The following disclosure generally relates to task lighting systems and, more particularly, to LED-powered, temporary task lighting that may be uniquely configured by the user at the location where the lighting is desired. The disclosure also relates to task lighting systems with security features.
Numerous applications require temporary task lighting. One such exemplary application is a construction site wherein permanent standard-voltage hard-wired power has not yet been installed. In order to light these sites, the contractor must install temporary lighting. On smaller jobs, temporary lighting results in a bundle of extension cords running through the work area which creates a safety issue. Another issue is that each of the lights must be plugged into an outlet. On larger jobs, the contractor may install temporary hard-wired 110V power at the job site which must be removed after the work is completed. Contractors desire alternative lighting options wherein multiple power outlets are not required and wherein customization of both the size and locations of the light sources is possible. The temporary lighting should also be easy to install and remove. Contractors and customers also desire energy efficiency.
Equipment theft is a problem at construction sites and lighting components would be attractive to a thief if the lighting components could be readily used in other applications. Lighting components can be difficult to secure because they cannot be moved to a secure location within the job site when they are not in use. Contractors thus desire task lighting systems to have features that reduce theft. Some public entities and construction companies specify left hand threaded incandescent light bulbs to reduce the value of the incandescent light bulbs to a thief. Left hand thread incandescent light bulbs cannot be used with typical right hand thread sockets used in homes and offices thus reducing their value to a thief.
Another potential task lighting application is a homeowner's garage, yard, or basement wherein a novice may wish to install lights without the necessity of running hard wires at full voltage.
The disclosure provides an LED (light-emitting diode) task lighting system that is easy to install, uninstall, and is customizable by the user.
The LED task lighting system includes a power supply that may be connected to a line voltage power source such as a 95, 110, or 220 Volt line source. The power supply is configured to output a low voltage direct current. At least one low voltage bus line is connected to the outlet of the power supply. The user selectively connects LED light modules along the low voltage bus line so that the light modules are located exactly where the user desires light. Uneven spacing of the light modules along the low voltage bus line is possible. Different size lights, different lumen powers, and different-colored LED light modules may be used. The low voltage bus line can be located in a wider variety of locations at the job site than a traditional line voltage power cord. The light modules may be repositioned along the bus line.
One configuration of the LED task lighting system provides self-correcting light modules or self-correcting connector assemblies that allow the user to connect light modules to the low voltage bus line without concern for the polarity of the connection. This configuration of the LED task lighting system provides the self-correcting feature by using a rectifier disposed electrically between the connector and the light module. The rectifier may be a full bridge rectifier. The rectifier may be physically disposed in different locations such as being carried by the connector, being carried by the LED light module, or being carried on the power lead between the light module and the connector.
One version of the system includes a connector that is used to physically and electrically connect a light module power lead to the low voltage bus line. The physical connection provided by the connector assembly reduces strain on the electrical connection. In one configuration, the physical connection is formed with a clamshell clamping action while in another configuration the connection is formed by threaded two elements together about the low voltage bus line. Both configurations of the connector assembly may be locked in a secure condition that requires a specially configured key to be used to disconnect the connector assembly from the low voltage bus line.
One version of the system includes hangers for securing the light modules in place at the location of the lighting. One version of the hanger includes a pair of wire mounting brackets that may be opened, wrapped about a support, and locked in place to secure the light module. Another version of the hanger includes a magnet to hold the light module in place. The magnet may be disposed in a recessed bracket.
In one configuration, the system provides a secondary power supply in addition to the low voltage bus line. The secondary power cord carries a plurality of single or dual power outlets so that workers have ready access to line voltage power in convenient locations. At least one of the power outlets may include a ground fault circuit interrupter feature. This outlet may be the first outlet that is closest to the power supply for the secondary power supply.
The system may include a power supply that supports multiple low voltage bus lines and secondary power cords that can be strung in different locations from the power supply.
The system may be changed to a low power mode to reduce power consumption. The system may be changed to its low power mode directly from the power supply or from a location remote from the power supply. The power supply may include a timer that allows the user to set the times for the low power modes. The power supply also may be configured to receive a low power mode signal from a remote source via a signal through a low voltage control line, a wireless signal, or an instruction delivered over a computer network. When a plurality of systems are in use on a large project, all of the systems may be turned to their low power modes with a common command in order to reduce power consumption.
Another configuration of the system provides a low voltage bus line that supports a plurality of threaded sockets that accept threaded LED modules. The threaded connection between the LED module and the socket ensures the correct polarity of the connection between the power cord and the module. In this configuration, a rectifier is not needed because the threaded connections guarantee the polarity of the connection between the LED light module and the low voltage bus line.
Another configuration of the system provides a LED light module having a left hand thread that is received in a left hand thread socket connected to the low voltage bus line. The use of the left hand thread with the LED module reduces the resale value of the LED module and thus reduces the likelihood that it will be stolen.
Alternatively, the system provides a left hand threaded LED light module that itself includes an AC to DC transformer so that the left hand threaded LED light module may be used with a standard left hand socket electrically connected to standard alternating current line power.
Another configuration of the system provides a low voltage bus line that carries a plurality of spaced sockets that receive LED light modules. The sockets may be configured to receive the LED light modules with a threaded connection. The thread on the LED light module may be a right hand or a left hand thread. In one configuration, the LED light modules are simply standard LED bulbs without drivers or transformers. The stringer is used with a power supply that provides the low voltage DC power to the low voltage bus line and the threaded connections between the light modules and the sockets ensure the correct polarity. This configuration allows the power supply to be located is a secure location while the LED modules disposed in theft-vulnerable locations are low-value objects. In alternative configuration, the low voltage bus line is standard line voltage with each of the LED light modules including an AC to DC transformer that supplies the desired voltage to the LED light module. In this configuration, left hand thread is desirable to reduce theft value.
One configuration of the system also inhibits theft by making its individual components less valuable for resale and allowing some components to be located in a secure location. The power supply may be disposed in a secure location.
Another configuration of the system includes a power supply that transmits a security signal that must be received by the individual light modules or the connectors for the light module before the light module will turn on. The security signal may be a carrier signal transmitted at a specific frequency that, when sensed by a component at the connector or light module, activates the light module. In one configuration, the component closes a switch to allow current to flow to the light module. The signal may be transmitted in the low voltage bus line, through the air as a radio frequency, or through a separate control line. When the security signal is not sensed, the switch remains open and the light module is not powered. The delivery of the power to the light module may be controlled by a microprocessor, a microchip, a switch, or a relay that receives the security signal and determines if the security signal is the authorized security signal based on its preprogrammed instructions or configuration. When the wireless configuration is used, the security signal may be a radio frequency signal transmitted at a predetermined frequency or in a predetermined pattern such that the receiver will power the light module upon sensing the signal. In another configuration, a wireless security feature may follow the security protocols used to secure a WIFI network.
Similar numbers refer to similar parts throughout the specification.
An exemplary configuration of the lighting system is indicated generally by the numeral 2 in the accompanying drawings. Lighting system 2 may be temporarily installed at locations such as construction sites and industrial operating environments to provide general and task lighting. System 2 uses light emitting diode (LED) light sources powered low voltage direct current to safely and conveniently provide suitable task lighting. System 2 also may be temporarily or permanently installed in locations such as a basement or a garage workshop to provide task lighting. System 2 allows the user to connect light modules 4 anywhere along a low voltage bus line 6 to customize the number of light modules 4 and the locations of the light modules 4 of system 2. System 2 also allows the user to select the type of light module 4 used at different locations. For example, the user may install large and small light modules 4, different color light modules 4, light modules 4 having different shapes, or light modules 4 of differing lumen output at the different locations along low voltage bus line 6. LED light modules may be provided with high-output LED light engines that output about 800 lumens to 6500 lumens and are suitable for task lighting. A 2000 lumen light module 4 may be used. Light modules 4 may be unevenly spaced along low voltage bus line 6 as desired. The user may customize each installation as needed. System 2 may be reconfigured after initially set up and installed because each light module 4 may be disconnected and reconnected to low voltage bus line 6 at different locations. System 2 may be reused and reconfigured at a later time.
Lighting system 2 generally includes a power supply 10 that transforms the alternating current from commonly available electrical power sources (such as 95V or 110V or 220V line voltage) to a low voltage direct current power supply available in low voltage bus line 6 (such as a 12V, 24V or 48V direct current supply). Power supply 10 may include a plug 12 that allows system 2 to be plugged into a standard alternating current line power source 14. System 2 may be configured to function with a range of input line power voltages such as from 90V to 277V and to accommodate power surges. In the exemplary configuration, power supply 10 outputs a 22V to 28V to low voltage bus line 6. Power supply 10 may support multiple independent low voltage bus lines 6 such that cords 6 may extend in different directions from power supply 10. Power supply 10 may be a 450 W supply with a 90-265 VAC input with an output of 24 VDC (22-28 VDC) that may be used to energize up to sixteen modules 4 on a single low voltage bus line 6. Low voltage bus line 6 may be provided in relatively long lengths (over 100 feet in length) so that it may be strung about the work area to be lit. Up to 300 feet of 10 gauge wire may be used. The low voltage of low voltage bus line 6 allows main low voltage bus line 6 to be installed and located in manners that would not be suitable for full 110V power lines. The use of the 24V low voltage bus line 6 also speeds the installation of system 2.
Each light module 4 is connected to low voltage bus line 6 with a connector 20 that forms an electrical connection with low voltage bus line 6. Connector 20 may be configured to form the electrical connection with low voltage bus line 6 without the use of tools such that the user may simply snap, press, thread, or clamp connector 20 onto low voltage bus line 6 at a desired location. A T-splice connector may be used. Connector 20 may include teeth or leads that cut through the insulation of low voltage bus line 6 to form the electrical connection. In other configurations, connector 20 may require areas of low voltage bus line 6 to be stripped to expose the conductor. In further configurations, connector 20 may be in the form of a junction box or socket that allows a connection to be readily formed. Connector 20 may be carried by a connector assembly 120 that engages low voltage bus line 6 to prevent the electrical connection between the low voltage bus line 6 and connector 20 from being strained.
In contrast to typical lighting fixtures powered by alternating current, LEDs are polarity sensitive. In typical LED fixtures configured to be connected to alternating current line voltage, an integrated driver or integrated power supply converts the power and handles the polarity issue. System 2 is configured to allow the user to install light modules 4 directly to low voltage bus line 6 and the users will not always form the electrical connection with the correct polarity. As such, a rectifier 22 is disposed electrically between each connector 20 and each light module 4 to ensure that the polarity of the power being delivered to each light module 4 is correct. A full bridge rectifier or other suitable rectifiers may be used. Rectifier 22 allows the user to install connector 20 without regard for the polarity of low voltage bus line 6. This is especially beneficial when connectors are simply snapped into place by the user. Rectifier 22 is used with each module 4 in that the electrical connection of module 4 with low voltage bus line 6 is not controlled. System 2 is thus self-correcting and easy to install. Rectifier 22 may be disposed in the same housing as connector 20.
An alternative configuration of system 2 does not use rectifier 22. Instead, system 2 uses a connector 20 that either provides an indicator showing the correct polarity or a connector 20 that includes feature making it difficult to install with reversed polarity. In the first example, connector 20 may be a T-splice that is color coded to cooperate with a color coded low voltage bus line 6 so that the user will correctly make the positive and negative connections. Connector 20 may have portions colored red and black that correspond to the red and black wires of low voltage bus line 6. In this configuration, the user must correctly orient connector 20 with respect to low voltage bus line 6 in order to provide the correct polarity to module 4. In the second example, the connector may be configured to only connect to low voltage bus line 6 in the correct polarity such as by using different-sized or different-shaped positive and negative wires.
Each light module 4 may be one or a plurality of light emitting diodes (LEDs) or one or a plurality of LED engines of essentially any lumen strength, color, or configuration suitable for task lighting. Each module 4 should output over 800 lumens. Individual or groups of LEDs may be covered by a protective cover that protects the LEDs from damage or by a combination lens and protective cover that enhances the light distribution from the LEDs.
In one optional configuration, each light module 4 will not turn on without first receiving or sensing a security signal. The security signal may be provided by power supply 10 through low voltage bus line 6 or transmitted through the air. An alternative configuration uses a control line separate from low voltage bus line 6 to provide the security signal to the light modules. The security signal also may be provided by a security component separate from power supply 10 such as a radio frequency transmitter, WIFI transmitter, or a frequency generator electrically connected to low voltage bus line 6. A security signal receiver is carried by light module 4 or connector assembly 120 to provide the security feature. When the receiver is configured to sense a specific carrier signal in the low voltage bus line, the receiver is positioned electrically upstream of rectifier 22 so that the security signal is not compromised by rectifier 22. Also, the receiver may be positioned after rectifier 22 and is configured to recognize the rectified security signal. The receiver is configured to provide electrical current to light module 4 after the security signal is sensed or only when the security signal is present. For example, the security signal may be provided as a carrier signal in low voltage bus line 6 at a predefined frequency that is not normally output by power supply 10. Such a carrier signal may be generated at a particular frequency by a signal generator—such as a clock carried by power supply 10. The security signal receiver may be a microprocessor configured to provide electrical current to light module 4 only when the predetermined signal frequency is detected in the low voltage bus line 6. The security signal receiver may be a microprocessor, microchip, a smart-switch, or a controller that opens or closes a relay or switch to provide the current to light module 4 when the correct signal is present. The signal may be fixed, randomly changed from time to time, or manually changeable by the user. In addition, the security signal does not have to be present at all times. It may be provided in intervals or in patterns. The interval or pattern of the signal also may be part of the security signal. In this example, the light modules will only turn on when connected to low voltage bus line 6 that carries the security signal from power source 10. Power source 10 may be located in a secure location that discourages theft. The security signal also may be provided through the air in the form of a radio frequency transmission that is received by the security signal receiver. The security signal may be a signal of a predetermined frequency, a pattern of transmissions, a code number, or a combination of signal configurations. WIFI security protocol such as WEP or WPA may be used. These security features reduce the theft value of light modules by rendering light modules 4 unusable with standard power supplies unless the thief bypasses the security features with new wiring. These security features may be applied to other lighting systems that are vulnerable to theft. Examples include the systems of
An alternate configuration for the housing of module 4 includes a rugged plastic or metal protective body that substantially surrounds the LED assembly. The housing defines a plurality of U-shaped structures on its rear wall that define openings or recesses. In this configuration, hooks or loops may be used to secure module 4 to hangers 30.
In one configuration, connector assembly 120 generally includes a base 130 and a cover 132 that is movable between open and closed positions with respect to base 130. When assembly 120 is positioned over low voltage bus line 6 and cover 132 is closed, line 6 is securely clamped between base 130 and cover 132.
Base 130 generally includes a base plate 134 and a wire clamp 136. In this configuration, wire clamp 136 is connected to base plate 134 with connectors 138 (
Within the compartment for power lead 122, base plate 134 defines a pair of latch openings 160 that each receives a resilient latch finger 162 that projects from cover 132. Each latch finger 162 defines latch surface 164 that snap fits to a corresponding latch surface defined by base 132 to latch cover 132 in the closed position and as shown in
Cover 132 is hinged to base plate 134 so that it may pivot between the open and closed positions. In the exemplary configuration, base plate 134 defines a hook 170 that receives a bar 172 to form the hinge. These pieces may be reversed in other configurations of assembly 120.
Sidewalls 156 define seats 180 for low voltage bus line 6. Seats 180 are aligned with a cord support 182 that supports low voltage bus line 6 when connector 20 is installed. On opposite sides of support 182, base plate 134 defines openings 184 that receive the threaded legs 186 of connector 20 to allow these legs 186 to project through base plate 134 where the nut 188 of connector 20 may engage legs 186 and secure connector 20 in place. Nut 188 is tightened to create the electrical splice in connector 20.
In order to connect a light module 4 with low voltage bus line 6, the end user positions base 130 on a portion of low voltage bus line 6 so that low voltage bus line 6 is disposed on support 182 with its electrical lines disposed side by side as shown in
In the exemplary configuration, cover 132 of connector assembly 20 includes four spaced latch fingers 162 that engage base 130 with a snap-fit connection. All four of these spaced latch fingers 162 must be moved to their unlatched positions simultaneously in order to open cover 132. This is achieved by inserting key 189 into openings 160 from the rear of connector 20 to engage and move ends 166 of fingers 162. In this configuration, four separate and spaced openings 160 are provided and raised perimeter ridges are disposed around openings 160.
In the configuration of
Connector assembly 120 may be mounted to a surface so that it may be used to support line 6 at the work site. To facilitate the mounting, base 130 supports a pair of mounting feet 161 that are disposed at least as high as the end surface of nut 188. Feet 161 and nut 188 may be used to support assembly 120 flush against the mounting surface. Fasteners are passed through feet 161 to mount base 130 to a surface such as a wall. The fasteners also may pass through cover 132 at bosses 163 such that cover 132 is held closed by the fasteners in addition to fingers 162.
In the configurations described above, fingers 162 project from cover 132. The arrangement of fingers 162 and openings 160 may be switched such that fingers 162 project from base 130. In other configurations, fingers 162 carried a metal element that may be used to pivot fingers 162 from their latched position to their unlatched position with magnetic force.
The configuration of connector assembly 120 depicted in
Gaskets 190 also may act as a locking device for cover or nut 188 to prevent it from backing off of legs 186. In a manner similar to
Cover 188 and the base of connector 20 defines a plurality of ribs 194 that allow assembly 120 to be readily gripped when cover 188 is tightened. Ribs 194 also strengthen assembly 120 and provide protection to assembly 120 when it is dropped. Recesses 196 are defined by the top of nut 188 to reduce the weight of nut 188 and to provide tool openings.
In some configurations, power lead 122 may be directly connected to connector 20. In other configurations such as when connector assembly 120 carries rectifier 22 or a security signal receiver, an intermediate connector body 198 is desired.
Both configurations of connector assembly 120 also may carry the components of the security signal system described above.
Advantages of lighting system 2 include that the operating temperature of the LED modules is never too hot to touch (in contrast to MH, quartz, halogen, etc), substantially reducing the possibility of injuries and fires. Additionally, the LED modules deliver superior quality and consistency in light output to conform to OSHA foot candle requirements. The LED modules are resistant to theft because they do not support standard input voltage.
An additional benefit is the energy savings. The following hypothetical example compares lighting system 2 to other lighting systems. On a 250,000 square foot job site with a two-year duration, approximately $700,000 in electricity savings alone is possible over the course of the project compared to a common existing lighting technology (factoring $0.18/KWh). System 2 consumes less than ⅓ the energy. The following is an analysis of the energy savings analysis for a hypothetical project using an LED-powered lighting system such as system 2 compared to existing incandescent, metal halide, and compact fluorescent lighting systems.
Description of exemplary project: Space to Illuminate (Sq Ft) 250,000; Ceiling Height (Ft) 15; Desired Illumination on Floor (Fc) 5; LED Modules per Kit (Lights) 12; Wire Length (Ft) 220; LED Modules Per 1000 Sq Ft 3; Kits Needed 73; LED Modules Needed 876; Light Module Spacing (Ft) 17; Light Module Coverage (Sq Ft) 289.
Assumptions for exemplary project: Power Cost Per Kilowatt Hour=$0.180 Dollars; Hours Per Month Illuminated=720 Hours; Duration of Project=24 Months.
Assumptions for lighting exemplary project with incandescent lights: Lights per 1000 Sq Ft=10 Lights; Unit Power=100 Watts; PS efficiency=100% Percent.
Assumptions for lighting exemplary project with metal halide lights: Lights per 1000 Sq Ft=1.11 Lights; Unit Power=400 Watts; PS efficiency=91% A Percent.
Assumptions for lighting exemplary project with compact fluorescent lights: Lights per 1000 Sq Ft=10 Lights; Unit Power=34 Watts; PS efficiency=71% Percent.
Assumptions for lighting exemplary project with system 2: Lights per 1000 Sq Ft (Average)=3.46 Lights; Unit Power=27 Watts; PS efficiency 86% Percent.
Power Cost for Project:
Incandescent $777,600 Dollars
Metal Halide $376,327 Dollars
Compact Fluorescent $341,055 Dollars
LED $82,818 Dollars
Power Savings of System 2 compared to:
Incandescent $694,782 Dollars
Metal Halide $293,509 Dollars
Compact Fluorescent $258,237 Dollars
Another advantage to system 2 is that all components of system 2 are RoHS (Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) compliant and contain no hazardous materials, unlike metal halide and compact fluorescent bulbs. The decrease in electricity consumption and reduction of electrical waste may offer opportunities for LEED (Leadership in Energy & Environmental Design) credits in addition to the benefits to the environment.
The illumination from an exemplary the LED module 4 is rated for L70 @ 50,000 hours. After almost 6 years of continuous use, the LEDs will shine at 70% of their initial brightness. The “lights” themselves are durable (impact-grade polycarbonate and aluminum assembly) and easily removable. In contrast to existing temporary lighting systems, they will last far more than a single project. In one example, each module 4 produces 2000 “focused” lumens directed at the target area, delivering approximately 8 fc at 15 ft spacing on center from 10 ft height.
System 2 may be provided with a low power feature that may be activated to reduce the amount of power consumed by system 2 while still causing the system to generate some light. Such a low power mode may be used when workers are not present. In one configuration, the low power mode reduces power consumption by 75 percent. The low power mode may be activated and deactivated with a button or switch on power supply 10. Other configurations allow the low power mode to be activated or deactivated remotely through a wireless connection, through a computer network connection such as an Internet connection, through a powerline network, or from a controller connected to each power supply 10 with a low voltage control line. These activation methods also may be used to turn system 2 on and off with no current supplied to low voltage bus line. Communication between power supply 10 and the controlling device (which may be a low power mode controller, computer or a timer) may be through a computer network such as the Internet or an intranet, through a telephone network, through a wireless communication channel, or through any other suitable communication channel. When a plurality of power supplies 10 are configured to respond to low power mode signals, the user may select which power supplies 10 remain at full power, which are turned off, and which are turn to low power such that system 2 may be customized.
In one configuration, a low power mode controller 230 (
In one configuration, power supply 10 includes a socket 240 electrically connected to 110V alternating current power source 14 so that secondary power supply 206 may be plugged into outlet 240 of power supply 10 when supply line 206 is desired. An alternative configuration is identified by reference numeral 242 wherein supply 206 is connected to power source 14 upstream of power supply 10.
One exemplary configuration of secondary power supply 206 is two hundred and fifty feet long with outlets 208 disposed every forty to sixty feet from power supply 10. Each outlet 208 may define a single socket or a plurality of sockets. Each outlet 208 or at least the initial, electrically upstream outlet may include a ground fault circuit interrupter (GFCI) for safety. Supply 206 is configured for use in wet conditions.
In the foregoing description, certain terms have been used for brevity, clearness, and understanding. No unnecessary limitations are to be implied therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes and are intended to be broadly construed. Moreover, the descriptions and illustrations are examples and the systems are not limited to the exact details shown or described. Throughout the description and claims of this specification the words “comprise” and “include” as well as variations of those words, such as “comprises,” “includes,” “comprising,” and “including” are not intended to exclude additives, components, integers, or steps.
This application is a continuation application claiming priority to U.S. application Ser. No. 14/661,352 filed Mar. 18, 2015, which is a division of U.S. patent application Ser. No. 13/157,115 filed Jun. 9, 2011, which claims the benefit of each of the following U.S. Provisional Patent applications 61/353,043 filed Jun. 9, 2010; 61/372,372 filed Aug. 10, 2010; 61/391,604 filed Oct. 9, 2010; 61/438,550 filed Feb. 1, 2011; and 61/486,135 filed May 13, 2011; the disclosures of each are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4183604 | Tjornhom, Sr. | Jan 1980 | A |
5008595 | Kazar | Apr 1991 | A |
8299719 | Moshirnoroozi | Oct 2012 | B1 |
20040160199 | Morgan | Aug 2004 | A1 |
20070257764 | D'Agostino | Nov 2007 | A1 |
20080238340 | Leung | Oct 2008 | A1 |
20100328946 | Borkar | Dec 2010 | A1 |
20110121654 | Recker | May 2011 | A1 |
20110134239 | Vadai | Jun 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20190338935 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
61353043 | Jun 2010 | US | |
61372372 | Aug 2010 | US | |
61391604 | Oct 2010 | US | |
61438550 | Feb 2011 | US | |
61486135 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13157115 | Jun 2011 | US |
Child | 14661352 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14661352 | Mar 2015 | US |
Child | 16295241 | US |