This application claims the priority of Korean Patent Application No. 2010-0007064 filed on Jan. 26, 2010, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.
1. Field of the Invention
The present invention relates to an LED module and a backlight unit having the same, and more particularly, to an LED module in a line light source and a backlight unit having the same.
2. Description of the Related Art
With the recent trend for slimness and high performance in an image display device, a liquid crystal display device (LCD device) has been widely used in TVs, computer monitors, and the like. A liquid crystal panel cannot emit light by itself, such that it requires a separate light source unit, that is, a backlight unit (hereinafter, referred to as a ‘BLU’). As a BLU light source, a cold cathode fluorescent lamp (CCFL) has previously been used. However, a light emitting diode (LED), which is advantageous in view of color representation, power consumption and the like, has recently been prominent as a BLU light source.
Generally, the BLU is divided into an edge-type BLU (side lighting type) and a direct-type BLU (direct lighting type). In the edge-type BLU, a bar-shaped light source is positioned on a side portion of a liquid crystal panel to irradiate light to the liquid crystal panel through a light-guide plate. On the other hand, in the direct-type BLU, light is directly emitted from a surface light source installed below the liquid crystal panel to the entire surface of a liquid crystal panel. The direct-type BLU includes optical members such as a surface light source disposed on a lower portion, diffusing plates disposed thereon having an interval, or the like.
In the edge-type BLU, an LED module provided with a plurality of white LEDs disposed on a bar-shaped circuit substrate having a predetermined interval from the LCD may be used as a BLU light source. Light from the white LEDs, incident on a light-guide plate, is transferred to a top of the light-guide plate through total reflection, scattering, or the like occurring within the light-guide plate. In the edge-type BLU, the LED module is disposed to be separate from the light-guide plate and to have a predetermined interval therebetween, so that light having uniform characteristics reaches a side portion of the light-guide plate. In particular, light emitted from the plurality of white LEDs, each corresponding to a point light source, is mixed at a predetermined distance or more. Therefore, an interval between the LED module and the light-guide plate is required so that uniform light reaches the light-guide plate. A production display device has a bezel width having a predetermined size due to the required interval, which increases the size of the area of the display product unnecessarily, and thus a reduction thereof is required.
In the direct-type BLU using an LED light source, a plurality of white LEDs or a combination of red, green and blue (RGB) LEDs are disposed below optical sheets such as a diffusion sheet, a prism sheet, and the like. A great number of LEDs are required in order to obtain a uniform surface light source, such that it causes an increase in manufacturing costs. When a small number of LEDs are used in order to reduce costs, dark portions or non-uniform color stains may be generated in a region between the LEDs. An interval between the LED and the optical sheet may be widened in order to prevent such a problem occurring. However, in this case, the thickness of the display device becomes thick, thereby being disadvantageous in the realization of product slimness.
An aspect of the present invention provides an LED module capable of reducing a width of a bezel and implementing uniform line light source characteristics as an edge-type BLU light source. An aspect of the present invention also provides an edge-type backlight unit capable of reducing a width of a bezel and showing uniform light distribution characteristics.
In addition, an aspect of the present invention provides an LED module capable of removing dark portions and implementing uniform light distribution characteristics by having directional angles widened in a lateral direction together with uniform line light source characteristics. In addition, an aspect of the present invention also provides a direct-type backlight unit capable of implementing uniform light distribution characteristics and being appropriate for an impulsive driving method by sequential lighting.
According to an aspect of the present invention, there is provided an LED module, including: a bar type circuit substrate formed with at least one groove so as to have a reflecting cup; a plurality of LED chips disposed in the groove of the circuit substrate and linearly arranged in a longitudinal direction of the circuit substrate; and a phosphor film spaced apart from the LED chips and disposed on the circuit substrate to cover the entire groove.
The phosphor film may be made of a transparent resin containing phosphors. The LED module may emit white light by the plurality of LED chips and the phosphor film.
The at least one groove formed in the circuit substrate may be a single groove lengthened in a longitudinal direction of the circuit substrate and the plurality of LED chips may be arranged in the single groove in a row.
The at least one groove formed in the circuit substrate may be a plurality of grooves arranged in a longitudinal direction of the circuit substrate and at least one LED chip may be disposed in each of the plurality of grooves.
According to another aspect of the present invention, there is provided an edge-type backlight unit, including: a light-guide plate; and an LED module disposed at least one side surface portion of the light-guide plate, wherein the LED module includes: a bar type circuit substrate formed with at least one groove so as to have a reflecting cup; a plurality of LED chips disposed in the groove of the circuit substrate and linearly arranged in a longitudinal direction of the circuit substrate; and a phosphor film spaced apart from the LED chips and disposed on the circuit substrate to cover the entire groove.
According to another aspect of the present invention, there is provided an LED module, including: a bar type circuit substrate; a plurality of LED chips linearly arranged on the circuit substrate in a longitudinal direction of the circuit substrate; a wavelength converter lengthened in a longitudinal direction of the circuit substrate so as to encapsulate the plurality of LED chips at a time; and a lens unit lengthened in a longitudinal direction of the circuit substrate so as to cover the wavelength converter and changing the paths of light emitted from the wavelength converter in a lateral direction.
The wavelength converter may be made of a transparent resin containing phosphors. The lens unit may have a dome shape in which a groove is extended in a center of an upper portion of the circuit substrate in a longitudinal direction of the circuit substrate. The LED module may emit white light by the plurality of LED chips and the wavelength converter.
According to another aspect of the present invention, there is provided a direct-type backlight unit, including: a bottom plate; and a plurality of LED modules arranged on the bottom plate having an interval therebetween and each extended along a length of one side of the bottom plate, wherein each of the LED modules includes: a bar type circuit substrate lengthwise extended; a plurality of LED chips linearly arranged on the circuit substrate in a longitudinal direction of the circuit substrate; a wavelength converter lengthened in a longitudinal direction of the circuit substrate so as to encapsulate the plurality of LED chips at a time; and a lens unit lengthened in a longitudinal direction of the circuit substrate so as to cover the wavelength converter and changing the paths of the light emitted from the wavelength converter in a lateral direction.
The above and other aspects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
Exemplary embodiments of the present invention will now be described in detail with reference to the accompanying drawings. The exemplary embodiments of the present invention may be modified in many different forms and the scope of the invention should not be limited to the embodiments set forth herein. In the drawings, the shapes and dimensions may be exaggerated for clarity, and the same reference numerals will be used throughout to designate the same or like components.
The phosphor film 120 is disposed on the circuit substrate 150, while being separate from the LED chips 110 having an interval therebetween, so as to cover the entire groove 150a. Therefore, the phosphor film 120 is also formed to be extended lengthwise along the lengthwise extended groove 150a. The phosphor film 120 may be a transparent resin film containing phosphors converting light emitted from the LED chips 110 into light having a different wavelength. The LED module 100 may become a line light source emitting white light by the LED chips 110 and the phosphor film 120. A space between the LED chips 110 and the phosphor film 120 may be empty or may also be filled with a transparent resin so as to encapsulate the LED chips 110.
The plurality of LED chips 110 may be, for example, blue LED chips, and the phosphor film 120 may be a transparent resin containing phosphors excited by the blue light emitted from the blue LED chips to emit, for example, yellow light. The blue light emitted from the blue LED chips and the yellow light emitted from the phosphor film 120 are mixed, such that white light may be output. Therefore, the LED module 100 forms a line light source emitting white light. As another example, the plurality of LED chips 110 may be ultraviolet LED chips and the phosphor film 120 may be a transparent resin containing a combination of several kinds of phosphors (red phosphors, green phosphors, and blue phosphors) excited by ultraviolet rays to emit red, green, and blue light. The LED module 100 may form a line light source emitting white light by the ultraviolet LED chips and the phosphor film 120.
The circuit substrate 150 may be formed of, for example, a bar type PCB, and in particular, may be formed of a metal PCB so as to improve a heat dissipating effect. The LED chips 110 disposed in the groove 150a of the circuit substrate 150 may be bonded to the bottom of the groove 150a by die-bonding and may be electrically connected to a wiring or a leadframe (not shown) of the circuit substrate 150 by a bonding wire 112 by way of example. As another example, the LED chips 110 may be bonded to the bottom of the groove 150a by flip-chip bonding, without using separate wire bonding.
In the LED module 100, the plurality of LED chips 110 are arranged inside the groove 150a formed in a row so as to have a reflecting cup and a sheet of the phosphor film 120 is formed to cover the entire groove 150a, while being separate from the LED chips. Therefore, the LED module 100 can implement a line light source having uniform light characteristics directly on the phosphor film 120, unlike an existing point light source LED module. Therefore, it is possible to overcome a problem that an LED module used in the existing edge-type BLU should be separate from a light-guide plate at a predetermined distance so as to sufficiently mix light. Since the LED module 100 implements uniform line light source characteristics right on the phosphor film 120, an interval between the LED module 100 and the light-guide plate can be extremely narrowed when being applied to the edge-type BLU, thereby making it possible to remarkably reduce a width of a bezel in a LCD display.
The phosphor film 220 is disposed on the circuit substrate 250, while being separate from the LED chips 110, so as to cover the entirety of the plurality of grooves 250a. As shown in
The LED module 200 in the embodiment shown in
The wavelength converter 320, which is a primary molding member, is lengthened in a longitudinal direction of the circuit substrate 350 so as to encapsulate the plurality of LED chips 110 at a time. The wavelength converter 320 converts a wavelength of the light emitted from the LED chips 110. The wavelength converter 320 may be made of a resin containing phosphors, which are excited by the light emitted from the LED chips 110 to emit visible light. For example, the LED chips 110 may be blue LED chips emitting blue light and the wavelength converter 320 may be a transparent resin containing yellow phosphors excited by the blue light emitted from the LED chips to emit yellow light. As another example, the LED chips 110 may be ultraviolet LED chips emitting ultraviolet rays and the wavelength converter 320 may be a transparent resin containing a combination of phosphors excited by the ultraviolet rays emitted from the LED chips to emit red, green, and blue light. The LED module 500 may output white light by the LED chips 110 and the wavelength converter 320. Separately, the plurality of LED chips 110 corresponding to a point light source are encapsulated with the wavelength converter 320 at a time, such that the LED module 500 itself may become a line light source having uniform light characteristics.
The lens unit 360, which is a secondary molding member, is lengthened in a longitudinal direction of the circuit substrate 350 so as to cover the wavelength converter. In particular, the lens unit 360 widens the directivity of the light in a lateral direction by changing the paths of the light emitted from the wavelength converter in a lateral direction (see dotted arrows schematizing paths of light in
Referring to
In addition, a separate light source of the direct-type BLU 1000 is provided as a line light source having a bar type circuit substrate, such that the sequential lighting of the plurality of LED modules 500 can be easily implemented by an impulsive driving method temporally synchronizing a BLU with a liquid crystal panel. The sequential lighting of the plurality of LED modules 500 arranged in parallel, which is an LED module design appropriate for the impulsive driving method, can be implemented. The impulsive driving method is applied, thereby making it possible to effectively eliminate screen afterimages of a LCD display.
As set forth above, according to exemplary embodiments of the invention, it is possible to reduce the width of the bezel, while making the light source characteristics of the edge-type backlight more uniform. Therefore, it is possible to effectively reduce unnecessary space or area of a LCD display product. In addition, according to exemplary embodiments of the invention, the direct-type backlight can make the light distribution characteristics uniform by providing light as much as possible to dark regions between line light sources by the LED modules and effectively eliminate screen afterimages by easily applying sequential driving.
While the present invention has been shown and described in connection with the exemplary embodiments, it will be apparent to those skilled in the art that modifications and variations can be made without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2010-0007064 | Jan 2010 | KR | national |