This invention relates to an adjustable spectrum LED solar simulator system and method.
A solar simulator is used to test and/or evaluate solar cells and modules, a module consisting of an assembly of electrically connected cells. The solar cell or module is placed on a test plane glass beneath or above which is a light source and various filters, mirrors, baffles, and the like. The light source is usually a xenon tube.
The goal is to match the solar (sun's) spectrum as close as possible with a class A spectrum defined as a certain irradiance within wavelength intervals between 400-1100 nm.
Recently, researchers have begun exploring LED-based solar simulators. See Kolberg, et al. “Homogeneity And Life Time Performance Of A Tunable Close Match LED Solar Simulator Energy,” Procedia 27 (2012) 306-311 and Swonke and Hoyer, “Concept For A Real AM1.5 Simulator Based On LED-Technology And Survey On Different Types Of Solar Simulators,” 24th European Photovoltaic Solar Energy Conference, 21-25 Sep. 2009, Hamburg, Germany, (3377-3379) both incorporated herein by this reference. See also published Application Serial Nos. 2013/0069687 and 2013/0063174 also incorporated herein by this reference.
In some cases, class A solar simulator performance is predicated based on the IEC and ASTM standards, IEC 60904-9 and ASTM E927-10, respectively. For some solar module technologies (e.g., single-junction thin-film approaches and multi junction tandem structures), a solar simulator which exceeds class A performance and more closely matches the solar spectrum is desired. Also, it is desirable to fine tune the simulator output to meet the user's needs and requirements. In most cases, homogeneity, reliability, repeatability, maintainability, cost and scalability are key considerations. Spectral mixing and uniform illumination in the solar cell test plane are also key considerations.
Featured is an LED based solar simulator comprising a test plane for a solar cell or module and an emitter plane comprising an array of quarter panels below the test plane forming at least one panel. Each quarter panel includes multiple LEDs of different wavelengths in an array, a plurality of LEDs for select wavelengths per quarter panel, and one or more different wavelength LEDs in a plurality of class A wavelength intervals. Mirrored sidewalls extend from the emitter plane to the test plane.
Preferably, each class A wavelength interval includes one or more different wavelength LEDs. The pitch of the LEDs is preferably much less than the distance between the emitter plane and the test plane. In one example, the pitch of the LEDs is approximately 0.5 cm and the distance between the emitter plane and the test plane is approximately 10 cm. Also, the simulator uses bare chip LEDs for higher density LEDs per quarter panel, but could also use packaged LEDs, provided that they are small enough. In one version, each quarter panel further includes a light sensor positioned to detect light reflected off the test plane. The light sensor may be a photodiode and a circumferential shield around the photodiode shields the photodiode from direct LED light. Preferably, the simulator LED driver subsystem is responsive to the light sensor and is configured to selectively control LEDs in response. There may be one or more drivers per panel and typically the driver subsystem is connected to a panel in a configuration in which LEDs of different wavelengths can be selectively controlled per quarter panel. For example, the LED driver subsystem may include a controller connected to one or more drivers for each quarter panel and programmed to selectively control LEDs of different wavelengths to minimize the difference between the emitter plane spectrum and a stored solar spectrum.
Also featured is a method of fabricating an LED based solar simulator comprising populating a quarter panel to include multiple LEDs of different wavelengths, joining quarter panels to form a panel, joining panels to form an emitter plane, and forming a test plane spaced from the emitter plane via sidewalls including mirrored surfaces. In one example, each quarter panel includes multiple LEDs of select wavelengths and one or more different wavelength LEDs in a plurality of class A wavelength intervals.
Populating a quarter panel may include using bare chip LEDs or packaged LEDs and choosing a pitch for the LEDs to be much less than the distance between the emitter plane and the test plane.
One method may further include adding a light sensor on each quarter panel positioned to detect light reflected off the test plane and adding an LED driver subsystem to be responsive to the light sensor and configuring the LED driver subsystem to selectively control the LEDs in response. The driver subsystem may be connected to each panel in a configuration in which LEDs of different wavelengths can be selectively controlled at the quarter panel level.
Also featured is a method of simulating the solar spectrum. An LED driver subsystem is connected to individual panels of an image plane each including a plurality of LEDs of different wavelengths—a number of which wavelengths include multiple LEDs. The LED driver subsystem is used to control the power applied to individual LEDs and/or strings of LEDs of the same wavelength. The output at the image plane is monitored and the LED driver subsystem is adjusted in response.
The subject invention, however, in other embodiments, need not achieve all these objectives and the claims hereof should not be limited to structures or methods capable of achieving these objectives.
Other objects, features and advantages will occur to those skilled in the art from the following description of a preferred embodiment and the accompanying drawings, in which:
Aside from the preferred embodiment or embodiments disclosed below, this invention is capable of other embodiments and of being practiced or being carried out in various ways. Thus, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of components set forth in the following description or illustrated in the drawings. If only one embodiment is described herein, the claims hereof are not to be limited to that embodiment. Moreover, the claims hereof are not to be read restrictively unless there is clear and convincing evidence manifesting a certain exclusion, restriction, or disclaimer.
Here, each quarter panel 14 includes an array of (e.g., 100) LEDS 18 populating a circuit board with the necessary interconnects, leads, bond pads, cabling, and the like. In the preferred embodiment, bare LED chips are used because they can easily be mounted in close proximity on a printed circuit board as opposed to packaged LEDs. In each quarter panel, there are multiple LEDs of different wavelengths. In one example, there are twenty-three LED types as follows:
In the class A spectrum, the defined wavelength intervals are 400-500, 500-600, 600-700, 700-800, 800-900, and 900-1100 nm. Thus, in each class A interval, there are, in this preferred embodiment, two to four or more LEDs of different wavelengths resulting in a simulator which exceeds class A performance requirements and which more closely matches the solar spectrum as shown in
Indeed, the simulator system of this invention can automatically tune itself to reliably output a spectrum at test plane 20,
In one example, each quarter panel 14a,
Each quarter panel 14a may also include a light sensor such as one or more photodiode chips 30 surrounded by circumferential shield 32 (extending, for example a few mm upwards) from printed circuit board 34.
Printed circuit board 34 also includes ribbon cable connectors 36a and 36b which include conductors leading to traces 38 which ultimately lead to the individual LEDs (or strings of LEDs).
Each panel further includes electric driver boards 60a, 60b, 60c
In this way, as shown in
The result is a uniform illumination at the solar cell test plane and enhanced spectral mixing. Reliability, repeatability, maintenance, and scalability are addressed.
In one example, an LED drive subsystem 60 provides power to the LED chips. A sensor system senses the output of the LEDs. Controller 70, which may include a microprocessor such as a Microchip Corp., PIC family of microcontrollers programmed with, among other things, LabVIEW software which responds to the sensor system to compare the color spectrum of the output of the LEDs to a desired solar spectrum and enables the LED driver subsystem 60 to adjust the power to the LEDs to more closely match a standard or desired solar spectrum. Solar spectrum standards have been set by two principal organizations, IEC and ASTM International. A Class A spectrum is essentially defined as one that falls within ±25% of the Air Mass 1.5 Global (AM1.5G) spectrum. In one embodiment of this invention the LEDs of e.g. a quarter panel, are connected in series strings or chains of common color range. LED driver system 60 provides power separately to each of those series strings of common color range. The common color ranges for example could be red, orange, yellow, green, blue, violet. In this way, controller 70, selectively adjusts the power to the series strings of common color range in order to balance or more closely match the LED output spectrum of the system 40 with the desired solar spectrum. A typical LED chip 18,
The light emanating from the LEDs with different wavelength is homogenized and the intensity of the light is uniform as it impinges on the solar cell or solar panel to be tested.
In accordance with one embodiment the LED driver system includes a capacitive circuit for periodically discharging power to the LEDs and recharging between those power discharges. Since the solar spectral density in the wave length interval of 400-1100 nm is about 760 W/m2 or equivalently 76 mW/cm2, the 20 cm×20 cm panel 16, must produce close to 30 watts of optical power. Using a conservative average radiation production efficiency of η approximately equal to 10%, the electrical power to all the LEDs in the panel during a 100 ms flash would be about 300 W. Each 100 ms flash of the simulator would then deliver an energy of some 30 Joules to the LEDs. For power conversion efficiency this energy could come from a panel-mounted capacitor, initially charged to 400 V and discharged in the 100 ms interval to 200 V; the required value C of the capacitor is then found from:
If this capacitor is discharged from 400 V to 200 V in 100 ms at a constant current ILED, then
To restore to the capacitor the same charge as was discharged in 100 ms, but in the 10 s between flashes, then a current of only one hundredth of the discharge current or 10 mA is required. For the 400 V main supply charging the capacitor banks of the 50 panels constituting a 1 m×2 m solar simulator, a current capacity of about 500 mA is required: i.e., a 200 W supply.
One embodiment of a microprocessor-based controller 70,
In one embodiment the series strings of common color range LEDs are driven in groups of quarter panels. A panel LED driver structure may include three or more DC-DC converters and control electronics printed circuit boards.
There is shown in
The system can operate in a run mode and in a calibration mode. In the run mode, the microprocessor controller responds to the photo sensor devices and compares the electrical signal spectrum to a predetermined norm to determine the “LED dark/light performance”. In a calibration mode, the microprocessor controller enables the LED drivers to provide distinctively coded (e.g. a different electrical modulation frequency for each color) power to each of the series strings of common color range and then responds to the output from the sensor system including the photo sensors to determine the power of each common color range and compares the power of each of the common color ranges to the power of those colors for a desired solar spectrum. The controller then operates the LED drivers to increase or decrease the power provided on the lines R, O, Y, G, B, V, and the like as necessary.
In the run mode as indicated in
In a calibration mode, the LED drivers under control of the microprocessor controller provide distinctively coded power input to each different series string of color range 220,
Alternatively, LED calibration may be implemented in such a manner that 1) the relative intensities of the R, O, Y, G, B and V serial strings of LEDs in e.g. a quarter panel 14, are adjusted to the desired solar spectral intensity ratios with the aid of a spectrometer preferably programmed to integrate over the six ASTM-defined wavelength intervals and return the relative intensity values; and 2) the LED-string current drive waveforms that produce constant light output intensity are recorded and saved in the waveform storage area 96 for possible use in the event that some LED light outputs might vary too much with constant current drive. Since a single photodiode sensor 28 is used to monitor all the colors within any given sub-block 10, the individual color LED strings will accordingly have to be sequentially selected for excitation. In this calibration mode the system operates in an optically closed-loop fashion: the LED light output of the selected color is monitored by the photodiode sensor 30 and the signal thus obtained is used to control 90 the LED serial string current driver 60 so as to provide constant light intensity. In the process the LED string current drive waveform is recorded and saved.
In the run mode as indicated in
Although specific features of the invention are shown in some drawings and not in others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention. The words “including”, “comprising”, “having”, and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments disclosed in the subject application are not to be taken as the only possible embodiments.
In addition, any amendment presented during the prosecution of the patent application for this patent is not a disclaimer of any claim element presented in the application as filed: those skilled in the art cannot reasonably be expected to draft a claim that would literally encompass all possible equivalents, many equivalents will be unforeseeable at the time of the amendment and are beyond a fair interpretation of what is to be surrendered (if anything), the rationale underlying the amendment may bear no more than a tangential relation to many equivalents, and/or there are many other reasons the applicant can not be expected to describe certain insubstantial substitutes for any claim element amended.
Other embodiments will occur to those skilled in the art and are within the following claims.
This application claims the benefit of and priority to U.S. Provisional Application Ser. No. 61/656,281 filed Jun. 6, 2012 under 35 U.S.C. §§119, 120, 363, 365, and 37 C.F.R. §1.55 and §1.78 and is incorporated herein by this reference.
This invention was made, at least in part, with U.S. Government support under DOE Phase I SBIR Grant No. DE-SC0004842, Jun. 19, 2010-Mar. 18, 2011, and DOE Phase II SBIR Grant No. DE-SC0004842, Aug. 15, 2011-Aug. 14, 2013. The Government may have certain rights in the subject invention.
Number | Date | Country | |
---|---|---|---|
61656281 | Jun 2012 | US |