This application also claims priority to Chinese Patent Application Nos. 201610327806.0, filed May 18, 2016, and 201620089157.0, filed Jan. 28, 2016, and 201610420790.8, filed Jun. 14, 2016, the disclosure of each of which is incorporated herein by reference in its entirety.
If any terms in this application conflict with terms used in any application(s) from which this application claims priority, or terms incorporated by reference into this application or the application(s) from which this application claims priority, a construction based on the terms as used or defined in this application should be applied.
The present disclosure relates to illumination devices, and more particularly to an LED tube lamp with improved compatibility with an electrical ballast. Certain aspects of the present disclosure relate to an LED tube lamp with improved compatibility with an electrical ballast. Some aspects of the present disclosure relate to physical structures and features that may be used with the electrical aspects of this disclosure, or in some cases on their own.
LED (light emitting diode) lighting technology is rapidly developing to replace traditional incandescent and fluorescent lightings. LED tube lamps are mercury-free in comparison with fluorescent tube lamps that need to be filled with inert gas and mercury. Thus, it is not surprising that LED tube lamps are becoming a highly desired illumination option among different available lighting systems used in homes and workplaces, which used to be dominated by traditional lighting options such as compact fluorescent light bulbs (CFLs) and fluorescent tube lamps. Benefits of LED tube lamps include improved durability and longevity and far less energy consumption; therefore, when taking into account all factors, they would typically be considered as a cost effective lighting option.
Typical LED tube lamps have a lamp tube, a circuit board disposed inside the lamp tube with light sources being mounted on the circuit board, and end caps accompanying a power supply provided at two ends of the lamp tube with the electricity from the power supply transmitted to the light sources through the circuit board. However, existing LED tube lamps have certain drawbacks.
First, the typical circuit board is rigid and allows the entire lamp tube to maintain a straight tube configuration when the lamp tube is partially ruptured or broken, and this gives the user a false impression that the LED tube lamp remains usable and is likely to cause the user to be electrically shocked upon handling or installation of the LED tube lamp.
Second, the rigid circuit board is typically electrically connected with the end caps by way of wire bonding, in which the wires may be easily damaged and even broken due to any move during manufacturing, transportation, and usage of the LED tube lamp and therefore may disable the LED tube lamp.
Further, circuit design of current LED tube lamps mostly doesn't provide suitable solutions for complying with relevant certification standards and for better compatibility with the driving structure using an electronic ballast originally for a fluorescent lamp. For example, since there are usually no electronic components in a fluorescent lamp, it's fairly easy for a fluorescent lamp to be certified under EMI (electromagnetic interference) standards and safety standards for lighting equipment as provided by Underwriters Laboratories (UL). However, there are a considerable number of electronic components in an LED tube lamp, and therefore consideration of the impacts caused by the layout (structure) of the electronic components is important, resulting in difficulties in complying with such standards.
Common main types of electronic ballast include instant-start ballast and program-start ballast. Electronic ballast typically includes a resonant circuit and is designed to match the loading characteristics of a fluorescent lamp in driving the fluorescent lamp. For example, for properly starting a fluorescent lamp, the electronic ballast provides driving methods respectively corresponding to the fluorescent lamp working as a capacitive device before emitting light, and working as a resistive device upon emitting light. But an LED is a nonlinear component with significantly different characteristics from a fluorescent lamp. Therefore, using an LED tube lamp with an electronic ballast impacts the resonant circuit design of the electronic ballast, which may cause a compatibility problem. Generally, a program-start ballast will detect the presence of a filament in a fluorescent lamp, but traditional LED driving circuits cannot support the detection and may cause a failure of the filament detection and thus failure of the starting of the LED tube lamp. Further, electronic ballast is in effect a current source, and when it acts as a power supply of a DC-to-DC converter circuit in an LED tube lamp, problems of overvoltage and overcurrent or undervoltage and undercurrent are likely to occur, resulting in damaging of electronic components in the LED tube lamp or unstable provision of lighting by the LED tube lamp.
Further, the driving of an LED uses a DC driving signal, but the driving signal for a fluorescent lamp is a low-frequency, low-voltage AC signal as provided by an AC powerline, a high-frequency, high-voltage AC signal provided by a ballast, or even a DC signal provided by a battery for emergency lighting applications. Since the voltages and frequency spectrums of these types of signals differ significantly, simply performing a rectification to produce the required DC driving signal in an LED tube lamp is typically not competent at achieving the LED tube lamp's compatibility with traditional driving systems of a fluorescent lamp.
Accordingly, the present disclosure and its embodiments are herein provided.
It's specially noted that the present disclosure may actually include one or more inventions claimed currently or not yet claimed, and for avoiding confusion due to unnecessarily distinguishing between those possible inventions at the stage of preparing the specification, the possible plurality of inventions herein may be collectively referred to as “the (present) invention” herein.
Various embodiments are summarized in this section, and are described with respect to the “present invention,” which terminology is used to describe certain presently disclosed embodiments, whether claimed or not, and is not necessarily an exhaustive description of all possible embodiments, but rather is merely a summary of certain embodiments. Certain of the embodiments described below as various aspects of the “present invention” can be combined in different manners to form an LED tube lamp or a portion thereof. As such, the term “present invention” used in this specification is not intended to limit the claims in any way or to indicate that any particular embodiment or component is required to be included in a particular claim, and is intended to be synonymous with the “present disclosure.”
The present disclosure provides a novel LED tube lamp, and aspects thereof.
The present disclosure provides, in some embodiments, a light emitting diode (LED) tube lamp, including a lamp tube; a first external connection terminal coupled to the lamp tube and for receiving an external driving signal; a second external connection terminal coupled to the lamp tube and for receiving an external driving signal; a first rectifying circuit coupled to the first external connection terminal and configured to rectify the external driving signal to produce a rectified signal; second rectifying circuit coupled to the second external connection terminal for rectifying the external driving signal; a filtering circuit coupled to the first rectifying circuit and the second rectifying circuit, and configured to filter the rectified signal to produce a filtered signal; an LED lighting module coupled to the filtering circuit and configured to receive the filtered signal for emitting light; and a first ballast interface circuit coupled between the first rectifying circuit and the second external connection terminal. The first ballast interface circuit is configured such that when the external driving signal is initially input between the first external connection terminal and the second external connection terminal, the first ballast interface circuit initially conducts current bypassing the LED lighting module to prevent the LED tube lamp from emitting light, until the ballast interface circuit enters an open-circuit state, allowing a current input at the first external connection terminal and second external connection terminal to flow through the LED lighting module and thereby allowing the LED tube lamp to emit light.
In some embodiments, which may include the above example embodiments a light emitting diode (LED) tube lamp includes a lamp tube; a first external connection terminal coupled to the lamp tube and for receiving an external driving signal; a second external connection terminal coupled to the lamp tube and for receiving an external driving signal; a first rectifier coupled to the first external connection terminal and configured to rectify the external driving signal to produce a rectified signal; a second rectifier coupled to the second external connection terminal for rectifying the external driving signal; a filtering circuit coupled to the first rectifier and the second rectifier and configured to filter the rectified signal to produce a filtered signal; an LED lighting module coupled to the filtering circuit and configured to receive the filtered signal for emitting light; and a first bypass circuit coupled between the first rectifying circuit and the second external connection terminal. The first external connection terminal is an input terminal for the first rectifier and a first node is directly electrically connected to an output terminal for the first rectifier. In addition, the second external connection terminal is an input terminal for the second rectifier and a second node is directly electrically connected to an output terminal for the second rectifier. Further the first bypass circuit includes a first terminal connected to second external connection terminal and a second terminal connected to the first node, and the first bypass circuit is configured such that when the external driving signal is initially input between the first external connection terminal and the second external connection terminal, the first bypass circuit initially conducts current bypassing the LED lighting module to prevent the LED tube lamp from emitting light, until the bypass circuit enters an open-circuit state, allowing a current to flow through the LED lighting module and thereby allowing the LED tube lamp to emit light.
In some embodiments, which may include the above example embodiments, a light emitting diode (LED) tube lamp includes a lamp tube; a first external connection terminal coupled to the lamp tube and for receiving an external driving signal; a second external connection terminal coupled to the lamp tube and for receiving an external driving signal; a first rectifier coupled to the first external connection terminal and configured to rectify the external driving signal to produce a rectified signal, wherein the first external connection terminal is an input terminal for the first rectifier and a first node is directly connected to an output terminal for the first rectifier; a second rectifier coupled to the second external connection terminal and configured to rectify the external driving signal, wherein the second external connection terminal is an input terminal for the second rectifier and a second node is directly connected to an output terminal for the second rectifier; a filtering circuit coupled to the first rectifier and the second rectifier and configured to filter the rectified signal to produce a filtered signal; and an LED lighting module [530] coupled to the filtering circuit and configured to receive the filtered signal for emitting light. The LED tube lamp may further include means for initially, during a first time period, causing a current to pass from the second external connection terminal to the first node by bypassing the LED lighting module and to later, during a second time period following the first time period, causing a current to pass from the second external connection terminal to the first node by passing through the LED lighting module, thereby causing the LED tube lamp to emit light.
The present disclosure provides a novel LED tube lamp, and also provides some features that can be used in LED lamps that are not LED tube lamps. The present disclosure will now be described in the following embodiments with reference to the drawings. The following descriptions of various implementations are presented herein for purpose of illustration and giving examples only. This invention is not intended to be exhaustive or to be limited to the precise form disclosed. These example embodiments are just that—examples—and many implementations and variations are possible that do not require the details provided herein. It should also be emphasized that the disclosure provides details of alternative examples, but such listing of alternatives is not exhaustive. Furthermore, any consistency of detail between various examples should not be interpreted as requiring such detail—it is impracticable to list every possible variation for every feature described herein. The language of the claims should be referenced in determining the requirements of the invention.
In the drawings, the size and relative sizes of components may be exaggerated for clarity. Like numbers refer to like elements throughout.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.
It will be understood that, although the terms first, second, third etc. may be used herein to describe various elements, components, regions, layers, or steps, these elements, components, regions, layers, and/or steps should not be limited by these terms. Unless the context indicates otherwise, these terms are only used to distinguish one element, component, region, layer, or step from another element, component, region, or step, for example as a naming convention. Thus, a first element, component, region, layer, or step discussed below in one section of the specification could be termed a second element, component, region, layer, or step in another section of the specification or in the claims without departing from the teachings of the present invention. In addition, in certain cases, even if a term is not described using “first,” “second,” etc., in the specification, it may still be referred to as “first” or “second” in a claim in order to distinguish different claimed elements from each other.
It will be further understood that the terms “comprises” and/or “comprising,” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.
It will be understood that when an element is referred to as being “connected” or “coupled” to or “on” another element, it can be directly connected or coupled to or on the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled,” or “immediately connected” or “immediately coupled” to another element, there are no intervening elements present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). However, the term “contact,” as used herein refers to a direct connection (i.e., touching) unless the context indicates otherwise.
Embodiments described herein will be described referring to plan views and/or cross-sectional views by way of ideal schematic views. Accordingly, the exemplary views may be modified depending on manufacturing technologies and/or tolerances. Therefore, the disclosed embodiments are not limited to those shown in the views, but include modifications in configuration formed on the basis of manufacturing processes. Therefore, regions exemplified in figures may have schematic properties, and shapes of regions shown in figures may exemplify specific shapes of regions of elements to which aspects of the invention are not limited.
Spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element's or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Terms such as “same,” “equal,” “planar,” or “coplanar,” as used herein when referring to orientation, layout, location, shapes, sizes, amounts, or other measures do not necessarily mean an exactly identical orientation, layout, location, shape, size, amount, or other measure, but are intended to encompass nearly identical orientation, layout, location, shapes, sizes, amounts, or other measures within acceptable variations that may occur, for example, due to manufacturing processes. The term “substantially” may be used herein to emphasize this meaning, unless the context or other statements indicate otherwise. For example, items described as “substantially the same,” “substantially equal,” or “substantially planar,” may be exactly the same, equal, or planar, or may be the same, equal, or planar within acceptable variations that may occur, for example, due to manufacturing processes.
Terms such as “about” or “approximately” may reflect sizes, orientations, or layouts that vary only in a small relative manner, and/or in a way that does not significantly alter the operation, functionality, or structure of certain elements. For example, a range from “about 0.1 to about 1” may encompass a range such as a 0%-5% deviation around 0.1 and a 0% to 5% deviation around 1, especially if such deviation maintains the same effect as the listed range.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and/or the present application, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
As used herein, items described as being “electrically connected” are configured such that an electrical signal can be passed from one item to the other. Therefore, a passive electrically conductive component (e.g., a wire, pad, internal electrical line, etc.) physically connected to a passive electrically insulative component (e.g., a prepreg layer of a printed circuit board, an electrically insulative adhesive connecting two devices, an electrically insulative underfill or mold layer, etc.) is not electrically connected to that component. Moreover, items that are “directly electrically connected,” to each other are electrically connected through one or more passive elements, such as, for example, wires, pads, internal electrical lines, resistors, etc. As such, directly electrically connected components do not include components electrically connected through active elements, such as transistors or diodes. Two immediately adjacent conductive components may be described as directly electrically connected and directly physically connected.
Referring to
In one embodiment, the end caps 3 and the main body region 102 have substantially the same outer diameters. These diameters may have a tolerance for example within +/−0.2 millimeter (mm), or in some cases up to +/−1.0 millimeter (mm). Depending on the thickness of the end caps 3, the difference between an outer diameter of the rear end regions 101 and an outer diameter of the main body region 102 can be about 1 mm to about 10 mm for typical product applications. In some embodiments, the difference between the outer diameter of the rear end regions 101 and the outer diameter of the main body region 102 can be about 2 mm to about 7 mm.
Referring to
As can be seen in
Referring to
Taking the standard specification for a T8 lamp as an example, the outer diameter of the rear end region 101 is configured between 20.9 mm to 23 mm. An outer diameter of the rear end region 101 being less than 20.9 mm would be too small to fittingly insert the power supply into the lamp tube 1. The outer diameter of the main body region 102 is in some embodiments configured to be between about 25 mm to about 28 mm. An outer diameter of the main body region 102 being less than 25 mm would be inconvenient to strengthen the ends of the main body region 102 according to known current manufacturing methods, while an outer diameter of the main body region 102 being greater than 28 mm is not compliant to the current industrial standard.
The end cap 3 may be designed to have other kinds of structures or include other elements. Referring to
Referring to
Furthermore, the induction coil 11 may be provided with a power amplifying unit to increase the alternating current power to about 1 to 2 times the original. In some embodiments, it is better that the induction coil 11 and the electrically insulating tube 302 are coaxially aligned to make energy transfer more uniform. In some embodiments, a deviation value between the axes of the induction coil 11 and the electrically insulating tube 302 is not greater than about 0.05 mm. When the bonding process is complete, the end cap 3 and the lamp tube 1 are moved away from the induction coil. Then, the hot melt adhesive 6 absorbs the energy to be expansive and flowing and solidified after cooling. In one embodiment, the magnetic metal member 9 can be heated to a temperature of about 250 to about 300 degrees Celsius; the hot melt adhesive 6 can be heated to a temperature of about 200 to about 250 degrees Celsius. The material of the hot melt adhesive is not limited here, and a material of allowing the hot melt adhesive to immediately solidify when absorb heat energy can also be used.
In one embodiment, the induction coil 11 may be fixed in position to allow the end cap 3 and the lamp tube 1 to be moved into the induction coil 11 such that the hot melt adhesive 6 is heated to expand and flow and then solidify after cooling when the end cap 3 is again moved away from the induction coil 11. Alternatively, the end cap 3 and the lamp tube 1 may be fixed in position to allow the induction coil 11 to be moved to encompass the end cap 3 such that the hot melt adhesive 6 is heated to expand and flow and then solidify after cooling when the induction coil 11 is again moved away from the end cap 3. In one embodiment, the external heating equipment for heating the magnetic metal member 9 is provided with a plurality of devices the same as the induction coils 11, and the external heating equipment moves relative to the end cap 3 and the lamp tube 1 during the heating process. In this way, the external heating equipment moves away from the end cap 3 when the heating process is completed. However, the length of the lamp tube 1 is typically far greater than the length of the end cap 3 and may be up to above 240 cm in some special appliances, and this may cause a bad connection between the end cap 3 and the lamp tube 1 during the process when the lamp tube 1 is accompanied with the end cap 3 to relatively enter or leave the induction coil 11 in the back and forth direction as mentioned above, particularly when a position error exists.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
As mentioned above, the LED light strip 2 may be a bendable circuit sheet. This sheet may be flexible and may have a tape or ribbon-like structure. For example, when not secured to any other device, the LED light strip 2 may curl or flop on its own and then be easily straightened simply by pulling both ends taught. Upon release, it may then form a curled or flopped shape. As described further below, the LED light strip 2 may be formed to include layers of flexible metal and insulative material to achieve the tape or ribbon-like structure.
With reference to
In one embodiment, the inner peripheral surface or the outer circumferential surface of the glass made lamp tube 1 is coated with an adhesive film such that the broken pieces are adhered to the adhesive film when the glass made lamp tube is broken. Therefore, the lamp tube 1 would not be penetrated to form a through hole connecting the inside and outside of the lamp tube 1 and this helps prevent a user from touching any charged object inside the lamp tube 1 to avoid electrical shock. In addition, in some embodiments, the adhesive film is able to diffuse light and allows the light to transmit such that the light uniformity and the light transmittance of the entire LED tube lamp increases. The adhesive film can be used in combination with the adhesive sheet 4, an insulation adhesive sheet, and an optical adhesive sheet to constitute various embodiments. As the LED light strip 2 is configured to be a bendable circuit sheet, no coated adhesive film is thereby required.
In some embodiments, the light strip 2 may be an elongated aluminum plate, FR 4 board, or a bendable circuit sheet. When the lamp tube 1 is made of glass, adopting a rigid aluminum plate or FR4 board would make a broken lamp tube, e.g., broken into two parts, remain a straight shape so that a user may be under a false impression that the LED tube lamp is still usable and fully functional, and it is easy for him to incur electric shock upon handling or installation of the LED tube lamp. Because of added flexibility and bendability of the flexible substrate for the LED light strip 2, the problem faced by the aluminum plate, FR4 board, or conventional 3-layered flexible board having inadequate flexibility and bendability, are thereby addressed. In certain embodiments, a bendable circuit sheet is adopted as the LED light strip 2 because such an LED light strip 2 would not allow a ruptured or broken lamp tube to maintain a straight shape and therefore would instantly inform the user of the disability of the LED tube lamp to avoid possibly incurred electrical shock. The following are further descriptions of a bendable circuit sheet that may be used as the LED light strip 2.
Referring to
In another embodiment, each outer surface of the wiring layer 2a and the dielectric layer 2b may be covered with a circuit protective layer made of an ink with function of resisting soldering and increasing reflectivity. Alternatively, the dielectric layer can be omitted and the wiring layer can be directly bonded to the inner circumferential surface of the lamp tube, and the outer surface of the wiring layer 2a may be coated with the circuit protective layer. Alternatively, the bendable circuit sheet may be a one-layered structure comprising only wiring layer 2a, and then the surface of the wiring layer 2a may be covered with a circuit protective layer made of ink material as mentioned above, wherein an opening is disposed in the circuit protective layer to electrically connect the LED light source 202 with the wiring layer 2a. Whether the wiring layer 2a has a one-layered, or two-layered structure, the circuit protective layer can be adopted. In some embodiments, the circuit protective layer is disposed only on one side/surface of the LED light strip 2, such as the surface having the LED light source 202. In some embodiments, the bendable circuit sheet is a one-layered structure made of just one wiring layer 2a, or a two-layered structure made of one wiring layer 2a and one dielectric layer 2b, and thus is more bendable or flexible to curl when compared with the conventional three-layered flexible substrate (one dielectric layer sandwiched with two wiring layers). As a result, the bendable circuit sheet of the LED light strip 2 can be installed in a lamp tube with a customized shape or non-tubular shape, and fitly mounted to the inner surface of the lamp tube. The bendable circuit sheet closely mounted to the inner surface of the lamp tube is preferable in some cases. In addition, using fewer layers of the bendable circuit sheet improves the heat dissipation and lowers the material cost.
Nevertheless, the bendable circuit sheet is not limited to being one-layered or two-layered; in other embodiments, the bendable circuit sheet may include multiple layers of the wiring layers 2a and multiple layers of the dielectric layers 2b, in which the dielectric layers 2b and the wiring layers 2a are sequentially stacked in a staggered manner, respectively. These stacked layers may be between the outermost wiring layer 2a (with respect to the inner circumferential surface of the lamp tube), which has the LED light source 202 disposed thereon, and the inner circumferential surface of the lamp tube, and may be electrically connected to the power supply 5. Moreover, in some embodiments, the length of the bendable circuit sheet is greater than the length of the lamp tube (not including the length of the two end caps respectively connected to two ends of the lamp tube), or at least greater than a central portion of the lamp tube between two transition regions (e.g., where the circumference of the lamp tube narrows) on either end. In one embodiment, the longitudinally projected length of the bendable circuit sheet as the LED light strip 2 is larger than the length of the lamp tube.
Referring to
In some embodiments, the length of the bendable circuit sheet is larger than the length of the glass lamp tube 1, and the bendable circuit sheet has a first end and a second end opposite to each other along the first direction, and at least one of the first and second ends of the bendable circuit sheet is bent away from the glass lamp tube 1 to form a freely extending end portion 21 along a longitudinal direction of the glass lamp tube 1. The freely extendable end portion 21 is an integral portion of the bendable circuit sheet 2. In some embodiments, if two power supplies 5 are adopted, then the other of the first and second ends might also be bent away from the glass lamp tube 1 to form another freely extending end portion 21 along the longitudinal direction of the glass lamp tube 1. The freely extending end portion 21 is electrically connected to the power supply 5. Specifically, in some embodiments, the power supply 5 has soldering pads “a” which are capable of being soldered with the soldering pads “b” of the freely extending end portion 21 by soldering material “g”.
Referring to
In this way, the greater thickness of the second wiring layer 2c allows the second wiring layer 2c to support the first wiring layer 2a and the dielectric layer 2b, and meanwhile allow the LED light strip 2 to be mounted onto the inner circumferential surface without being liable to shifting or deformation, and thus the yield rate of product can be improved. In addition, the first wiring layer 2a and the second wiring layer 2c are in electrical communication such that the circuit layout of the first wiring later 2a can be extended downward to the second wiring layer 2c to reach the circuit layout of the entire LED light strip 2. Moreover, since the land for the circuit layout becomes two-layered, the area of each single layer and therefore the width of the LED light strip 2 can be reduced such that more LED light strips 2 can be put on a production line to increase productivity.
Furthermore, the first wiring layer 2a and the second wiring layer 2c of the end region of the LED light strip 2 that extends beyond the end portion of the lamp tube 1 without disposition of the light source 202 can be used to accomplish the circuit layout of a power supply module so that the power supply module can be directly disposed on the bendable circuit sheet of the LED light strip 2.
The power supply 5 according to some embodiments can be formed on a single printed circuit board provided with a power supply module as depicted for example in in
In still another embodiment, the connection between the power supply 5 and the LED light strip 2 may be accomplished via soldering (e.g., tin soldering), rivet bonding, or welding. One way to secure the LED light strip 2 is to provide the adhesive sheet 4 at one side thereof and adhere the LED light strip 2 to the inner surface of the lamp tube 1 via the adhesive sheet 4. Two ends of the LED light strip 2 can be either fixed to or detached from the inner surface of the lamp tube 1.
In case where two ends of the LED light strip 2 are fixed to the inner surface of the lamp tube and where the LED light strip 2 is connected to the power supply 5 via wire-bonding, any movement in subsequent transportation is likely to cause the bonded wires to break. Therefore, a useful option for the connection between the light strip 2 and the power supply 5 could be soldering. Specifically, referring to
Referring to
Referring again to
In this embodiment, during the connection of the LED light strip 2 and the power supply 5, the soldering pads “b” and the soldering pads “a” and the LED light sources 202 are on surfaces facing toward the same direction and the soldering pads “b” on the LED light strip 2 are each formed with a through hole such that the soldering pads “b” and the soldering pads “a” communicate with each other via the through holes. When the freely extending end portions 21 are deformed due to contraction or curling up, the soldered connection of the printed circuit board of the power supply 5 and the LED light strip 2 exerts a lateral tension on the power supply 5. Furthermore, the soldered connection of the printed circuit board of the power supply 5 and the LED light strip 2 also exerts a downward tension on the power supply 5 when compared with the situation where the soldering pads “a” of the power supply 5 and the soldering pads “b” of the LED light strip 2 are face to face. This downward tension on the power supply 5 comes from the tin solders inside the through holes and forms a stronger and more secure electrical connection between the LED light strip 2 and the power supply 5. As described above, the freely extending portions 21 may be different from a fixed portion of the LED light strip 2 in that they fixed portion may conform to the shape of the inner surface of the lamp tube 1 and may be fixed thereto, while the freely extending portion 21 may have a shape that does not conform to the shape of the lamp tube 1. For example, there may be a space between an inner surface of the lamp tube 1 and the freely extending portion 21. As shown in
The through hole communicates the soldering pad “a” with the soldering pad “b” so that the solder (e.g., tin solder) on the soldering pads “a” passes through the through holes and finally reach the soldering pads “b”. A smaller through hole would make it difficult for the tin solder to pass. The tin solder accumulates around the through holes upon exiting the through holes and condenses to form a solder ball “g” with a larger diameter than that of the through holes upon condensing. Such a solder ball “g” functions as a rivet to further increase the stability of the electrical connection between the soldering pads “a” on the power supply 5 and the soldering pads “b” on the LED light strip 2.
Referring to
The long circuit sheet 251 may be the bendable circuit sheet of the LED light strip including a wiring layer 2a as shown in
As shown in
In the above-mentioned embodiments, the short circuit board 253 may have a length generally of about 15 mm to about 40 mm and in some preferable embodiments about 19 mm to about 36 mm, while the long circuit sheet 251 may have a length generally of about 800 mm to about 2800 mm and in some embodiments of about 1200 mm to about 2400 mm. A ratio of the length of the short circuit board 253 to the length of the long circuit sheet 251 ranges from, for example, about 1:20 to about 1:200.
When the ends of the LED light strip 2 are not fixed on the inner surface of the lamp tube 1, the connection between the LED light strip 2 and the power supply 5 via soldering bonding would likely not firmly support the power supply 5, and it may be necessary to dispose the power supply 5 inside the end cap. For example, a longer end cap to have enough space for receiving the power supply 5 may be used. However, this will reduce the length of the lamp tube under the prerequisite that the total length of the LED tube lamp is fixed according to the product standard, and may therefore decrease the effective illuminating areas.
Referring to
As shown in
As shown in the exemplary embodiment of
In other embodiments, an additional circuit protection layer (e.g., PI layer) can be disposed over the first surface 2001 of the circuit layer 200a. For example, the circuit layer 200a may be sandwiched between two circuit protection layers, and therefore the first surface 2001 of the circuit layer 200a can be protected by the circuit protection layer. A part of the circuit layer 200a (the part having the soldering pads “b”) is exposed for being connected to the soldering pads “a” of the printed circuit board 420. Other parts of the circuit layer 200a are exposed by the additional circuit protection layer so they can connect to LED light sources 202. Under these circumstances, a part of the bottom of the each LED light source 202 contacts the circuit protection layer on the first surface 2001 of the circuit layer 200a, and another part of the bottom of the LED light source 202 contacts the circuit layer 200a.
According to the exemplary embodiments shown in
Next, examples of the circuit design and using of the power supply module 250 are described as follows.
Referring to
It is worth noting that lamp driving circuit 505 may be omitted and is therefore depicted by a dotted line. In one embodiment, if lamp driving circuit 505 is omitted, AC power supply 508 is directly connected to pins 501 and 502, which then receive the AC supply signal as an external driving signal.
In addition to the above use with a single-end power supply, LED tube lamp 500 may instead be used with a dual-end power supply to one pin at each of the two ends of an LED lamp tube.
It is worth noting that although there are two output terminals 511 and 512 and two output terminals 521 and 522 in embodiments of these Figs., in practice the number of ports or terminals for coupling between rectifying circuit 510, filtering circuit 520, and LED lighting module 530 may be one or more depending on the needs of signal transmission between the circuits or devices.
In addition, the power supply module of the LED lamp described in
The power supply module of the LED lamp in this embodiment of
When pins 501 and 502 (generally referred to as terminals) receive an AC signal, rectifying circuit 610 operates as follows. During the connected AC signal's positive half cycle, the AC signal is input through pin 501, diode 614, and output terminal 511 in sequence, and later output through output terminal 512, diode 611, and pin 502 in sequence. During the connected AC signal's negative half cycle, the AC signal is input through pin 502, diode 613, and output terminal 511 in sequence, and later output through output terminal 512, diode 612, and pin 501 in sequence. Therefore, during the connected AC signal's full cycle, the positive pole of the rectified signal produced by rectifying circuit 610 remains at output terminal 511, and the negative pole of the rectified signal remains at output terminal 512. Accordingly, the rectified signal produced or output by rectifying circuit 610 is a full-wave rectified signal.
When pins 501 and 502 are coupled to a DC power supply to receive a DC signal, rectifying circuit 610 operates as follows. When pin 501 is coupled to the anode of the DC supply and pin 502 to the cathode of the DC supply, the DC signal is input through pin 501, diode 614, and output terminal 511 in sequence, and later output through output terminal 512, diode 611, and pin 502 in sequence. When pin 501 is coupled to the cathode of the DC supply and pin 502 to the anode of the DC supply, the DC signal is input through pin 502, diode 613, and output terminal 511 in sequence, and later output through output terminal 512, diode 612, and pin 501 in sequence. Therefore, no matter what the electrical polarity of the DC signal is between pins 501 and 502, the positive pole of the rectified signal produced by rectifying circuit 610 remains at output terminal 511, and the negative pole of the rectified signal remains at output terminal 512.
Therefore, rectifying circuit 610 in this embodiment can output or produce a proper rectified signal regardless of whether the received input signal is an AC or DC signal.
Next, exemplary operation(s) of rectifying circuit 710 is described as follows.
In one embodiment, during a received AC signal's positive half cycle, the electrical potential at pin 501 is higher than that at pin 502, so diodes 711 and 712 are both in a cutoff state as being reverse-biased, making rectifying circuit 710 not outputting a rectified signal. During a received AC signal's negative half cycle, the electrical potential at pin 501 is lower than that at pin 502, so diodes 711 and 712 are both in a conducting state as being forward-biased, allowing the AC signal to be input through diode 711 and output terminal 511, and later output through output terminal 512, a ground terminal, or another end of the LED tube lamp not directly connected to rectifying circuit 710. Accordingly, the rectified signal produced or output by rectifying circuit 710 is a half-wave rectified signal.
Next, in certain embodiments, rectifying circuit 810 operates as follows.
During a received AC signal's positive half cycle, the AC signal may be input through pin 501 or 502, terminal adapter circuit 541, half-wave node 819, diode 812, and output terminal 511 in sequence, and later output through another end or circuit of the LED tube lamp. During a received AC signal's negative half cycle, the AC signal may be input through another end or circuit of the LED tube lamp, and later output through output terminal 512, diode 811, half-wave node 819, terminal adapter circuit 541, and pin 501 or 502 in sequence.
Terminal adapter circuit 541 may comprise a resistor, a capacitor, an inductor, or any combination thereof, for performing functions of voltage/current regulation or limiting, types of protection, current/voltage regulation, etc. Descriptions of these functions are presented below.
In practice, rectifying unit 815 and terminal adapter circuit 541 may be interchanged in position (as shown in
Terminal adapter circuit 541 in embodiments shown in
Rectifying circuit 510 as shown and explained in
Next, an explanation follows as to choosing embodiments and their combinations of rectifying circuits 510 and 540, with reference to
Rectifying circuit 510 in embodiments shown in
Rectifying circuits 510 and 540 in embodiments shown in
Terminal adapter circuit 641 may further include a capacitor 645 and/or capacitor 646. Capacitor 645 has an end connected to half-wave node 819, and another end connected to pin 503. Capacitor 646 has an end connected to half-wave node 819, and another end connected to pin 504. For example, half-wave node 819 may be a common connective node between capacitors 645 and 646. And capacitor 642 acting as a current regulating capacitor is coupled to the common connective node and pins 501 and 502. In such a structure, series-connected capacitors 642 and 645 exist between one of pins 501 and 502 and pin 503, and/or series-connected capacitors 642 and 646 exist between one of pins 501 and 502 and pin 504. Through equivalent impedances of series-connected capacitors, voltages from the AC signal are divided. Referring to
Similarly, terminal adapter circuit 741 may further comprise a capacitor 745 and/or a capacitor 746, respectively connected to pins 503 and 504. Thus, each of pins 501 and 502 and each of pins 503 and 504 may be connected in series to a capacitor, to achieve the functions of voltage division and other protections.
Similarly, terminal adapter circuit 841 may further comprise a capacitor 845 and/or a capacitor 846, respectively connected to pins 503 and 504. Thus, each of pins 501 and 502 and each of pins 503 and 504 may be connected in series to a capacitor, to achieve the functions of voltage division and other protections.
Each of the embodiments of the terminal adapter circuits as described in rectifying circuits 510 and 810 coupled to pins 501 and 502 and shown and explained above can be used or included in the rectifying circuit 540 shown in
Capacitance values of the capacitors in the embodiments of the terminal adapter circuits shown and described above are in some embodiments in the range, for example, of about 100 pF-100 nF. Also, a capacitor used in embodiments may be equivalently replaced by two or more capacitors connected in series or parallel. For example, each of capacitors 642 and 842 may be replaced by two series-connected capacitors, one having a capacitance value chosen from the range, for example of about 1.0 nF to about 2.5 nF and which may be in some embodiments preferably 1.5 nF, and the other having a capacitance value chosen from the range, for example of about 1.5 nF to about 3.0 nF, and which is in some embodiments about 2.2 nF.
As seen between output terminals 511 and 512 and output terminals 521 and 522, filtering unit 723 compared to filtering unit 623 in
Inductance values of inductor 726 in the embodiment described above are chosen in some embodiments in the range of about 10 nH to about 10 mH. And capacitance values of capacitors 625, 725, and 727 in the embodiments described above are chosen in some embodiments in the range, for example, of about 100 pF to about 1 uF.
Through appropriately choosing a capacitance value of capacitor 825 and an inductance value of inductor 828, a center frequency f on the high-impedance band may be set at a specific value given by
where L denotes inductance of inductor 828 and C denotes capacitance of capacitor 825. The center frequency is in some embodiments in the range of about 20˜30 kHz, and may be in some embodiments about 25 kHz. In one embodiment, an LED lamp with filtering unit 824 is able to be certified under safety standards, for a specific center frequency, as provided by Underwriters Laboratories (UL).
In some embodiments, filtering unit 824 may further comprise a resistor 829, coupled between pin 501 and filtering output terminal 511. In
Capacitance values of capacitor 825 are in some embodiments in the range of about 10 nF-2 uF. Inductance values of inductor 828 are in some embodiments smaller than 2 mH, and may be in some embodiments smaller than 1 mH. Resistance values of resistor 829 are in some embodiments larger than 50 ohms, and may be in some embodiments larger than 500 ohms.
Besides the filtering circuits shown and described in the above embodiments, traditional low-pass or band-pass filters can be used as the filtering unit in the filtering circuit in the present invention.
Similarly, with reference to
It's worth noting that the EMI-reducing capacitor in the embodiment of
It's worth noting that LED module 630 may produce a current detection signal S531 reflecting a magnitude of current through LED module 630 and used for controlling or detecting current on the LED module 630. As described herein, an LED unit may refer to a single string of LEDs arranged in series, and an LED module may refer to a single LED unit, or a plurality of LED units connected to a same two nodes (e.g., arranged in parallel). For example, the LED light strip 2 described above may be an LED module and/or LED unit.
In some embodiments, LED lighting module 530 of the above embodiments includes LED module 630, but doesn't include a driving circuit for the LED module 630 (e.g., does not include an LED driving unit for the LED module or LED unit).
Similarly, LED module 630 in this embodiment may produce a current detection signal S531 reflecting a magnitude of current through LED module 630 and used for controlling or detecting current on the LED module 630.
In actual practice, the number of LEDs 731 included by an LED unit 732 is in some embodiments in the range of 15-25, and is may be preferably in the range of 18-22.
In various embodiments, an exemplary LED tube lamp may have at least some of the electronic components of its power supply module disposed on an LED light strip of the LED tube lamp. For example, the technique of printed electronic circuit (PEC) can be used to print, insert, or embed at least some of the electronic components onto the LED light strip (e.g., as opposed to being on a separate circuit board connected to the LED light strip).
In one embodiment, some or all electronic components of the power supply module are disposed directly on the LED light strip. For example, the production process may include or proceed with the following steps: preparation of the circuit substrate (e.g. preparation of a flexible printed circuit board); ink jet printing of metallic nano-ink; ink jet printing of active and passive components (as of the power supply module); drying/sintering; ink jet printing of interlayer bumps; spraying of insulating ink; ink jet printing of metallic nano-ink; ink jet printing of active and passive components (to sequentially form the included layers); spraying of surface bond pad(s); and spraying of solder resist against LED components. The production process may be different, however, and still result in some or all electronic components of the power supply module being disposed directly on the LED light strip.
In certain embodiments, if all electronic components of the power supply module are disposed on the light strip, electrical connection between terminal pins of the LED tube lamp and the light strip may be achieved by connecting the pins to conductive lines which are welded with ends of the light strip. In this case, another substrate for supporting the power supply module is not required, thereby allowing an improved design or arrangement in the end cap(s) of the LED tube lamp. In some embodiments, (components of) the power supply module are disposed at two ends of the light strip, in order to significantly reduce the impact of heat generated from the power supply module's operations on the LED components. Since no substrate other than the light strip is used to support the power supply module in this case, the total amount of welding or soldering can be significantly reduced, improving the general reliability of the power supply module. If no additional substrate is used, the electronic components of the power supply module disposed on the light strip may still be positioned in the end caps of the LED tube lamp, or they may be positioned partly or wholly inside the lamp tube but not in the end caps.
Another case is that some of all electronic components of the power supply module, such as some resistors and/or smaller size capacitors, are printed onto the light strip, and some bigger size components, such as some inductors and/or electrolytic capacitors, are disposed on another substrate, for example in the end cap(s). The production process of the light strip in this case may be the same as that described above. And in this case disposing some of all electronic components on the light strip is conducive to achieving a reasonable layout of the power supply module in the LED tube lamp, which may allow of an improved design in the end cap(s).
As a variant embodiment of the above, electronic components of the power supply module may be disposed on the light strip by a method of embedding or inserting, e.g. by embedding the components onto a bendable or flexible light strip. In some embodiments, this embedding may be realized by a method using copper-clad laminates (CCL) for forming a resistor or capacitor; a method using ink related to silkscreen printing; or a method of ink jet printing to embed passive components, wherein an ink jet printer is used to directly print inks to constitute passive components and related functionalities to intended positions on the light strip. Then through treatment by ultraviolet (UV) light or drying/sintering, the light strip is formed where passive components are embedded. The electronic components embedded onto the light strip include for example resistors, capacitors, and inductors. In other embodiments, active components also may be embedded. Through embedding some components onto the light strip, a reasonable layout of the power supply module can be achieved to allow of an improved design in the end cap(s), because the surface area on a printed circuit board used for carrying components of the power supply module is reduced or smaller, and as a result the size, weight, and thickness of the resulting printed circuit board for carrying components of the power supply module is also smaller or reduced. Also in this situation since welding points on the printed circuit board for welding resistors and/or capacitors if they were not to be disposed on the light strip are no longer used, the reliability of the power supply module is improved, in view of the fact that these welding points are very liable to (cause or incur) faults, malfunctions, or failures. Further, the length of conductive lines needed for connecting components on the printed circuit board is therefore also reduced, which allows of a more compact layout of components on the printed circuit board and thus improving the functionalities of these components.
In some embodiments, luminous efficacy of the LED or LED component is 80 Im/W or above, and in some embodiments, it may be preferably 120 Im/W or above. Certain more optimal embodiments may include a luminous efficacy of the LED or LED component of 160 Im/W or above. White light emitted by an LED component may be produced by mixing fluorescent powder with the monochromatic light emitted by a monochromatic LED chip. The white light in its spectrum has major wavelength ranges of 430-460 nm and 550-560 nm, or major wavelength ranges of 430-460 nm, 540-560 nm, and 620-640 nm.
It's worth noting that in some implementations, rectifying circuit 540 is an optional element and therefore can be omitted, so it is depicted in a dotted line in
With reference back to
The first short circuit substrate and the second short circuit substrate may have roughly the same length, or different lengths. In some embodiments, a first short circuit substrate (e.g. the right circuit substrate of short circuit board 253 in
Some or all capacitors of the driving circuit in the power supply module may be arranged on the first short circuit substrate of short circuit board 253, while other components such as the rectifying circuit, filtering circuit, inductor(s) of the driving circuit, controller(s), switch(es), diodes, etc. are arranged on the second short circuit substrate of short circuit board 253. Since inductors, controllers, switches, etc. are electronic components with higher temperature, arranging some or all capacitors on a circuit substrate separate or away from the circuit substrate(s) of high-temperature components helps prevent the working life of capacitors (especially electrolytic capacitors) from being negatively affected by the high-temperature components, thus improving the reliability of the capacitors. Further, the physical separation between the capacitors and both the rectifying circuit and filtering circuit also contributes to reducing the problem of EMI.
In some embodiments, the driving circuit has power conversion efficiency of 80% or above, which may in some embodiments be 90% or above, and may in some embodiments be 92% or above. Therefore, without the driving circuit, luminous efficacy of the LED lamp according to some embodiments may preferably be 120 Im/W or above, and may even more preferably be 160 Im/W or above. On the other hand, with the driving circuit in combination with the LED component(s), luminous efficacy of the LED lamp may preferably be, in some embodiments, 120 Im/W*90%=108 Im/W or above, and may even more preferably be, in some embodiments 160 Im/W*92%=147.2 Im/W or above.
In view of the fact that the diffusion film or layer in an LED tube lamp generally has light transmittance of 85% or above, luminous efficacy of the LED tube lamp in some embodiments is 108 Im/W*85%=91.8 Im/W or above, and may be, in some more effective embodiments, 147.2 Im/W*85%=125.12 Im/W.
Compared to
Anti-flickering circuit 550 is coupled to filtering output terminals 521 and 522, to receive a filtered signal, and under specific circumstances to consume partial energy of the filtered signal so as to reduce (the incidence of) ripples of the filtered signal disrupting or interrupting the light emission of the LED lighting module 530. In general, filtering circuit 520 has such filtering components as resistor(s) and/or inductor(s), and/or parasitic capacitors and inductors, which may form resonant circuits. Upon breakoff or stop of an AC power signal, as when the power supply of the LED lamp is turned off by a user, the amplitude(s) of resonant signals in the resonant circuits will decrease with time. But LEDs in the LED module of the LED lamp are unidirectional conduction devices and require a minimum conduction voltage for the LED module. When a resonant signal's trough value is lower than the minimum conduction voltage of the LED module, but its peak value is still higher than the minimum conduction voltage, the flickering phenomenon will occur in light emission of the LED module. In this case anti-flickering circuit 550 works by allowing a current matching a defined flickering current value of the LED component to flow through, consuming partial energy of the filtered signal which should be higher than the energy difference of the resonant signal between its peak and trough values, so as to reduce the flickering phenomenon. In certain embodiments, the anti-flickering circuit 550 may operate when the filtered signal's voltage approaches (and is still higher than) the minimum conduction voltage.
It's worth noting that anti-flickering circuit 550 may be more suitable for the situation in which LED lighting module 530 doesn't include driving circuit 1530, for example, when LED module 630 of LED lighting module 530 is (directly) driven to emit light by a filtered signal from a filtering circuit. In this case, the light emission of LED module 630 will directly reflect variation in the filtered signal due to its ripples. In this situation, the introduction of anti-flickering circuit 550 will prevent the flickering phenomenon from occurring in the LED lamp upon the breakoff of power supply to the LED lamp.
In an initial stage upon the activation of the driving system of lamp driving circuit 505, lamp driving circuit 505's ability to output relevant signal(s) initially takes time to rise to a standard state, and at first has not risen to that state. However, in the initial stage the power supply module of the LED lamp instantly or rapidly receives or conducts the AC driving signal provided by lamp driving circuit 505, which initial conduction is likely to fail the starting of the LED lamp by lamp driving circuit 505 as lamp driving circuit 505 is initially loaded by the LED lamp in this stage. For example, internal components of lamp driving circuit 505 may retrieve power from a transformed output in lamp driving circuit 505, in order to maintain their operation upon the activation. In this case, the activation of lamp driving circuit 505 may end up failing as its output voltage could not normally rise to a required level in this initial stage; or the quality factor (Q) of a resonant circuit in lamp driving circuit 505 may vary as a result of the initial loading from the LED lamp, so as to cause the failure of the activation.
In one embodiment, in the initial stage upon activation, ballast-compatible circuit 1510 will be in an open-circuit state, preventing the energy of the AC driving signal from reaching the LED module. After a defined delay, which may be a specific delay period, after the AC driving signal as an external driving signal is first input to the LED tube lamp, ballast-compatible circuit 1510 switches, or changes, from a cutoff state during the delay to a conducting state, allowing the energy of the AC driving signal to start to reach the LED module. By means of the delayed conduction of ballast-compatible circuit 1510, operation of the LED lamp simulates the lamp-starting characteristics of a fluorescent lamp. For example, during lamp starting of a fluorescent lamp, internal gases of the fluorescent lamp will normally discharge for light emission after a delay upon activation of a driving power supply. Therefore, ballast-compatible circuit 1510 further improves the compatibility of the LED lamp with lamp driving circuits 505 such as an electronic ballast. In this manner, ballast-compatible circuit 1510, which may be described as a delay circuit, or an external signal control circuit, is configured to control and controls the timing for receiving an AC driving signal at a power supply module of an LED lamp (e.g., at a rectifier circuit and/or filter circuit of a power supply module).
In this embodiment, rectifying circuit 540 may be omitted and is therefore depicted by a dotted line in
It's noted that in the embodiments using the ballast-compatible circuit described with reference to
Apart from coupling ballast-compatible circuit 1510 between terminal pin(s) and rectifying circuit in the above embodiments, ballast-compatible circuit 1510 may alternatively be included within a rectifying circuit with a different structure.
It's worth noting that in one embodiment, under the condition that terminal adapter circuit 541 doesn't include components such as capacitors or inductors, interchanging rectifying unit 815 and terminal adapter circuit 541 in position, meaning rectifying unit 815 is connected to filtering output terminals 511 and 512 and terminal adapter circuit 541 is connected to pins 501 and 502, doesn't affect or alter the function of ballast-compatible circuit 1510.
Further, as explained in
In some embodiments, as described above terminal adapter circuit 541 doesn't include components such as capacitors or inductors. Or when rectifying circuit 610 in
Ballast-compatible circuit 1610 includes a diode 1612, first through fifth resistors 1613, 1615, 1618, 1620, and 1622, a second electronic switch (such as a bidirectional triode thyristor (TRIAC) 1614), a first electronic switch (such as a DIAC or symmetrical trigger diode 1617), a capacitor 1619, and ballast-compatible circuit input and output terminals 1611 and 1621. It's noted that the resistance of first resistor 1613 should be quite large so that when bidirectional triode thyristor 1614 is cutoff in an open-circuit state, an equivalent open-circuit is obtained at ballast-compatible circuit input and output terminals 1611 and 1621. Typical values of the resistance of first resistor 1613 may be in the range of about 330 kΩ to about 820 kΩ, and the resistance could take a value in a broad range of about 47 kΩ to about 1.5MΩ. And in one embodiment, the actual value is 330KΩ.
Bidirectional triode thyristor 1614 is coupled between ballast-compatible circuit input and output terminals 1611 and 1621, and first resistor 1613 is also coupled between ballast-compatible circuit input and output terminals 1611 and 1621 and in parallel to bidirectional triode thyristor 1614. Diode 1612, fourth and fifth resistors 1620 and 1622, and capacitor 1619 are series-connected in sequence between ballast-compatible circuit input and output terminals 1611 and 1621, and are connected in parallel with bidirectional triode thyristor 1614. Diode 1612 has an anode connected to bidirectional triode thyristor 1614, and has a cathode connected to an end of fourth resistor 1620. Bidirectional triode thyristor 1614 has a control terminal connected to a terminal of symmetrical trigger diode 1617, which has another terminal connected to an end of third resistor 1618, which has another end connected to a node connecting capacitor 1619 and fifth resistor 1622. Second resistor 1615 is connected between the control terminal of bidirectional triode thyristor 1614 and a node connecting first resistor 1613 and capacitor 1619. It's also noted that resistors 1615, 1618, and 1620 may be omitted. The different resistors and switches are referred to using labels first through fifth (or first and second), but may be referred to using other labels. For example, if only the fourth resistor 1620 and fifth resistor 1622 are being discussed, they may be referred to as a first and second resistor respectfully. Similarly, the first switch 1617 may be referred to as a second switch, and the second switch 1614 may be referred to as a first switch. Also, the opposite ends or terminals of certain devices, such as the different resistors the capacitor 1619, switch 1617, or diode 1612, may be referred to as first and second ends, or first and second terminals, and may be described as opposite each other.
When an AC driving signal (such as a high-frequency high-voltage AC signal output by an electronic ballast) is initially input to ballast-compatible circuit input terminal 1611, bidirectional triode thyristor 1614 will be in an open-circuit state, preventing the AC driving signal from passing through, and the LED lamp is therefore also in an open-circuit state. In this state, the AC driving signal is charging capacitor 1619 through diode 1612 and resistors 1620 and 1622, gradually increasing the voltage of capacitor 1619. Upon continually charging for a period of time, the voltage of capacitor 1619 increases to be above the trigger voltage value of symmetrical trigger diode 1617 so that symmetrical trigger diode 1617 is turned on in a conducting state. Then the conducting symmetrical trigger diode 1617 will in turn trigger bidirectional triode thyristor 1614 on in a conducting state. In this situation, the conducting bidirectional triode thyristor 1614 electrically connects ballast-compatible circuit input and output terminals 1611 and 1621, allowing the AC driving signal to flow through ballast-compatible circuit input and output terminals 1611 and 1621, and starting the operation of the power supply module of the LED lamp. In this case the energy stored by capacitor 1619 will maintain the conducting state of bidirectional triode thyristor 1614, to prevent the AC variation of the AC driving signal from causing bidirectional triode thyristor 1614 and therefore ballast-compatible circuit 1610 to be cutoff again, or to prevent the situation of bidirectional triode thyristor 1614 alternating or switching between its conducting and cutoff states. Therefore, when the external driving signal is initially input at the first pin and second pin, the second electronic switch will be in an open-circuit state, and the first capacitor will be charged so as to cause the first electronic switch to enter a conducting state to an extent that in turn triggers the second electronic switch into a conducting state, making the ballast-compatible circuit enter the conduction state.
When ballast-compatible circuit 1610 of this embodiment is applied to the circuit system in
In general, in hundreds of milliseconds upon activation of a lamp driving circuit 505 such as an electronic ballast, the output voltage of the ballast has risen above a certain voltage value as the output voltage hasn't been adversely affected by the sudden initial loading from the LED lamp. In particular, upon activation of each of some instant-start electronic ballasts, the output AC voltage of the ballast will be roughly maintained at a constant value below about 300 volts for a small period such as 0.01 seconds, and then rises. During this period if any load(s) is introduced in the lamp and then coupled to the output end of the ballast, this load addition will prevent the output AC voltage of the instant-start electronic ballast from smoothly rising to a sufficient level. This problem is especially likely to happen if the input voltage to the ballast is from the AC powerline of a voltage substantially equal to or below 120 volts. Besides, a detection mechanism to detect whether lighting of a fluorescent lamp is achieved may be disposed in lamp driving circuits 505 such as an electronic ballast. In this detection mechanism, if a fluorescent lamp fails to be lit up for a defined period of time, an abnormal state of the fluorescent lamp is detected, causing the fluorescent lamp to enter a protection state. In certain embodiments, the delay provided by ballast-compatible circuit 1610 until conduction of ballast-compatible circuit 1610 and then the LED lamp may be larger than 0.01 seconds, and may be even in the range of about 0.1˜3 seconds. For example, upon the external driving signal being initially input at the first pin and second pin, the ballast-compatible circuit will not enter a conduction state until a period of delay passes, wherein the period of delay is between about 10 milliseconds (ms) and 1 second. And preferably in some embodiments the period is between about 10 milliseconds (ms) and 300 ms.
It's worth noting that an additional or another capacitor 1623 may be coupled in parallel to resistor 1622. Capacitor 1623 has an end coupled to a coupling node between an input/output terminal of the ballast-compatible circuit and the second electronic switch; has another end coupled to a coupling node between the first electronic switch and the first capacitor 1619; and is configured to reflect or bear instantaneous change in the voltage between an input terminal and an output terminal of the ballast-compatible circuit. For example, capacitor 1623 operates to reflect or support instantaneous change in the voltage between ballast-compatible circuit input and output terminals 1611 and 1621, and will not affect the function of delayed conduction performed by ballast-compatible circuit 1610.
As disclosed herein, the LED tube lamp may comprise a light strip attached to an inner surface of the lamp tube and which comprises a bendable circuit sheet. And the LED lighting module may comprise an LED module, which comprises an LED component (e.g., an LED or group of LEDs) and is disposed on the bendable circuit sheet. The ballast-compatible circuit 1610 may be between a ballast of an external power supply and the LED lighting module and/or LED module of the LED tube lamp. The ballast-compatible circuit 1610 may be configured to receive a signal derived from the external driving signal. For example, the signal may be a filtered signal passed through a rectifying circuit and a filtering circuit.
On another aspect, since the delay provided by ballast-compatible circuit 1610 is largely due to the RC charging operation on at least resistors 1620 and 1622 and capacitor 1619 as in
In response to this unfavorable variation of the delay or lack of stable delay, a current regulator device 1616, such as a current regulator diode, constant current diode, or current limiting diode, (shown in
In various embodiments, a regular diode having a voltage rating between about 600 to about 1000 [V] may be used as each diode in the rectifying circuit 510; bidirectional triode thyristor 1614 (or other alternative unidirectional device such as an SCR) may generally have a voltage rating between about 600 to about 1000 [V] and a current rating within about 1[A]; symmetrical trigger diode 1617 may generally have a voltage rating about 32 [V]; the current regulator diode 1616 may generally have a current rating in 0.03 m˜0.5 m [A]; and the total resistance value of resistors 1620 and 1622 may generally be in the range of about 100K to about 1M [ohm]. For an added current regulator diode 1616 having a voltage rating within about 100 [V], an optional Zener diode having a voltage rating between about 35 to about 100 [V] may be coupled in parallel to the current regulator diode 1616 and capacitor 1619, in order to protect the current regulator diode 1616, or to make the voltage across, the current regulator diode 1616 stable.
In some embodiments, when the electrical ballast being used to supply the LED tube lamp is an electronic ballast, upon the voltage across the capacitor 1619 increasing sufficiently to trigger bidirectional triode thyristor 1614 on in a conducting state due to the stable RC charging current through the current regulator diode 1616, bidirectional triode thyristor 1614 will remain turned on before the supply by the electronic ballast is cutoff. On the other hand, when the electrical ballast being used to supply the LED tube lamp is a magnetic ballast (as having a voltage frequency of 50 Hz or 60 Hz), since the current of the magnetic ballast will pass through 0 [A] in each signal period, this zero current will cause bidirectional triode thyristor 1614 to be turned off and then the open-circuit voltage across bidirectional triode thyristor 1614 will cause the RC charging through the current regulator diode 1616 with the stable RC charging current, which results in the stable length of the delay before the voltage across the capacitor 1619 increases sufficiently to trigger bidirectional triode thyristor 1614 on again.
Also when the electrical ballast being used to supply the LED tube lamp is a magnetic ballast, the line regulation in the voltage between ballast-compatible circuit input and output terminals 1611 and 1621 is improved by the less variation of current, used to perform the RC charging, due to the presence of the current regulator diode 1616. In various embodiments, parameters or values of resistors 1620 and 1622, the current regulator diode 1616, and capacitor 1619 may be adjusted so as to limit the current through, and thereby ensure safe operation of, the magnetic ballast.
Because the two ballast-compatible circuits 1610 respectively of the two LED tube lamps 500 can actually have different delays until conduction of the LED tube lamps 500, due to various factors such as errors occurring in production processes of some components, in some embodiments, the actual timing of conduction of each of the ballast-compatible circuits 1610 is different. Upon activation of a lamp driving circuit 505, the voltage of the AC driving signal provided by lamp driving circuit 505 will be shared by the two LED tube lamps 500 roughly equally. Subsequently when only one of the two LED tube lamps 500 first enters a conducting state, the voltage of the AC driving signal then will be borne mostly or entirely by the other LED tube lamp 500. This situation will cause the voltage across the ballast-compatible circuits 1610 in the other LED tube lamp 500 that's not conducting to suddenly increase or be doubled, meaning the voltage between ballast-compatible circuit input and output terminals 1611 and 1621 might even be suddenly doubled. In view of this, if capacitor 1623 is included, the voltage division effect between capacitors 1619 and 1623 will instantaneously increase the voltage of capacitor 1619, making symmetrical trigger diode 1617 triggering bidirectional triode thyristor 1614 into a conducting state, and causing the two ballast-compatible circuits 1610 respectively of the two LED tube lamps 500 to become conducting almost at the same time. Therefore, by introducing capacitor 1623, the situation where one of the two ballast-compatible circuits 1610 respectively of the two series-connected LED tube lamps 500 that is first conducting has its bidirectional triode thyristor 1614 then suddenly cutoff as having insufficient current passing through due to the discrepancy between the delays provided by the two ballast-compatible circuits 1610 until their respective conductions, can be avoided. Therefore, using each ballast-compatible circuit 1610 with capacitor 1623 further improves the compatibility of the series-connected LED tube lamps with each of lamp driving circuits 505 such as an electronic ballast.
It's noted that the value of total resistance of both resistors 1620 and 1622 may typically be in the range of about 330 kΩ to about 820 kΩ, and the total resistance could take a value in a broad range of about 47 kΩ to about 1.5MΩ. And in one embodiment, the actual total value is 330KΩ.
An exemplary range of the capacitance of capacitor 1623 may be about 10 pF to about 1 nF. In some embodiments, the range of the capacitance of capacitor 1623 may be about 10 pF to about 100 pF. For example, the capacitance of capacitor 1623 may be about 47 pF. Typical values of the capacitance of capacitor 1619 may be in the range of about 100 nF to about 470 nF, and the capacitance could take a value in a broad range of about 47 nF to about 1.5 pF. And in one embodiment, the actual value is 470 nF. As such, in some embodiments, a first capacitor 1619 and second capacitor 1623 are arranged in series between ballast-compatible circuit input and output terminals 1611 and 1621. In this case the capacitance of the first capacitor 1619 and the second capacitor 1623 may respectively be about 220 nF and about 50 pF (or 47 pF). And the capacitance ratio between the first capacitor 1619 and the second capacitor 1623 may be in some embodiments between about 47 and about 150000.
According to some embodiments, diode 1612 is used or configured to rectify the signal for charging capacitor 1619. Therefore, with reference to
Ballast-compatible circuit 1710 includes a second electronic switch (such as a bidirectional triode thyristor (TRIAC) 1712), a first electronic switch (such as a DIAC or symmetrical trigger diode 1713), first through third resistors 1714, 1716, and 1717, and a capacitor 1715. Bidirectional triode thyristor 1712 has a first terminal connected to ballast-compatible circuit input terminal 1711; a control terminal connected to a terminal of symmetrical trigger diode 1713 and an end of first resistor 1714; and a second terminal connected to another end of first resistor 1714. Capacitor 1715 has an end connected to another terminal of symmetrical trigger diode 1713, and has another end connected to the second terminal of bidirectional triode thyristor 1712. Third resistor 1717 is in parallel connection with capacitor 1715, and is therefore also connected to said another terminal of symmetrical trigger diode 1713 and the second terminal of bidirectional triode thyristor 1712. And second resistor 1716 has an end connected to the node connecting capacitor 1715 and symmetrical trigger diode 1713, and has another end connected to ballast-compatible circuit output terminal 1721. As mentioned above, the different ends and terminals of each component may be referred to as first and second ends or terminals, and the various labels, such as first, second, and third, are merely labels, and maybe interchanged based on the components being described.
When an AC driving signal (such as a high-frequency high-voltage AC signal output by an electronic ballast) is initially input to ballast-compatible circuit input terminal 1711, bidirectional triode thyristor 1712 will be in an open-circuit state, preventing the AC driving signal from passing through, and the LED lamp is therefore also in an open-circuit state. The input of the AC driving signal causes a potential difference between ballast-compatible circuit input terminal 1711 and ballast-compatible circuit output terminal 1721. When the AC driving signal increases with time to eventually reach a sufficient amplitude (which may be a pre-defined level) after a period of time, the signal level at ballast-compatible circuit output terminal 1721 has a reflected voltage at the control terminal of bidirectional triode thyristor 1712 after passing through second resistor 1716, parallel-connected capacitor 1715 and third resistor 1717, and first resistor 1714, wherein the reflected voltage then triggers bidirectional triode thyristor 1712 into a conducting state. This conducting state makes ballast-compatible circuit 1710 entering a conducting state, which causes the LED lamp to operate normally. Upon bidirectional triode thyristor 1712 conducting, a current flows through resistor 1716 and then charges capacitor 1715 to store a specific voltage on capacitor 1715. In this case, the energy stored by capacitor 1715 will maintain the conducting state of bidirectional triode thyristor 1712, to prevent the AC variation of the AC driving signal from causing bidirectional triode thyristor 1712 and therefore ballast-compatible circuit 1710 to be cutoff again, or to prevent the situation of bidirectional triode thyristor 1712 alternating or switching between its conducting and cutoff states.
In certain embodiments, bidirectional triode thyristor 1712 may have a triggering current magnitude of about 5 mA, symmetrical trigger diode 1713 may have a turn-on threshold voltage in the range of about 30 volts ±6 volts, and the resistance of resistors 1716 and 1717 may be respectively about 100 kΩ and about 13 or 37.5 kΩ.
Therefore, an exemplary ballast-compatible circuit such as described herein may be coupled between any pin and any rectifying circuit described above, wherein the ballast-compatible circuit will be in a cutoff state in a defined delay upon an external driving signal being input to the LED tube lamp, and will enter a conducting state after the delay. As such, the ballast-compatible circuit will be in a cutoff state when the level of the input external driving signal is below a defined value corresponding to a conduction delay of the ballast-compatible circuit; and ballast-compatible circuit will enter a conducting state upon the level of the input external driving signal reaching the defined value. Accordingly, the compatibility of the LED tube lamp described herein with lamp driving circuits 505 such as an electronic ballast is further improved by using such a ballast-compatible circuit.
In various embodiments, when the external driving signal is initially input at the first pin and second pin, the second electronic switch 1712 will be in an open-circuit state, and then the external driving signal passes through a diode or the first rectifying circuit to produce a DC signal (or a pulsating DC signal), with the open-circuit state continuing until the DC signal reaches an amplitude causing the first electronic switch 1713 to enter a conducting state to an extent that in turn triggers the second electronic switch into a conducting state, making the ballast-compatible circuit enter the conduction state. Specifically, the diode may be in the first rectifying circuit, may be in the ballast-compatible circuit, or may be separate from these two circuits, and the diode even may not belong to the LED tube lamp. It's also noted that the rectified signal may comprise the DC signal.
And as shown in
Further, in different embodiments, the first electronic switch in
Two ballast-compatible circuits 1540 are initially in conducting states, and then enter into cutoff states after a delay. Therefore, in an initial stage upon activation of the lamp driving circuit 505, the AC driving signal is transmitted through an external connection terminal such as the pin 503, the corresponding ballast-compatible circuit 1540, the rectifying output terminal 511 and the rectifying circuit 510, or through an external connection terminal such as the pin 504, the corresponding ballast-compatible circuit 1540, the rectifying output terminal 511 and the rectifying circuit 510 of the LED lamp, and the filtering circuit 520 and LED lighting module 530 of the LED lamp are bypassed. Thereby, the LED lamp presents almost no load and does not affect the quality factor of the lamp driving circuit 505 at the beginning, and so the lamp driving circuit can be activated successfully. The two ballast-compatible circuits 1540 are cut off after a time period while the lamp driving circuit 505 has been activated successfully. After that, the lamp driving circuit 505 has a sufficient drive capability for driving the LED lamp to emit light.
As can be seen from
In some embodiments, the arrangement of the two ballast-compatible circuits 1540 may be changed to be coupled between the pin 501 and the rectifying terminal 511 and between the pin 501 and the rectifying terminal 511, or between the pin 501 and the rectifying terminal 512 and between the pin 501 and the rectifying terminal 512, for having the lamp driving circuit 505 drive the LED lamp to emit light after being activated.
In an initial stage upon activation of the lamp driving circuit 505, two ballast-compatible circuits 1540 are initially in conducting states. At this moment, the AC driving signal is transmitted through the pin 501, the corresponding ballast-compatible circuit 1540, the half-wave node 819 and the rectifying unit 815 or the pin 502, the corresponding ballast-compatible circuit 1540, the half-wave node 819 and the rectifying unit 815 of the LED lamp, and the terminal adapter circuit 541, the filtering circuit 520 and LED lighting module 530 of the LED lamp are bypassed. Thereby, the LED lamp presents almost no load and does not affect the quality factor of the lamp driving circuit 505 at the beginning, and so the lamp driving circuit can be activated successfully. The two ballast-compatible circuits 1540 are cut off after a time period while the lamp driving circuit 505 has been activated successfully. After that, the lamp driving circuit 505 has a sufficient drive capability for driving the LED lamp to emit light.
In some embodiments, the rectifying circuit 810 shown in
A ballast-compatible circuit 1640 comprises resistors 1643, 1645, 1648 and 1650, capacitors 1644 and 1649, diodes 1647 and 1652, bipolar junction transistors (BJT) 1646 and 1651, a ballast-compatible circuit terminal 1641 and a ballast-compatible circuit terminal 1642. One end of the resistor 1645 is coupled to the ballast-compatible circuit terminal 1641, and the other end is coupled to an emitter of the BJT 1646. A collector of the BJT 1646 is coupled to a positive end of the diode 1647, and a negative end thereof is coupled to the ballast-compatible circuit terminal 1642. The resistor 1643 and the capacitor 1644 are connected in series with each other and coupled between the emitter and the collector of the BJT 1646, and the connection node of the resistor 1643 and the capacitor 1644 is coupled to a base of the BJT 1646. One end of the resistor 1650 is coupled to the ballast-compatible circuit terminal 1642, and the other end is coupled to an emitter of the BJT 1651. A collector of the BJT 1651 is coupled to a positive end of the diode 1652, and a negative end thereof is coupled to the ballast-compatible circuit terminal 1641. The resistor 1648 and the capacitor 1649 are connected in series with each other and coupled between the emitter and the collector of the BJT 1651, and the connection node of the resistor 1648 and the capacitor 1649 is coupled to a base of the BJT 1651.
In an initial stage upon the lamp driving circuit 505, e.g. electronic ballast, being activated, voltages across the capacitors 1644 and 1649 are about zero. At this time, the BJTs 1646 and 1651 are in conducting states and the bases thereof allow currents to flow through. Therefore, in an initial stage upon activation of the lamp driving circuit 505, the ballast-compatible circuits 1640 are in conducting states. The AC driving signal charges the capacitor 1644 through the resistor 1643 and the diode 1647, and charges the capacitor 1649 through the resistor 1648 and the diode 1652. After a time period, the voltages across the capacitors 1644 and 1649 reach certain voltages so as to reduce the voltages of the resistors 1643 and 1648, thereby cutting off the BJTs 1646 and 1651, i.e., the states of the BJTs 1646 and 1651 are cutoff states. At this time, the state of the ballast-compatible circuit 1640 is changed to the cutoff state. Therefore, the internal capacitor(s) and inductor(s) do not affect a Q-factor of the lamp driving circuit 505 at the beginning for ensuring that the lamp driving circuit activates. Hence, the ballast-compatible circuit 1640 improves the compatibility of LED lamp with the electronic ballast.
In summary, the two ballast-compatible circuits are respectively coupled between a connection node of the rectifying circuit and the filtering circuit (i.e., the rectifying output terminal 511 or 512) and the pin 501 and between the connection node and the pin 502, or coupled between the connection node and the pin 503 and the connection node and the pin 504. The two ballast-compatible circuits conduct for an objective delay upon the external driving signal being input into the LED tube lamp, and then are cut off for enhancing the compatibility of the LED lamp with the electronic ballast.
In an initial stage upon the lamp driving circuit having filament detection function being activated, the lamp driving circuit will determine whether the filaments of the lamp operate normally or are in an abnormal condition of short-circuit or open-circuit. When determining the abnormal condition of the filaments, the lamp driving circuit stops operating and enters a protection state. In order to avoid the lamp driving circuit erroneously determining the LED tube lamp to be abnormal due to the LED tube lamp having no filament, the two filament-simulating circuits 1560 simulate the operation of actual filaments of a fluorescent tube to have the lamp driving circuit enter into a normal state to start the LED lamp normally.
In addition, a capacitance value of the capacitor 1663 is low and so a capacitive reactance (equivalent impedance) of the capacitor 1663 is far lower than an impedance of the resistor 1665 due to the lamp driving circuit outputting a high-frequency alternative current (AC) signal to drive LED lamp. Therefore, the filament-simulating circuit 1660 consumes fairly low power when the LED lamp operates normally, and so it almost does not affect the luminous efficiency of the LED lamp.
In some embodiments, capacitance values of the capacitors 1763 and 1764 are low and so a capacitive reactance of the serially connected capacitors 1763 and 1764 is far lower than an impedance of the serially connected resistors 1765 and 1766 due to the lamp driving circuit outputting the high-frequency AC signal to drive LED lamp. Therefore, the filament-simulating circuit 1760 consumes fairly low power when the LED lamp operates normally, and so it almost does not affect the luminous efficiency of the LED lamp. Moreover, whether any one of the capacitor 1763 and the resistor 1765 is short circuited or open circuited, or any one of the capacitor 1764 and the resistor 1766 is short circuited or open circuited, the detection signal still passes through the filament-simulating circuit 1760 between the filament simulating terminals 1661 and 1662. Therefore, the filament-simulating circuit 1760 still operates normally when any one of the capacitor 1763 and the resistor 1765 is short circuited or is an open circuit or any one of the capacitor 1764 and the resistor 1766 is short circuited or is an open circuit, and so it has quite high fault tolerance.
When the lamp driving circuit outputs the detection signal for detecting the state of the filament, the detection signal passes the NTC resistors 1863 and 1864 so that the lamp driving circuit determines that the filaments of the LED lamp are normal. The impedance of the serially connected NTC resistors 1863 and 1864 is gradually decreased with the gradually increasing of temperature due to the detection signal or a preheat process. When the lamp driving circuit enters into the normal state to start the LED lamp normally, the impedance of the serially connected NTC resistors 1863 and 1864 is decreased to a relative low value and so the power consumption of the filament simulation circuit 1860 is lower.
An exemplary impedance of the filament-simulating circuit 1860 can be 10 ohms or more at room temperature (25 degrees Celsius) and may be decreased to a range of about 2-10 ohms when the lamp driving circuit enters into the normal state. In some embodiments, the impedance of the filament-simulating circuit 1860 may be decreased to a range of about 3-6 ohms when the lamp driving circuit enters into the normal state.
According to examples of the power supply module, the external driving signal may be low frequency AC signal (e.g., commercial power), high frequency AC signal (e.g., that provided by a ballast), or a DC signal (e.g., that provided by a battery), input into the LED tube lamp through a drive architecture of single-end power supply or dual-end power supply. For the drive architecture of dual-end power supply, the external driving signal may be input by using only one end thereof as single-end power supply.
The LED tube lamp may omit the rectifying circuit when the external driving signal is a DC signal.
According examples of the rectifying circuit in the power supply module, in certain embodiments, there may be a single rectifying circuit, or dual rectifying circuits. First and second rectifying circuits of the dual rectifying circuit may be respectively coupled to the two end caps disposed on two ends of the LED tube lamp. The single rectifying circuit is applicable to the drive architecture of signal-end power supply, and the dual rectifying circuit is applicable to the drive architecture of dual-end power supply. Furthermore, the LED tube lamp having at least one rectifying circuit is applicable to the drive architecture of low frequency AC signal, high frequency AC signal or DC signal.
The single rectifying circuit may be a half-wave rectifier circuit or full-wave bridge rectifying circuit. The dual rectifying circuit may comprise two half-wave rectifier circuits, two full-wave bridge rectifying circuits or one half-wave rectifier circuit and one full-wave bridge rectifying circuit.
According to examples of the pin in the power supply module, in certain embodiments, there may be two pins in a single end (the other end has no pin), two pins in corresponding ends of two ends, or four pins in corresponding ends of two ends. The designs of two pins in single end two pins in corresponding ends of two ends are applicable to signal rectifying circuit design of the of the rectifying circuit. The design of four pins in corresponding ends of two ends is applicable to dual rectifying circuit design of the of the rectifying circuit, and the external driving signal can be received by two pins in only one end or in two ends.
According to the design of the LED lighting module according to some embodiments, the LED lighting module may comprise the LED module and a driving circuit or only the LED module.
If there is only the LED module in the LED lighting module and the external driving signal is a high frequency AC signal, a capacitive circuit may be in at least one rectifying circuit and the capacitive circuit may be connected in series with a half-wave rectifier circuit or a full-wave bridge rectifying circuit of the rectifying circuit and may serve as a current modulation circuit to modulate the current of the LED module since the capacitor acts as a resistor for a high frequency signal. Thereby, even when different ballasts provide high frequency signals with different voltage levels, the current of the LED module can be modulated into a defined current range for preventing overcurrent. In addition, an energy-releasing circuit may be connected in parallel with the LED module. When the external driving signal is no longer supplied, the energy-releasing circuit releases the energy stored in the filtering circuit to lower a resonance effect of the filtering circuit and other circuits for restraining the flicker of the LED module.
In some embodiments, if there are the LED module and the driving circuit in the LED lighting module, the driving circuit may be a buck converter, a boost converter, or a buck-boost converter. The driving circuit stabilizes the current of the LED module at a defined current value, and the defined current value may be modulated based on the external driving signal. For example, the defined current value may be increased with the increasing of the level of the external driving signal and reduced with the reducing of the level of the external driving signal. Moreover, a mode switching circuit may be added between the LED module and the driving circuit for switching the current from the filtering circuit directly or through the driving circuit inputting into the LED module.
According to some embodiments, the LED module comprises plural strings of LEDs connected in parallel with each other, wherein each LED may have a single LED chip or plural LED chips emitting different spectrums. Each LEDs in different LED strings may be connected with each other to form a mesh connection.
According to the design of the ballast-compatible circuit of the power supply module in some embodiments, the ballast-compatible circuit can be connected in series with the rectifying circuit. Under the design of being connected in series with the rectifying circuit, the ballast-compatible circuit is initially in a cutoff state and then changes to a conducting state in or after an objective delay. The ballast-compatible circuit makes the electronic ballast activate during the starting stage and enhances the compatibility for instant-start ballast. Furthermore, the ballast-compatible circuit maintains the compatibilities with other ballasts, e.g., program-start and rapid-start ballasts.
The LED tube lamp according to certain implementations of the invention includes a ballast interface circuit for improving the compatibility of the LED tube lamp with an electrical ballast by facilitating successful activation of the ballast in order to successfully light up the LED tube lamp. In addition to using the ballast interface circuit to facilitate the LED tube lamp starting by the electrical ballast, other innovations of mechanical structures of the LED tube lamp disclosed herein, such as the LED tube lamp including improved structures of a flexible circuit board or a bendable circuit sheet, and soldering features of the bendable circuit sheet and a printed circuit board bearing the power supply module of the LED tube lamp, may also be used to improve the stability of power supplying by the ballast and to provide strengthened conductive path through, and connections between, the power supply module and the bendable circuit sheet.
The above-mentioned features can be accomplished in any combination to improve an LED lamp, such as an LED tube lamp, and the above embodiments are described by way of example only. The present invention is not herein limited, and many variations are possible without departing from the spirit and the scope as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201410507660.9 | Sep 2014 | CN | national |
201410508899.8 | Sep 2014 | CN | national |
201410623355.6 | Nov 2014 | CN | national |
201410734425.5 | Dec 2014 | CN | national |
201510075925.7 | Feb 2015 | CN | national |
201510104823.3 | Mar 2015 | CN | national |
201510133689.X | Mar 2015 | CN | national |
201510134586.5 | Mar 2015 | CN | national |
201510136796.8 | Mar 2015 | CN | national |
201510155807.7 | Apr 2015 | CN | national |
201510173861.4 | Apr 2015 | CN | national |
201510193980.6 | Apr 2015 | CN | national |
201510259151.3 | May 2015 | CN | national |
201510268927.8 | May 2015 | CN | national |
201510284720.X | May 2015 | CN | national |
201510315636.X | Jun 2015 | CN | national |
201510338027.6 | Jun 2015 | CN | national |
201510364735.7 | Jun 2015 | CN | national |
201510372375.5 | Jun 2015 | CN | national |
201510373492.3 | Jun 2015 | CN | national |
201510378322.4 | Jun 2015 | CN | national |
201510391910.1 | Jul 2015 | CN | national |
201510406595.5 | Jul 2015 | CN | national |
201510428680.1 | Jul 2015 | CN | national |
201510482944.1 | Aug 2015 | CN | national |
201510483475.5 | Aug 2015 | CN | national |
201510486115.0 | Aug 2015 | CN | national |
201510555543.4 | Sep 2015 | CN | national |
201510557717.0 | Sep 2015 | CN | national |
201510595173.7 | Sep 2015 | CN | national |
201620089157.0 | Jan 2016 | CN | national |
201610327806.0 | May 2016 | CN | national |
201610420790.8 | Jun 2016 | CN | national |
This application is a continuation-in-part application of U.S. patent application Ser. No. 15/150,458, filed May 10, 2016, which is a continuation-in-part application of U.S. patent application Ser. No. 14/865,387, filed Sep. 25, 2015, which claims priority under 35 U.S.C. 119 to the following Chinese Patent Applications filed in the Chinese Patent Office: CN 201410507660.9 filed on 2014 Sep. 28; CN 201410508899.8 filed on 2014 Sep. 28; CN 201410623355.6 filed on 2014 Nov. 6; CN 201410734425.5 filed on 2014 Dec. 5; CN 201510075925.7 filed on 2015 Feb. 12; CN 201510104823.3 filed on 2015 Mar. 10; CN 201510134586.5 filed on 2015 Mar. 26; CN 201510133689.x filed on 2015 Mar. 25; CN 201510136796.8 filed on 2015 Mar. 27; CN 201510173861.4 filed on 2015 Apr. 14; CN 201510155807.7 filed on 2015 Apr. 3; CN 201510193980.6 filed on 2015 Apr. 22; CN 201510372375.5 filed on 2015 Jun. 26; CN 201510259151.3 filed on 2015 May 19; CN 201510268927.8 filed on 2015 May 22; CN 201510284720.x filed on 2015 May 29; CN 201510338027.6 filed on 2015 Jun. 17; CN 201510315636.x filed on 2015 Jun. 10; CN 201510373492.3 filed on 2015 Jun. 26; CN 201510364735.7 filed on 2015 Jun. 26; CN 201510378322.4 filed on 2015 Jun. 29; CN 201510391910.1 filed on 2015 Jul. 2; CN 201510406595.5 filed on 2015 Jul. 10; CN 201510482944.1 filed on 2015 Aug. 7; CN 201510486115.0 filed on 2015 Aug. 8; CN 201510428680.1 filed on 2015 Jul. 20; CN 201510483475.5 filed on 2015 Aug. 8; CN 201510555543.4 filed on 2015 Sep. 2; CN 201510557717.0 filed on 2015 Sep. 6; and CN 201510595173.7 filed on 2015 Sep. 18, the disclosures of which U.S. and Chinese patent applications are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 15150458 | May 2016 | US |
Child | 15205011 | US | |
Parent | 14865387 | Sep 2015 | US |
Child | 15150458 | US |