This application is not the result of any government contract and the United States Government has no rights hereunder.
The embodiments herein relate to solid-state retrofit lamps as replacement for incandescent vehicular lights, in particular to taillights or running lights.
An increasing number of vehicular lights employ solid-state emitters, such, for example, as light emitting diodes (LEDs). These lights are relatively inexpensive, are rugged since they do not use a heated filament, and have very long life. Because of these attributes a sizeable after-market has developed to provide solid-state replacements for previously used incandescent lamps. Some vehicular LED lamps are provided as original equipment requiring that the reflector that is mounted to the vehicle chassis as part of the lampset is matched to the original lamp source, and that the vehicle chassis is designed with a space to accommodate a heat sink. The following are known in the art: U.S. Pat. No. 6,773,138 (Coushaine); U.S. Pat. No. 7,186,010 (Coushaine); U.S. Pat. No. 7,588,359 (Coushaine); and US Published Patent Application 2010/0207505 (Tessnow). An obstacle to market acceptance of energy efficient and long-life LED retrofits as an aftermarket product for conventional factory-installed incandescent lamps such as tail and position lamps is that vehicle running lights and taillights are designed as a two-part unit having a light source, conventionally provided by a heated incandescent filament, and a factory installed reflector. In the United States, for example, the photometric light output for such units is defined by SAE standards as exemplified in 49 CFR Part 571. Legal requirements exist in Europe where standards for stop and position lamps are defined by regulations denominated R007 and direction indicator lamps by R006. The following LED lamps are also known: U.S. Pat. No. 7,407,302 (Tasson); U.S. Pat. No. 6,585,395 (Luk); and US Pub. Pat. Appln. 2005/0169006 (Wang).
Accordingly, it would be an advance to provide a solid-state replacement light source whose light output meets necessary government regulations.
An improved solid-state replacement vehicular light source is provided by a lamp assembly adapted for insertion into an existing vehicle chassis-mounted lamp housing originally designed for receiving a specific lamp specified as an OEM (original equipment) lamp and operable with a first reflector, for example, an incandescent lamp, installed into an aperture in a chassis-mounted reflector.
The lamp assembly has a housing, which optionally includes a core projecting therefrom, and a plurality of reflector segments displaceably attached to the core and moveable between a closed configuration for installation through an aperture and an outwardly open configuration for function within the lamp housing to form a second reflector. A biasing mechanism is operative to bias the plurality of reflector segments toward the open configuration. Once through the aperture, the biasing mechanism biases the plurality of reflector segments to the open configuration. A socket is associated with the housing, for connecting the lamp assembly to a power source and at least one solid-state light source is positioned with the replacement vehicle lamp assembly so as to deliver light to the first reflector when the segments are in the open configuration. Suitable electrical connections are provided between the socket and the solid-state light source.
For a better understanding of the present embodiments and its advantages, reference is made to the following disclosure and appended claims taken in conjunction with the above-described drawings.
A biasing mechanism 25, which can be in the form of a spring or coiled spring, is operative to bias the reflector segments 40 toward the open configuration.
A socket 28 is associated with the housing 12, the socket 28 connecting the lamp assembly 10 to a power source (not shown).
At least one solid-state light source 24, for example, at least one light emitting diode (LED or array of LEDs) is positioned with the vehicle lamp assembly 10 so as to deliver light to the first reflector 38 when the reflector segments 40 are in the open configuration. Electrical connections 42, preferably in the form of a printed circuit board, extend between the socket 28 and the solid-state light source 24.
Preferably the reflector segments 40 each comprises a section of a parabola, a complete parabola being formed when the reflector segments 40 are in the open position. In a preferred embodiment there are five segments 40 which, when positioned in the open configuration, present a first reflector 38 substantially encompassing 360 degrees deployed about a longitudinal axis 18, see
As generally understood by one of ordinary skill in the art, the surface of the first reflector 38 may include parametric and/or nonparametric surface definition types including, but not limited to, non-uniform rational basis spline (NURBS) curves and/or surfaces configured to reflect the light received from the solid state-light source 24 in the desired pattern.
Commercially available software, including but not limited to, computer-aided design (CAD), computer-aided manufacturing (CAM), and computer-aided engineering (CAE) software, may be used for the design of NURBS curves and/or surfaces of the first reflector 38. For example, a reflector 38 consistent with the present disclosure may be designed using LucidShape computer-aided lighting software offered by Brandenburg GmbH (Paderborn, Germany).
Replacement vehicle lamp 10 is capable of many embodiments. For example, in the embodiment shown in
In the embodiment shown in
In using replacement vehicle lamp 10 to provide a given light output from a lampset 100 the existing first light source 118 is removed, and replaced by the replacement vehicle lamp 10. Replacement is accomplished by compressing the reflector segments 40 against either the body 43 (as shown in
Thus, there is provided a replacement vehicle lamp 10 that provides its own reflector 38 which will be designed to match the solid-state source 24 regardless of the factory-installed lampset reflector 116 in order that the aftermarket lamp meets applicable regulations on light output to make driving safer.
While there have been shown and described what are at present considered to be the preferred embodiments it will be apparent to those skilled in the art that various changes and modifications can be made herein without departing from the scope of the embodiments as defined by the appended claims.
For purposes of this application it is to be understood that when an element or layer is referred to as being “on,” “connected to” or “coupled to” another element or layer, it can be directly on, connected to or coupled to the other element or layer or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly connected to” or “directly coupled to” another element or layer, there are no intervening elements or layers present. Like numbers refer to like elements throughout. The term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms “first,” “second,” “third” etc. may be used to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections are not to be limited by theses terms as they are used only to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section could be termed a second element, component, region, layer or section without departing from the scope and teachings of the present embodiments.
Spatially relative terms, such as “beneath,” below,” upper,” “lower,” “above” and the like may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the drawings. These spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation shown in the drawings. For example, if the device in the drawings is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. For example, as used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms, “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.