now referring to
As is best shown in
Hemispheres 24 and 26 enclose hollow interior 18 which is intended to house or contain a suitable power source 20 for the LED 16 as well as the required electrical connectors between the power source and the LED. As illustrated in the figures a suitable power source 20 can be button batteries 32 in tubular battery holder 34.
The LED 16 is turned on and off by the user manipulating power switch 22 which is electrically connected to leads 36 and 38 of LED 16 and to switch plate 40 in a conventional manner. A lanyard (not shown in the Figures) can be attached to an aperture (not shown in the Figures) if desired.
Now referring to
Now referring to
While preferred embodiments of the present invention have been disclosed and described above, it will be appreciated by those skilled in the art that the present invention is subject to modifications and variations and such modifications and variations are intended to be within the broad scope of the present invention. For example, conventional lamps or other light sources could be substituted for the LED components. Also, the body can be transparent, semi-transparent or opaque and can be made of various materials such as thermoplastic or thermoset polymeric materials so long as the material used is consistent with the function of the part made therefrom.
Number | Name | Date | Kind |
---|---|---|---|
4425602 | Lansing | Jan 1984 | A |
5228686 | Maleyko | Jul 1993 | A |
5537111 | Martin et al. | Jul 1996 | A |
6076946 | Brouillette et al. | Jun 2000 | A |
6663260 | Tieszen | Dec 2003 | B1 |
6877880 | Endo | Apr 2005 | B2 |
6923550 | Lee | Aug 2005 | B2 |
7364319 | Canella | Apr 2008 | B2 |
D577456 | Schwendinger et al. | Sep 2008 | S |
20020135999 | Chen | Sep 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20090256500 A1 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
61123432 | Apr 2008 | US |