The present invention relates to an LED module in accordance with the preamble of claim 1, which LED module consists of an arrangement of electronically interconnected LEDs and a carrier for the LEDs, and to an arrangement for light emission comprising such an LED module.
The basis for the present invention is the at present conventional interconnection of LEDs on circuit boards to form series and parallel circuits. A parallel circuit formed by an arbitrary number of LED series circuits is preferably chosen in this case. In particular, in the present case, carrier circuit boards are considered which are planar and on which the LEDs are arranged in a uniform grid. Such an arrangement is used at the present time in order to operate LEDs with low current demand efficiently from conventional high-voltage converters. Normally, within such interconnections here the same number of LEDs is interconnected in all the parallel series circuits or strings.
In the case of LED modules provided for lighting purposes and configured in the manner described above, during operation a not inconsiderable heat is generated by the LEDs and should be dissipated efficiently in order to reduce the thermal loading of the LEDs or to keep the latter in an envisaged temperature range and thus to prolong their lifetime. By way of example, metal-core circuit boards are therefore used, which are coupled to corresponding heat sinks, if appropriate, via which the heat can then be dissipated.
However, even with use of these measures for heat dissipation, the thermal loading of the carrier and in particular of the LEDs arranged thereon is of varying magnitude. In the case of a customarily provided uniform equidistant arrangement of the LEDs on a circuit board, in general the heat is dissipated via the edge regions or end regions of a primarily elongate LED circuit board significantly more effectively than via the central or middle region. On account of this imbalance, the LEDs from the central region have to be cooled better or the cooling measures have to be designed more effectively, which entails a higher outlay.
Accordingly, the present invention is based on the object of distributing the thermal loading for LEDs on a circuit board more uniformly without disturbing the uniform arrangement of the LEDs or having to make the cooling in the center more efficient. This object is achieved according to the invention by means of the subjects specified in the independent claims. Particular embodiments or advantageous developments of the invention are specified in the dependent claims.
The invention therefore provides an LED module comprising an arrangement of electronically interconnected LEDs in parallel circuits formed by series circuits of the LEDs and a carrier or a circuit board provided as a carrying structure for the LEDs, wherein the parallel circuit is chosen such that the thermal loading caused by the operation of the LEDs is distributed substantially uniformly over the carrier.
The design of the LED interconnection according to the invention, which compensates for the imbalance in the thermal loading present in the case of LED modules from the prior art, can be realized in various ways.
In this regard, in a first exemplary embodiment, a targeted asymmetrical parallel interconnection of the LED series circuits or LED strings is provided, wherein, however, despite everything the LEDs are preferably arranged on a two-dimensional uniform grid situated on a circuit board. This asymmetrical interconnection is characterized in that the number of LEDs in a string which is situated in the edge region of the carrier or of the circuit board is reduced compared with the number of LEDs in a string from the central region. This means that more series circuits are found in the edge region of the circuit board than in the center or in the central region of the circuit board, even though the arrangement of the LEDs as seen overall is uniform or homogeneous. The difference in the number of LEDs in the individual strings furthermore has the consequence that the LEDs in the center or in the central region are now subjected to a lower current load and thus produce less heat. This takes account of the fact that the heat in the middle or more central region of the module can be dissipated less effectively to the surroundings or cooling elements coupled to the module, such that ultimately, as seen overall, there is a significantly more uniform thermal loading as seen across the area. Furthermore, in this exemplary embodiment, all the LEDs on the circuit board are substantially identical.
In a second exemplary embodiment, however, in contrast to the first exemplary embodiment, LEDs having different forward voltages are used. In this case, each series circuit or each string has LEDs having substantially identical forward voltages, but these forward voltages differ between strings from an edge region and a central region, such that ultimately the LEDs in a central region of the module are once again subjected to a smaller current load.
Furthermore, in this exemplary embodiment, each string preferably has an identical number of LEDs, although it would be readily possible to combine both exemplary embodiments for the purposes of the problem solution according to the invention. In this case, the LED strings would then differ not only with regard to the LEDs but also with regard to the number of LEDs.
Furthermore, a further usable effect in both exemplary embodiments can reside in a targeted amplification of luminous fluxes at the edge region of the LED modules. Particularly in the case of a planar arrangement of a multiplicity of LED modules according to the invention in combination with diffuse optical systems, this can lead to a higher homogeneity of the luminances on a light exit surface.
The invention is explained in greater detail below on the basis of a plurality of exemplary embodiments and with reference to the drawings, in which:
According to the invention, the interconnection of the LEDs 3 is now embodied in such a way that the greatest number of LEDs 3 per series circuit 6 is in the central or middle row on the carrier 2, and that this number becomes smaller, the further away a row 5 under consideration is from the center or center axis. This is evident in this exemplary embodiment specifically by virtue of the fact that—counted from the top downward—the first row 5 has three series circuits 6 each having three LEDs 3, the second row 5 has two series circuits 6 having respectively five and four LEDs 3, and the third row, which at the same time is situated the most centrally, has one series circuit 6 having nine LEDs 3. A directly resulting consequence is, therefore, that in the case of an interconnection in accordance with this first exemplary embodiment, in principle, the number of series circuits 6 or LED strings 6 required is ultimately greater than the number of LED rows 5 arranged on the carrier 2.
For operation of the LED module 1, a voltage—made available by an operating device (not illustrated)—is applied between the common end points 7 and 8 of all the electrically conductive connections 4. Since all the series circuits 6 are supplied with the same voltage during operation, the LEDs 3 in the series circuits 6 in the edge region of the carrier 2 are individually under increased voltage load and thus increased current load on account of their smaller number per series circuit 6. Consequently, the main foci of the current load of all the LEDs 3 are transferred to the outer regions of the carrier 2. This results in the desired effect that now the main foci of the generation of heat are also transferred to the outer regions of the carrier 2 and the thermal loading of the central regions of the carrier 2 is thus relieved.
It should be clarified at this juncture that
Moreover, it would also be conceivable for an LED string to extend over a plurality of rows of the LED circuit board in order to obtain a uniform grid arrangement of LEDs.
In the abovementioned example with three LED strings, e.g. the respective last LEDs of the middle string (having 21 LEDs) could be arranged in the outer rows, thus resulting in a uniform LED grid having 3×19 LEDs. Despite everything, heat is generated primarily in the lateral regions in order to be able to achieve the sought aim of uniform thermal loading.
Alternatively, it can even be advantageous that the LEDs 3 in an edge region of the carrier 2 emit more light than the LEDs 3 in the central region. Usually, in lighting assemblies, a plurality of LED modules 1 are arranged alongside one another on a preferably planar surface in combination with an optical diffuser plate 18 preferably in accordance with
The second major difference is that each series circuit has the same number of LEDs in the case of the module from
The complete arrangement of the LEDs and electrical connections on the carrier 23 is expediently placed axially symmetrically around the LED row 29 in order not to cause any asymmetry of the thermal loading of the carrier 23 during operation, even if the total thermal loading of the carrier would not be uniform. The carrier 23 from
The forward voltages of the LEDs 24 in the outer row 25 are chosen such that they are less than the forward voltages of the LEDs 26 in row 27. Analogously, the forward voltages of the LEDs 26 in row 27 should be chosen such that they are less than the forward voltages of the LEDs 28 in row 29. The same correspondingly applies to the rest of the rows (not designated by reference numerals) in the lower part of the LED module 22 by means of axial mirroring of all properties at the row 29. On account of the lower forward voltages in the direction of the outer region of the carrier 23, it is thus ensured that a higher current flow is present in the corresponding LEDs, that is to say that main foci of the current load or thermal load are transferred to the edge regions of the carrier 23.
The use of LEDs having different forward voltages is made possible for example by taking LEDs of identical type which, however, nevertheless have different forward voltages during production. Optionally, the use of totally different LED types is also possible.
As already mentioned, the two concepts for better distribution of the thermal loading can also be combined with one another. In this case, different LEDs are then used on the module and the lengths of the LED series circuits are varied.
It goes without saying that the LED module illustrated in
To summarize, therefore, the use of an LED module according to the invention affords the possibility of saving costs that arise as a result of the use of cooling measures. Furthermore, by optimizing the distribution of the thermal loading, it is possible to prolong the lifetime of LEDs and to obtain more homogeneous appearances with regard to the light emission within and/or outside lighting devices which contain an LED module according to the invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2013 203 728.7 | Mar 2013 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/054240 | 3/5/2014 | WO | 00 |