1. Field
The present disclosure relates generally to light bulbs, lamp assemblies and lighting fixtures, and more particularly, to a light emitting diode (LED) based light engine that can replace a conventional A19 (Edison base) standard light bulb or a conventional compact fluorescent light (CFL) bulb used in interior and exterior light fixtures with no modifications to the host light fixture.
2. Description of the Related Art
Incandescent light bulbs are used in a wide variety of lighting fixture products. Although inexpensive to purchase, incandescent light bulbs have several drawbacks. First, incandescent light bulbs use a relatively large amount of power compared to other lighting technologies (e.g. LED or CFL) which increases energy costs. Second, incandescent light bulbs have a relatively short life causing repetitive replacement costs. Furthermore, in commercial applications, there are labor costs associated with maintenance personnel constantly replacing the light bulbs.
Because of their relatively low efficiency in generating light (95% of energy is actually turned into heat with only 5% producing light), incandescent bulbs are actually being banned through government regulations at local and federal levels, in several countries around the world. In addition, states such as California have established regulations for new building construction (e.g., Title 24 for commercial and residential buildings) that require minimum levels of lighting energy efficiency which essentially prohibits incandescent bulbs from being used in any large quantity within a building.
Compact fluorescent light (CFL) bulbs, while offering 2-3 times the energy efficiency over incandescent light bulbs, due to their design and light emission properties, can pose limitations in overall efficacy when combined with a light fixture. In addition, CFL bulbs contain mercury (a long term environmental issue) and are often slow to warm up to produce rated light levels. CFL bulbs have received mixed reviews from consumers (e.g., aesthetic appearance, light color, noise), though the technology has continued to improve.
A recent trend in the lighting industry is to develop light emitting diode (LED) engines or modules that can be easily adapted to current light fixture products. LED technology offers 3-5 times the energy efficacy of traditional incandescent bulbs and has 25 times the reliability. This offers a potentially large savings in energy consumption in interior and exterior lighting applications. In addition, LEDs produce light which is more “directional”, enabling LED light engine designers to customize the luminous intensity profile for various applications, further enhancing overall light fixture efficacy. While LED technology is generally more expensive, there can be substantial savings in energy cost, bulb replacement and maintenance costs over a multi-year period.
To date, a number of “socket based” LED products have entered the market to retrofit in place of incandescent bulbs. Some of these products use large numbers of lower power LEDs or fewer numbers of high power LEDs. Generally, these products have had relatively low light output in replacing common light fixture incandescent sources (e.g. 75 W bulb) and poor thermal management properties required to ensure long LED life. In addition, many of these light sources are highly directional and not compatible with many decorative light fixtures (e.g. pendants) detracting from the aesthetic appearance of the fixture and the LED light source.
Thus, a need exists for an LED retrofit lighting product having low power consumption, high light output and effective means for heat dissipation when used within semi-enclosed light fixture products. Such a product should have a light distribution profile to maximize light where it is needed, look aesthetically pleasing when viewed through a lamp shade or diffuser and adequately illuminate the light fixture shade to maintain a high quality decorative appearance. Furthermore, such a product should be a screw-in replacement for an incandescent or CFL bulb for easy retrofit into the existing installed base of light fixtures in residential and commercial applications.
An LED based light engine designed to be easily retrofitted into existing incandescent or CFL based light fixtures, compatible with either an Edison or Gu-24 socket is provided. The LED based light engine of the present disclosure allows much greater energy efficient lighting to be offered in residential and commercial markets while utilizing the current inventory (many thousands) of light fixture designs.
According to an aspect of the present disclosure, the LED based light engine includes an LED light module for producing light and a housing for supporting the LED light module and integrated electronic driver board. The housing includes a heat sink mechanism (e.g., central core and ducted fin assembly) for moving heat away from the LEDs and the electronic components via conduction and convection methods. The engine further includes a GU-24 compatible electrical connector base which can be used directly in GU-24 compatible light fixtures or, with the use of a GU-24 Adapter, (such as the adapter disclosed in U.S. Pat. No. 7,125,159 entitled “Non-defeatable fluorescent adapter for incandescent fixture”, the contents of which are incorporated by reference), can be used with standard Edison socket based fixtures. The LED engine also has a globe type diffuser assembly to achieve the desired aesthetic appearance and luminous intensity profile.
The LED light engine of the present disclosure produces ˜500 lumens using 27-0.5 W LEDs or 5-3 W type high power LEDs with a glass or plastic globe shaped high efficiency (85%) diffuser. When installed in pendant or other interior and exterior light fixtures, the LED light engine is designed to functionally replace the “lighting effect and utility” of a 75 W incandescent A19 bulb (1000 lumens) while consuming only 10 watts (16% of the energy consumed by the 75 W incandescent bulb—an 84% energy savings). The “lighting effect and utility” means providing similar lighting luminous intensity in the direction of the primary surfaces intended to be illuminated (e.g. countertop, table, stairwell, foyer, walkway, etc.) and uniformly illuminating the fixture shade to maintain its decorative effect. However, actual luminous intensity projected through the shade/diffuser may be lower than when using the incandescent bulb being replaced.
The LED light engine is designed for two color temperature points: ˜3000K (residential applications) and ˜4000K (commercial applications).
The LED light engine, when illuminated and viewed through the shade or diffuser, is intended to replicate a more traditional “orb” in appearance as created with an incandescent bulb. This lighting characteristic helps ensure retrofit compatibility with the installed base of fixtures and provides an aesthetic appearance that consumers are more accustomed to.
The design of the LED module and electronic driver are designed to support standard 120VAC line voltage and is compatible with a range of standard wall dimmer products (e.g. Lutron). There are two types of drive electronics used: a high efficiency (86%) linear driver circuit to supply constant current (50 mA) to the 27-0.5 W LEDs and a switching regulator circuit (80% efficiency) to supply constant current (700 mA) to the 5-3 W LEDs. Both of these circuit designs are compatible with off-the-shelf electronic low voltage (ELV) type phase control dimmers. Both circuits have high Power Factors (>0.70).
The overall LED light engine efficacy is between 35 lumens/Watt (3000K CCT) and 43 lumens/Watt (4000K CCT).
An optimized heat sink design is provided with the present disclosure which is driven by several key requirements: a) heat sink length and width is limited to dimensions of typical incandescent and CFL bulbs, b) support 10 Watts of heat dissipation in ambient temperature environments of up to 40° C. and c) support cooling when installed in existing pendant type and exterior fixtures that generally restrict convective airflow. The design objective is to keep the LED junction temperatures under 85° C. and the electronic case temperature under 70° C. to ensure long product life (>35,000 hours with 70% lumen maintenance).
In one embodiment, the heat sink/housing includes a cylindrical wall having an inner and outer surface along the axial direction of the cylindrical wall. An interior of the cylindrical wall is configured to house electronics for providing power the LEDs of the light engine. A plurality of ducts or air passageways are formed on the outer surface of the cylindrical wall to allow heat generated by the light engine to be dissipated and to facilitate the flow of ambient air though the housing to, in effect, cool the light engine. In this embodiment, the housing is of unitary construction and is extruded from a highly conductive material, e.g., aluminum.
In another embodiment, the heat sink uses a high thermal conductivity material (e.g., copper) for a base enclosure and fin components. A “lazy ruffle” fin design, enclosed in a shroud provides for convective heat flow “ducts” that creates a chimney effect to increase airflow into the heat sink and helps drive air currents within a light fixture shade (e.g. a pendant fixture). The shroud or outer surface also serves to enhance the LED light engine's aesthetic qualities (i.e., hides the heat sink's fins) and is formed of a color which aids in reflecting light back toward the light fixture shade to help in further obscuring the heat sink mechanism when viewed through the light fixture shade.
The above and other aspects, features, and advantages of the present disclosure will become more apparent in light of the following detailed description when taken in conjunction with the accompanying drawings in which:
Preferred embodiments of the present disclosure will be described herein below with reference to the accompanying figures. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the invention in unnecessary detail. Throughout the drawings/figures, like reference numerals represent like elements.
Referring to
Referring to
Referring to
The controller PCB 114 is housed in housing 102. The housing 102 is generally cylindrical and includes a cylindrical wall 120 with a plurality of ducts 122 axially surrounding the cylindrical wall 120. The ducts 120 are formed from a plurality of fins 124 radically extending from the cylindrical wall 120 and then being covered by a continuous outer surface 126. The outer surface 126 may be formed from a reflective material to reflect light emitted by an LED. It is to be appreciated that the housing 102 may be of a unitary construction and may be formed from an extrusion process. A lower portion of the cylindrical wall 120 of the housing is configured to mate with the base 120 while the controller PCB 114 is disposed within.
A LED module 128 is disposed on an upper portion 130 of the cylindrical wall 120 of the housing 102. A thermal adhesive may be applied to the upper portion 130 to secure the module 128 to the housing 102 and to facilitate the transfer of heat generated by the module 128 away from the module 128. It is to be appreciated that the LED module 128 may be attached by several methods to ensure good thermal conductivity including screws, thermal grease, thermal epoxy or combination of these methods.
The LED light module or source 128 includes a plurality of LEDs 132 mounted on a ceramic printed circuit board (PCB) 134. The ceramic PCB 134 provides high thermal conductivity when attached to the housing/heat Sink 102 and is electrically insulating to provide a high dielectric barrier between the PCB traces and the electrically conductive heat sink. The LEDs 132 may be of a single color temperature (e.g. 3000K or 4000K) or a combination of color temperatures to arrive at desired CCT values.
The planar LED module 128 emits light in a 90° lambertian pattern. The optical diffuser 106 mounts over the planar LED module 128 and attaches to a outer peripheral surface 136 of the upper portion 130 of the housing 102. The diffuser 106 is made of glass or plastic and has high optical efficiency of 85% or more. The diffuser 106 causes some of the LED emitted light to be directed at wider angles as depicted 140 in the luminous intensity profile (candela distribution) diagram of
LED PCB insulator 138 is provided to protect the printed circuit board (PCB) 134 and any electrical traces thereon. The insulator 138 can be made from any known insulating plastic and is dimensioned to be of substantially the same diameter as the printed circuit board (PCB) 134. It is to be appreciated the insulator 138 will be configured with a number of apertures 137 that correspond to the number of LEDs 132 used so that when the insulator 138 is mated with the printed circuit board (PCB) 134 the LEDs 132 will be disposed through the apertures 137.
Referring to
A driver circuit schematic diagram 150 is shown in
An alternative electronic constant current driver 160 is shown in the schematic of
This enables the light engine to stay within its temperature design parameters to ensure long, reliable service life. This circuit is designed to meet EMI requirements of FCC Class A/B.
The switching regulator circuit of
The electronics design of both embodiments are designed to provide a Power Factor greater than 0.7.
Referring to
In the embodiment shown, the cylindrical wall 220 of housing 202 is made of copper and has a top disc 221, made of copper, and soldered to the cylindrical wall 220, to which the LED module 128 is mounted. Other materials can be used for these components such as aluminum AL6063-T5 or a composite material such as aluminum with an internal layer of pyrolytic (highly oriented) graphite. The top disc or portion 221 maximizes the surface area in contact with the LED module 128. As described above, the LED module substrate or PBC 134 is a ceramic or high conductivity plastic (e.g. Ceracon with thermal conductivity of 19 W/m° K). Heat is conducted from the LED module 128, to the top disc or portion 221 and then to the cylindrical wall 220 and fins 225 for eventual dissipation to the ambient environment via convection.
To aid in heat dissipation, a “lazy ruffle” style copper fin system 225 as shown in
Referring to
As air inside the ducts 122 heat up, it rises through normal buoyancy. This causes the air to move out the exhaust side 182 of the ducts 122 and cooler air to be drawn into the intake side 184 of housing 104 as shown
While the disclosure has been shown and described with reference to certain preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the disclosure.
This application claims priority to an application entitled “LED RETROFIT LIGHT ENGINE” filed in the United States Patent and Trademark Office on May 27, 2008 and assigned Ser. No. 61/056,126, the contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61056126 | May 2008 | US |