The present invention relates to the features of LED incendiaries. More particularly, this invention describes various new and useful improvements for LED tube lamps.
LED lighting technology is rapidly developing to replace traditional incandescent and fluorescent lightings. LED tube lamps are mercury-free in comparison with fluorescent tube lamps that need to be filled with inert gas and mercury. Thus, it is not surprising that LED tube lamps are becoming a highly desirable illumination option among different available lighting systems used in homes and workplaces, which used to be dominated by traditional lighting options such as compact fluorescent light bulbs (CFLs) and fluorescent tube lamps. Benefits of LED tube lamps include improved durability and longevity and far less energy consumption; therefore, when taking into account all factors, they would typically be considered as a cost effective lighting option.
Typical LED tube lamps have a variety of LED elements and driving circuits. The LED elements include LED chip-packaging elements, light diffusion elements, high efficient heat dissipating elements, light reflective boards and light diffusing boards. Heat generated by the LED elements and the driving elements is considerable and mainly dominates the illumination intensity such that the heat dissipation needs to be properly disposed to avoid rapid decrease of the luminance and the lifetime of the LED lamps. Problems including power loss, rapid light decay, and short lifetime due to poor heat dissipation are always the key factors in consideration of improving the performance of the LED illuminating system. It is therefore one of the important issues to solve the heat dissipation problem of the LED products.
Nowadays, most of the LED tube lamps use plastic tubes and metallic elements to dissipate heat from the LEDs. The metallic elements are usually exposed to the outside of the plastic tubes. This design improves heat dissipation but heightens the risk of electric shocks. The metallic elements may be disposed inside the plastic tubes, however the heat still remains inside the plastic tubes and deforms the plastic tubes. Deformation of the plastic tubes also occurs even when the elements to dissipate heat from the LEDs are not metallic.
The metallic elements disposed to dissipate heat from the LEDs may be made of aluminum. However, aluminum is too soft to sufficiently support the plastic tubes when the deformation of plastic tubes occurs due to the heat as far as the metallic elements disposed inside the plastic tubes are concerned.
As a result, the current related skills still could not be applied to deal with the above-mentioned worse heat conduction, poor heat dissipation, heat deformation, and electric shock defects. On the other hand, the LED tube lamp may be provided with power via two ends of the lamp and a user is easily to be electric shocked when one end of the lamp is already inserted into an terminal of a power supply while the other end is held by the user to reach the other terminal of the power supply. In view of these issues, the claimed invention and the preferred embodiments are proposed below.
Therefore, it is an object of the claimed invention to provide a significantly improved LED tube lamp that dissipates heat more efficiently. It is a further object of the claimed invention to provide an LED tube lamp that is structurally stronger. It is yet another object of the claimed invention to provide an LED tube lamp that minimizes the risk of electric shocks.
In accordance with an exemplary embodiment of the claimed invention, the LED tube lamp comprises a lamp tube, which includes a light transmissive portion, a reinforcing portion and an end cap; and an LED light assembly, which includes an LED light source and an LED light strip. The light transmissive portion is fixedly connected to the reinforcing portion. The reinforcing portion includes a platform and a bracing structure. The bracing structure is fixedly connected to the platform and holds the platform in place. The bracing structure is made from a material having a greater stiffness than a material from which the light transmissive portion is made. The LED light source is thermally and electrically connected to the LED light strip, which is in turn thermally connected to the reinforcing portion. The end cap is attached to an end of the lamp tube. The light transmissive portion and the reinforcing portion define a first line between them on a cross section of the lamp tube. The lamp tube has a shape of a circular cylinder. A cross section of an inner surface of the lamp tube defines a hypothetical circle. A second line parallel to the first line on the cross section cuts the circle horizontally into two equal halves along a diameter of the circle. A cross section of the light transmissive portion defines an upper segment on the circle. A cross section of the reinforcing portion defines a lower segment on the circle. The bracing structure is made from one of metal, metal alloy and plastic. A ratio of a cross-sectional area of the bracing structure to a cross-sectional area of the lamp tube is from 1:3 to 1:30.
Referring to
Referring to
Referring to
In accordance with an exemplary embodiment of the claimed invention, the bracing structure includes a first metallic object and a second metallic object. The second metallic object is made from a material having a greater stiffness than a material from which the first metallic object is made. A ratio of a cross-sectional area of the second metallic object to a cross-sectional area of the first metallic object is from 0.1:1 to 10:1.
In accordance with an exemplary embodiment of the claimed invention, the lamp tube further includes a pair of protruding bars. The protruding bar extends in an axial direction along an inner surface of the lamp tube and is configured to form a guiding channel inside the lamp tube. The reinforcing portion is connected to the lamp tube by sliding the reinforcing portion into the guiding channel. The reinforcing portion is disposed entirely inside the lamp tube. The reinforcing portion rests on an inner surface of the lamp tube along a substantially uninterrupted interface.
In accordance with an exemplary embodiment of the claimed invention, the bracing structure includes one of a vertical rib, a horizontal rib, a curvilinear rib and a combination of ribs selected from the above.
In accordance with an exemplary embodiment of the claimed invention, the lamp tube further includes a ridge. The ridge is an elongated structure extending in an axial direction along an inner surface of the lamp tube.
In accordance with an exemplary embodiment of the claimed invention, the ridge is broken at intervals.
In accordance with an exemplary embodiment of the claimed invention, the lamp tube further includes a maintaining stick. The ridge is a hollow structure. The maintaining stick fills up the space inside the ridge.
In accordance with an exemplary embodiment of the claimed invention, a compartment is defined by the platform and a rib. The ridge is disposed inside the compartment.
In accordance with an exemplary embodiment of the claimed invention, a compartment is defined by the reinforcing structure and an inner surface of the lamp tube. The ridge is disposed inside the compartment.
In accordance with an exemplary embodiment of the claimed invention, the second line passes through the ridge.
In accordance with an exemplary embodiment of the claimed invention, the bracing structure includes a curvilinear rib. A cross section of the curvilinear rib defines a lower arc on the circle.
In accordance with an exemplary embodiment of the claimed invention, the bracing structure further includes a vertical rib. A cross section of the platform and the vertical rib approximates a cross section of a hypothetical T-beam. All three ends of the T-beam sit on the lower arc.
In accordance with an exemplary embodiment of the claimed invention, an outer surface of the reinforcing portion forms an outer surface of the lamp tube.
In accordance with an exemplary embodiment of the claimed invention, the LED light strip forms the platform.
In accordance with an exemplary embodiment of the claimed invention, the lamp tube, which includes a light transmissive portion, a reinforcing portion, a ridge and an end cap; and an LED light assembly, which includes an LED light source and an LED light strip. The light transmissive portion is fixedly connected to the reinforcing portion. The reinforcing portion includes a platform and a bracing structure. The LED light strip forms the platform. The bracing structure is fixedly connected to the platform and holds the platform in place. The bracing structure is made from a material having a greater stiffness than a material from which the light transmissive portion is made. The LED light source is thermally and electrically connected to the LED light strip, which is in turn thermally connected to the reinforcing portion. The end cap is attached to an end of the lamp tube. The light transmissive portion and the reinforcing portion define a first line between them on a cross section of the lamp tube. The lamp tube has a shape of a circular cylinder. A cross section of an inner surface of the lamp tube defines a hypothetical circle. A second line parallel to the first line on the cross section cuts the circle horizontally into two equal halves along a diameter of the circle. A cross section of the light transmissive portion defines an upper segment on the circle. A cross section of the reinforcing portion defines a lower segment on the circle. The bracing structure includes a curvilinear rib. A cross section of the curvilinear rib defines a lower arc on the circle. An outer surface of the reinforcing portion forms an outer surface of the lamp tube. The ridge is an elongated structure extending in an axial direction along an inner surface of the lamp tube. The bracing structure is made from one of metal, metal alloy and plastic. A ratio of a cross-sectional area of the bracing structure to a cross-sectional area of the lamp tube is from 1:3 to 1:30.
Various other objects, advantages and features of the present invention will become readily apparent from the ensuing detailed description, and the novel features will be particularly pointed out in the appended claims.
The following detailed descriptions, given by way of example, and not intended to limit the present invention solely thereto, will be best be understood in conjunction with the accompanying figures:
Referring to
The LED light assembly is disposed inside the lamp tube 1 and includes an LED light source 202 and an LED light strip 2. The LED light source 202 is thermally and electrically connected to the LED light strip 2, which is in turn thermally connected to the reinforcing portion 107. Heat generated by the LED light source 202 is first transmitted to the LED light strip 2 and then to the reinforcing portion 107 before egressing the lamp tube 1. Thermal connection is achieved with thermally conductive tapes or conventional mechanical fasteners such as screws aided by thermal grease to eliminate air gaps from interface areas.
Typically, the lamp tube 1 has a shape of an elongated cylinder, which is a straight structure. However, the lamp tube 1 can take any curved structure such as a ring or a horseshoe. The cross section of the lamp tube 1 defines, typically, a circle, or not as typically, an ellipse or a polygon. Alternatively, the cross section of the lamp tube 1 takes an irregular shape depending on the shapes of, respectively, the light transmissive portion 105 and the reinforcing portion 107 and on the manner the two portions interconnect to form the lamp tube 1.
The lamp tube 1 is a glass tube, a plastic tube or a tube made of any other suitable material or combination of materials. A plastic lamp tube is made from light transmissive plastic, thermally conductive plastic or a combination of both. The light transmissive plastic is one of translucent polymer matrices such as polymethyl methacrylate, polycarbonate, polystyrene, poly(styrene-co-methyl methacrylate) and a mixture thereof. Optionally, the strength and elasticity of thermally conductive plastic is enhanced by bonding a plastic matrix with glass fibers. When a lamp tube employs a combination of light transmissive plastic and thermally conductive plastic, does in the combination. In an embodiment, an outer shell of lamp tube includes a plurality of layers made from distinct materials. For example, the lamp tube includes a plastic tube coaxially sheathed by a glass tube.
In an embodiment, the light transmissive portion 105 is made from light transmissive plastic. The reinforcing portion is 107 made from thermally conductive plastic. Injection molding is used for producing the light transmissive portion 105 in a first piece and for producing the reinforcing portion 107 in a separate second piece. The first piece and the second piece are configured to be clipped together, buckled together, glued together or otherwise fixedly interconnect to form the lamp tube 1. Alternatively, injection molding is used for producing the lamp tube 1, which includes the light transmissive portion 105 and the reinforcing portion 107, in an integral piece by feeding two types of plastic materials into a molding process. In an alternative embodiment, the reinforcing portion is made of metal having good thermal conductivity such as aluminum alloy and copper alloy.
Respective shapes of the light transmissive portion 105 and the reinforcing portion 107, how the two portions 105, 107 interconnect to form the lamp tube 1 and, particularly, the respective proportions of the two portions 105, 107 in the lamp tube depend on a desired totality of considerations such as field angle, heat dissipation efficiency and structural strength. A wider field angle—potentially at the expense of heat dissipation capability and structural strength—is achieved when the proportion of the light transmissive portion increases 105 in relation to that of the reinforcing portion 107. By contrast, the lamp tube benefits from an increased proportion of the reinforcing portion 107 in relation to that of the light transmissive portion in such ways as better heat dissipation and rigidity but potentially loses field angle.
In some embodiments, the reinforcing portion 107 includes a plurality of protruding parts. In other embodiments, a plurality of protruding parts are disposed on the surface of the LED light strip 2 that is not covered by the LED light assembly. Like fins on a heatsink, the protruding part boosts heat dissipation by increasing the surface area of the reinforcing portion 107 and the LED light strip 2. The protruding parts are disposed equidistantly, or alternatively, not equidistantly.
Staying on
In an alternative embodiment, the dividing line 104 is spaced apart from the line H-H. For example, when the dividing line 104 is below the line H-H, the upper segment, which encompasses the light transmissive portion, has a greater area than the lower segment, which encompasses the reinforcing portion. The lamp tube, which includes an enlarged light transmissive portion, is thus configured to achieve a field angle wider than 180 degrees; however, other things equal, the lamp tube surrenders some heat dissipation capability, structural strength or both due to a diminished reinforcing portion 107. By contrast, the lamp tube 1 has an enlarged reinforcing portion 107 and a diminished light transmissive portion 105 if the dividing line rises above the line H-H. Other things equal, the lamp tube 1, now having an enlarged reinforcing portion 107, is configured to exhibit higher heat dissipation capability, structural strength or both; however, the field angle of the lamp tube 1 will dwindle due to diminished dimensions of the light transmissive portion 105.
The LED tube lamp is configured to convert bright spots coming from the LED light source into an evenly distributed luminous output. In an embodiment, a light diffusion layer is disposed on an inner surface of the lamp tube 1 or an outer surface of the lamp tube 1. In another embodiment, a diffusion laminate is disposed over the LED light source 202. In yet another embodiment, the lamp tube 1 has a glossy outer surface and a frosted inner surface. The inner surface is rougher than the outer surface. The roughness Ra of the inner surface is, preferably, from 0.1 to 40 μm, and most preferably, from 1 to 20 μm. Controlled roughness of the surface is obtained mechanically by a cutter grinding against a workpiece, deformation on a surface of a workpiece being cut off or high frequency vibration in the manufacturing system. Alternatively, roughness is obtained chemically by etching a surface. Depending on the luminous effect the lamp tube 1 is designed to produce, a suitable combination of amplitude and frequency of a roughened surface is provided by a matching combination of workpiece and finishing technique.
In alternative embodiment, the diffusion layer is in form of an optical diffusion coating, which is composed of any one of calcium carbonate, halogen calcium phosphate and aluminum oxide, or any combination thereof. When the optical diffusion coating is made from a calcium carbonate with suitable solution, an excellent light diffusion effect and transmittance to exceed 90% can be obtained.
In alternative embodiment, the diffusion layer is in form of an optical diffusion coating, which is composed of any one of calcium carbonate, halogen calcium phosphate and aluminum oxide, or any combination thereof. When the optical diffusion coating is made from a calcium carbonate with suitable solution, an excellent light diffusion effect and transmittance to exceed 90% can be obtained.
In the embodiment, the composition of the diffusion layer in form of the optical diffusion coating includes calcium carbonate, strontium phosphate (e.g., CMS-5000, white powder), thickener, and a ceramic activated carbon (e.g., ceramic activated carbon SW-C, which is a colorless liquid). Specifically, such an optical diffusion coating on the inner circumferential surface of the glass tube has an average thickness ranging between about 20 to about 30 μm. A light transmittance of the diffusion layer using this optical diffusion coating is about 90%. Generally speaking, the light transmittance of the diffusion layer ranges from 85% to 96%. In addition, this diffusion layer can also provide electrical isolation for reducing risk of electric shock to a user upon breakage of the lamp tube 1. Furthermore, the diffusion layer provides an improved illumination distribution uniformity of the light outputted by the LED light sources 202 such that the light can illuminate the back of the light sources 202 and the side edges of the bendable circuit sheet so as to avoid the formation of dark regions inside the lamp tube 1 and improve the illumination comfort. In another possible embodiment, the light transmittance of the diffusion layer can be 92% to 94% while the thickness ranges from about 200 to about 300 μm.
In another embodiment, the optical diffusion coating can also be made of a mixture including calcium carbonate-based substance, some reflective substances like strontium phosphate or barium sulfate, a thickening agent, ceramic activated carbon, and deionized water. The mixture is coated on the inner circumferential surface of the glass tube and has an average thickness ranging between about 20 to about 30 μm. In view of the diffusion phenomena in microscopic terms, light is reflected by particles. The particle size of the reflective substance such as strontium phosphate or barium sulfate will be much larger than the particle size of the calcium carbonate. Therefore, adding a small amount of reflective substance in the optical diffusion coating can effectively increase the diffusion effect of light.
In other embodiments, halogen calcium phosphate or aluminum oxide can also serve as the main material for forming the diffusion layer. The particle size of the calcium carbonate is about 2 to 4 μm, while the particle size of the halogen calcium phosphate and aluminum oxide are about 4 to 6 μm and 1 to 2 μm, respectively. When the light transmittance is required to be 85% to 92%, the required average thickness for the optical diffusion coating mainly having the calcium carbonate is about 20 to about 30 μm, while the required average thickness for the optical diffusion coating mainly having the halogen calcium phosphate may be about 25 to about 35 μm, the required average thickness for the optical diffusion coating mainly having the aluminum oxide may be about 10 to about 15 μm. However, when the required light transmittance is up to 92% and even higher, the optical diffusion coating mainly having the calcium carbonate, the halogen calcium phosphate, or the aluminum oxide must be thinner.
The main material and the corresponding thickness of the optical diffusion coating can be decided according to the place for which the lamp tube 1 is used and the light transmittance required. It is to be noted that the higher the light transmittance of the diffusion layer is required, the more apparent the grainy visual of the light sources is.
In an embodiment, the LED tube lamp is configured to reduce internal reflectance by applying a layer of anti-reflection coating to an inner surface of the lamp tube 1. The coating has an upper boundary, which divides the inner surface of the lamp tube and the anti-reflection coating, and a lower boundary, which divides the anti-reflection coating and the air in the lamp tube 1. Light waves reflected by the upper and lower boundaries of the coating interfere with one another to reduce reflectance. The coating is made from a material with a refractive index of a square root of the refractive index of the light transmissive portion 105 of the lamp tube 1 by vacuum deposition. Tolerance of the coating's refractive index is ±20%. The thickness of the coating is chosen to produce destructive interference in the light reflected from the interfaces and constructive interference in the corresponding transmitted light. In an improved embodiment, reflectance is further reduced by using alternating layers of a low-index coating and a higher-index coating. The multi-layer structure is designed to, when setting parameters such as combination and permutation of layers, thickness of a layer, refractive index of the material, give low reflectivity over a broad band that covers at least 60%, or preferably, 80% of the wavelength range beaming from the LED light source 202. In some embodiments, three successive layers of anti-reflection coatings are applied to an inner surface of the lamp tube 1 to obtain low reflectivity over a wide range of frequencies. The thicknesses of the coatings are chosen to give the coatings optical depths of, respectively, one half, one quarter and one half of the wavelength range coming from the LED light source 202. Dimensional tolerance for the thickness of the coating is set at ±20%.
Turning to
A dividing line 104 parallel to the line H-H is shared by the upper segment and the upper flange. In the embodiment, the dividing line sits below the line H-H. Consequently, the upper segment constitutes the majority of the hypothetical circle. The light transmissive portion 105 is thus configured to generate a field angle wider than 180 degrees. In an alternative embodiment, the dividing line sits on or above the line H-H. For example, when the dividing line rises above the line H-H, the upper segment, which encompasses the light transmissive portion, now constitutes less than half of the hypothetical circle. The lamp tube 1, which has an enlarged reinforcing portion 107, is thus configured for better heat dissipation and structural strength; however, other things equal, the lamp tube 1 loses some luminous filed due to a diminished light transmissive portion 105.
In an embodiment, a surface on which the LED light assembly sits—e.g. the upper surface of the platform—is configured to further reflect the light reflected from the inner surface of the lamp tube 1. The surface on which the LED light assembly sits is coated with a reflective layer. Alternatively, the surface is finished to exhibit a reflectance of 80 to 95%, or preferably, 85 to 90%. Finishing is performed mechanically, chemically or by fluid jet. Mechanical finishing buffs a surface by removing peaks from the surface with an abrasive stick, a wool polishing wheel or a sandpaper. A surface treated this way has a roughness Ra as low as 0.008 to 1 Chemical finishing works by dissolving peaks of a surface faster than troughs of the surface with a chemical agent. Fluid jet finishing uses a high-speed stream of slurry to accurately remove nanometers of material from a surface. The slurry is prepared by adding particles such as silicon carbide powder to a fluid capable of being pumped under relatively low pressure.
Turning to
Typically, the end cap 3 has a shape of a cylinder. The cross section of the end cap 3 thus defines a circle. Alternatively, the cross section of the end cap 3 takes an irregular shape depending on the shapes of, respectively, the light transmissive portion and the reinforcing portion and on the manner the two portions and the end cap 3 interconnect to form the LED tube lamp. Regardless of the shape of the end cap 3, the cross section of the end cap 3 encloses all or only a part of the cross section of the reinforcing portion 107 of the lamp tube 1. In the embodiment shown in
In an alternative embodiment shown in
In some embodiments, an end of the LED light assembly extends to the end cap 3 as shown in
The bracing structure 107b may is made from a metallic material or plastic material. The metallic material is a pure metal, an alloy or a combination of pure metal and alloy having differentiated stiffness. Similarly, the plastic material is a single type of plastic or a combination of plastic materials having differentiated stiffness. Specifically, the plastic lamp tube 1 may include only one bracing structure with one stiffness or two bracing structures with various stiffness.
When only one bracing structure is adopted, the material of the only one bracing structure may be metal, metal alloy, or plastic, and the ratio of the cross-sectional area of the bracing structure to the cross-sectional area of the lamp tube 1 is from 1:3 to 1:30, or most preferably, from 1:5 to 1:10.
When more than one bracing structures with different stiffness are adopted, each of the bracing structures may be made of metal, metal alloy, or plastic. In one embodiment, when two bracing structures with different stiffness are adopted, the ratio of the cross-sectional area of the bracing structure with larger stiffness to the cross-sectional area of the other bracing structure is from 0.001:1 to 100:1, and the ratio of the cross-sectional area of the bracing structure with larger stiffness to the cross-sectional area of the lamp tube 1 is from 1:20 to 1:300.
In view of the bracing structure made of metal, the cross-section of the lamp tube 1 vertically cut by a hypothetical plane shows that the hypothetical plane may include the following 1. a lamp tube made of plastic, a first bracing structure made of a metal with a first stiffness, and a second bracing structure, such as a maintaining stick, made of a metal with a second stiffness different from the first stiffness; 2. a lamp tube made of plastic and a single bracing structure made of metal and/or metal alloy; or 3. a lamp tube made of plastic, a first bracing structure made of metal, and a second bracing structure, such as a maintaining stick, made of metal alloy. Similarly, various plastics with different stiffness may be used to serve as the bracing structures mentioned above according to embodiments of the present invention. As long as the materials for the used bracing structures have different stiffness, the materials are not limited. Thus, metal or metal alloy and plastic could also be served as materials for different bracing structures without departing from the spirit of the present invention. Additionally, the bracing structure is made from a material having a greater stiffness than a material from which the light transmissive portion is made.
In some embodiments, the lamp tube includes a first end cap fixedly connecting to a first end of the lamp tube and a second end cap fixedly connecting to a second end of the lamp tube. The first end cap is dimensionally larger—e.g. from 20% to 70% larger—than the second end cap.
Shifting to
Turning to
Turing to
In an embodiment, the lamp tube 1 further includes a ridge 235 and a maintaining stick 2351. The maintaining stick 2351 is, likewise, an elongated structure, which is unbroken from end to end, or alternatively, broken at intervals, and which fills up the space inside the ridge 235. The maintaining stick 2351 is made of thermally conductive plastic, or alternatively, metal. The metal is one of carbon steel, cast steel, nickel chrome steel, alloyed steel, ductile iron, grey cast iron, white cast iron, rolled manganese bronze, rolled phosphor bronze, cold-drawn bronze, rolled zinc, aluminum alloy and copper alloy. The material from which the maintaining stick 2351 is made is chosen to provide the LED tube lamp with a combination of heat dissipation capability and structural strength that is otherwise absent from other parts of the lamp tube 1. In an embodiment, the maintaining stick 2351 is made from a different material than a material from which the LED light strip 2 or the reinforcing portion 107 is made. For example, when the LED light strip 2 or the reinforcing portion 107 of the lamp tube 1 is made from a metal having superior heat dissipation capability but insufficient stiffness, e.g. aluminum panel, the maintaining stick 2351 is made from a metal stiffer than aluminum to supply more structural strength. The ratio of the volume of heatsinking-oriented metal to the volume of stiffness-oriented metal in a lamp tube 1 is from 0.001:1 to 100:1, or most preferably, from 0.1:1 to 10:1. The ratio of the cross-sectional area of the maintaining stick 2351 to that of the lamp tube 1 is from 1:20 to 1:100, or most preferably, from 1:50 to 1:100.
In some embodiments, the lamp tube 1 includes a light transmissive portion and a reinforcing portion. In other embodiments, a ridge is substituted for the reinforcing portion. Thus, in these embodiment, the lamp tube 1 includes a light transmissive portion and a ridge, but no reinforcing portion. In an improved embodiment, the lamp tube 1 further includes a maintaining stick that fills up the space inside the ridge.
The outer surface of the reinforcing portion forms an outer surface of the lamp tube 1, as the embodiments in
Focusing on
The length of the reinforcing portion, on which the LED light assembly is disposed, in the vertical direction in relation to the diameter of the lamp tube depends on the field angle the lamp tube is designed to produce. In the embodiment shown in
Turning to
Turning to
Turning to
The position of the LED light strip 2 inside the lamp tube 1—i.e. the length of the first vertical rib 233 and the length of the second vertical rib 233—is chosen in light of a desired totality of factors such as field angle, heat-dissipating capability and structural strength. In
In an embodiment, the LED light strip is made from flexible substrate material. Referring to
In an embodiment, the LED light strip 2 further includes a protection layer over the wiring layer 2a and the dielectric layer 2b. The protection layer is made from one of solder resists such as liquid photoimageable.
In another embodiment, as shown in
In some embodiments, any type of power supply 5 can be electrically connected to the LED light strip 2 by means of a traditional wire bonding technique, in which a metal wire has an end connected to the power supply 5 while has the other end connected to the LED light strip 2. Furthermore, the metal wire may be wrapped with an electrically insulating tube to protect a user from being electrically shocked. However, the bonded wires tend to be easily broken during transportation and can therefore cause quality issues.
In still another embodiment, the connection between the power supply 5 and the LED light strip 2 may be accomplished via tin soldering, rivet bonding, or welding. One way to secure the LED light strip 2 is to provide the adhesive sheet at one side thereof and adhere the LED light strip 2 to the inner surface of the lamp tube 1 via the adhesive sheet. Two ends of the LED light strip 2 can be either fixed to or detached from the inner surface of the lamp tube 1.
In case that two ends of the LED light strip 2 are fixed to the inner surface of the lamp tube 1, it may be preferable that the bendable circuit sheet of the LED light strip 2 is provided with the female plug and the power supply is provided with the male plug to accomplish the connection between the LED light strip 2 and the power supply 5. In this case, the male plug of the power supply is inserted into the female plug to establish electrical connection.
In case that two ends of the LED light strip 2 are detached from the inner surface of the lamp tube and that the LED light strip 2 is connected to the power supply 5 via wire-bonding, any movement in subsequent transportation is likely to cause the bonded wires to break. Therefore, a preferable option for the connection between the light strip 2 and the power supply 5 could be soldering. Specifically, the ends of the LED light strip 2 including the bendable circuit sheet are arranged to pass over the strengthened transition region and directly soldering bonded to an output terminal of the power supply 5 such that the product quality is improved without using wires. In this way, the female plug and the male plug respectively provided for the LED light strip 2 and the power supply 5 are no longer needed.
Referring to
Referring again to
In this embodiment, during the connection of the LED light strip 2 and the power supply 5, the soldering pads “b” and the soldering pads “a” and the LED light sources 202 are on surfaces facing toward the same direction and the soldering pads “b” on the LED light strip 2 are each formed with a through hole “e” as shown in
Referring to
There are at least one soldering pads “b” for separately connected to the positive and negative electrodes of the LED light sources 202. For the sake of achieving scalability and compatibility, the amount of the soldering pads “b” on each end of the LED light strip 2 may be more than one such as two, three, four, or more than four. When there is only one soldering pad “b” provided at each end of the LED light strip 2, the two ends of the LED light strip 2 are electrically connected to the power supply 5 to form a loop, and various electrical components can be used. For example, a capacitance may be replaced by an inductance to perform current regulation. Referring to
Referring to
Referring to
The abovementioned through hole “e” or notch “f” might be formed in advance of soldering or formed by direct punching with a thermo-compression head during soldering. The portion of the thermo-compression head for touching the tin solder may be flat, concave, or convex, or any combination thereof. The portion of the thermo-compression head for restraining the object to be soldered such as the LED light strip 2 may be strip-like or grid-like. The portion of the thermo-compression head for touching the tin solder does not completely cover the through hole “e” or the notch “f” to make sure that the tin solder is able to pass through the through hole “e” or the notch “f”. The portion of the thermo-compression head being concave may function as a room to receive the solder ball.
Referring to
The long circuit sheet 251 may be the bendable circuit sheet of the LED light strip including a wiring layer 2a as shown in
As shown in
In the above-mentioned embodiments, the short circuit board 253 may have a length generally of about 15 mm to about 40 mm and in some embodiments about 19 mm to about 36 mm, while the long circuit sheet 251 may have a length generally of about 800 mm to about 2800 mm and in some embodiments of about 1200 mm to about 2400 mm. A ratio of the length of the short circuit board 253 to the length of the long circuit sheet 251 ranges from, for example, about 1:20 to about 1:200.
Referring to
Turing to
In some embodiments, the safety switch directly—and mechanically—makes and breaks the circuit of the LED tube lamp. In other embodiments, the safe switch 334 controls another electrical circuit, i.e. a relay, which in turn makes and breaks the circuit of the LED tube lamp. Some relays use an electromagnet to operate a switching mechanism mechanically, but other operating principles are also used. For example, solid-state relays control power circuits with no moving parts, instead using a semiconductor device to perform switching.
The proportion of the end cap 3 in relation to the lamp tube 1 schematized in
In an embodiment, a first end cap of the lamp tube includes a safety switch but a second end cap does not. A warning is attached to the first end cap to alert an operator to plug in the second end cap before moving on to the first end cap.
In an embodiment, the safety switch includes a level switch. The level switch is turned on when the liquid inside is made to flow to a designated place. The end cap 3 is configured to turn on the level switch and, directly or through a relay, make the circuit only when the electrically conductive pin 301 is plugged into the socket. Alternatively, the safety switch includes a micro switch. The end cap 3 is configured to, likewise, turn on the micro switch and, directly or through a relay, make the circuit only when the electrically conductive pin 301 is plugged into the socket.
Turning to
Turning to
Turning to
Turning to
Turning to
Turning to
In an embodiment, the upper portion of the actuator 332 that projects out of the housing 300 is shorter than the electrically conductive pin 301. Preferably, the ratio of the depth of the upper portion of the actuator 332 to that of the electrically conductive pin 301 is from 20% to 95%.
Having described at least one of the embodiments of the claimed invention with reference to the accompanying drawings, it will be apparent to those skills that the invention is not limited to those precise embodiments, and that various modifications and variations can be made in the presently disclosed system without departing from the scope or spirit of the invention. Thus, it is intended that the present disclosure cover modifications and variations of this disclosure provided they come within the scope of the appended claims and their equivalents. Specifically, one or more limitations recited throughout the specification can be combined in any level of details to the extent they are described to improve the LED tube lamp. These limitations include, but are not limited to: light transmissive portion and reinforcing portion; platform and bracing structure; vertical rib, horizontal rib and curvilinear rib; thermally conductive plastic and light transmissive plastic; silicone-based matrix having good thermal conductivity; anti-reflection layer; roughened surface; electrically conductive wiring layer; wiring protection layer; ridge; maintaining stick; and shock-preventing safety switch.
Number | Date | Country | Kind |
---|---|---|---|
2014 1 0734425 | Dec 2014 | CN | national |
2015 1 0075925 | Feb 2015 | CN | national |
2015 1 0259151 | May 2015 | CN | national |
2015 1 0324394 | Jun 2015 | CN | national |
2015 1 0373492 | Jun 2015 | CN | national |
2015 1 0448220 | Jul 2015 | CN | national |
2015 1 0482944 | Aug 2015 | CN | national |
2015 1 0483475 | Aug 2015 | CN | national |
2015 1 0499512 | Aug 2015 | CN | national |
2015 1 0555543 | Sep 2015 | CN | national |
2015 1 0724263 | Oct 2015 | CN | national |
2015 1 0882517 | Dec 2015 | CN | national |
This is a continuation application of International Application PCT/CN2015/096501, with an international filing date of Dec. 5, 2015. The present application claims the benefit of the following Chinese Patent Applications: CN201410734425.5 filed Dec. 5, 2014; CN201510075925.7 filed Feb. 12, 2015; CN201510259151.3 filed May 19, 2015; CN201510324394.0 filed Jun. 12, 2015; CN201510373492.3 filed Jun. 26, 2015; CN201510448220.5 filed Jul. 27, 2015; CN 201510482944.1 filed Aug. 7, 2015; CN201510483475.5 filed Aug. 8, 2015; CN 201510499512.1 filed Aug. 14, 2015; CN201510555543.4 filed Sep. 2, 2015; CN 201510724263.1 filed Oct. 29, 2015; and CN201510882517.2 filed Dec. 4, 2015, each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2454049 | Floyd, Jr. | Nov 1948 | A |
3294518 | Laseck | Dec 1966 | A |
4156265 | Rose | May 1979 | A |
4647399 | Peters et al. | Mar 1987 | A |
5575459 | Anderson | Nov 1996 | A |
5921660 | Yu | Jul 1999 | A |
6118072 | Scott | Sep 2000 | A |
6127783 | Pashley | Oct 2000 | A |
6186649 | Zou et al. | Feb 2001 | B1 |
6211262 | Mejiritski et al. | Apr 2001 | B1 |
6609813 | Showers | Aug 2003 | B1 |
6796680 | Showers | Sep 2004 | B1 |
6860628 | Robertson et al. | Mar 2005 | B2 |
6936855 | Harrah et al. | Aug 2005 | B1 |
7033239 | Cunkelman | Apr 2006 | B2 |
7067032 | Bremont et al. | Jun 2006 | B1 |
7594738 | Lin et al. | Sep 2009 | B1 |
8240875 | Roberts | Aug 2012 | B2 |
8360599 | Ivey | Jan 2013 | B2 |
8456075 | Axelsson | Jun 2013 | B2 |
8579463 | Clough | Nov 2013 | B2 |
9000668 | Qiu | Apr 2015 | B2 |
9335008 | Fujita et al. | May 2016 | B2 |
D761216 | Jiang | Jul 2016 | S |
9447929 | Jiang | Sep 2016 | B2 |
D768891 | Jiang et al. | Oct 2016 | S |
9611984 | Jiang et al. | Apr 2017 | B2 |
9618166 | Jiang et al. | Apr 2017 | B2 |
9618168 | Jiang et al. | Apr 2017 | B1 |
9625129 | Jiang et al. | Apr 2017 | B2 |
9625137 | Li et al. | Apr 2017 | B2 |
D797323 | Yang et al. | Sep 2017 | S |
20020044456 | Balestriero | Apr 2002 | A1 |
20020176262 | Tripathi | Nov 2002 | A1 |
20030102819 | Min | Jun 2003 | A1 |
20030231485 | Chien | Dec 2003 | A1 |
20040095078 | Leong | May 2004 | A1 |
20040189218 | Leong | Sep 2004 | A1 |
20050128751 | Roberge | Jun 2005 | A1 |
20050162850 | Luk | Jul 2005 | A1 |
20050207166 | Kan | Sep 2005 | A1 |
20050213321 | Lin | Sep 2005 | A1 |
20070001709 | Shen | Jan 2007 | A1 |
20070145915 | Roberge | Jun 2007 | A1 |
20070210687 | Axelsson | Sep 2007 | A1 |
20070274084 | Kan | Nov 2007 | A1 |
20080030981 | Mrakovich | Feb 2008 | A1 |
20080192476 | Hiratsuka | Aug 2008 | A1 |
20080278941 | Logan | Nov 2008 | A1 |
20090161359 | Siemiet | Jun 2009 | A1 |
20100253226 | Oki | Oct 2010 | A1 |
20110038146 | Chen | Feb 2011 | A1 |
20110057572 | Kit | Mar 2011 | A1 |
20110090684 | Logan | Apr 2011 | A1 |
20110148313 | Ramaker | Jun 2011 | A1 |
20110216538 | Logan | Sep 2011 | A1 |
20120069556 | Bertram | Mar 2012 | A1 |
20120106157 | Simon | May 2012 | A1 |
20120153873 | Hayashi | Jun 2012 | A1 |
20130050998 | Chu | Feb 2013 | A1 |
20130170245 | Hong | Jul 2013 | A1 |
20130182425 | Seki | Jul 2013 | A1 |
20130200797 | Timmermans | Aug 2013 | A1 |
20140071667 | Hayashi | Mar 2014 | A1 |
20140153231 | Bittmann | Jun 2014 | A1 |
20140226320 | Halliwell | Aug 2014 | A1 |
20150009688 | Timmermans | Jan 2015 | A1 |
20150022999 | Yu et al. | Jan 2015 | A1 |
20160091147 | Jiang et al. | Mar 2016 | A1 |
20160091156 | Li et al. | Mar 2016 | A1 |
20160091179 | Jiang et al. | Mar 2016 | A1 |
20160102813 | Ye et al. | Apr 2016 | A1 |
20160178135 | Xu et al. | Jun 2016 | A1 |
20160178137 | Jiang | Jun 2016 | A1 |
20160178138 | Jiang | Jun 2016 | A1 |
20160198535 | Ye et al. | Jul 2016 | A1 |
20160212809 | Xiong et al. | Jul 2016 | A1 |
20160215936 | Jiang | Jul 2016 | A1 |
20160215937 | Jiang | Jul 2016 | A1 |
20160219658 | Xiong et al. | Jul 2016 | A1 |
20160219666 | Xiong et al. | Jul 2016 | A1 |
20160219672 | Liu | Jul 2016 | A1 |
20160229621 | Jiang et al. | Aug 2016 | A1 |
20160255694 | Jiang et al. | Sep 2016 | A1 |
20160255699 | Ye et al. | Sep 2016 | A1 |
20160270163 | Hu et al. | Sep 2016 | A1 |
20160270164 | Xiong et al. | Sep 2016 | A1 |
20160270165 | Xiong et al. | Sep 2016 | A1 |
20160270166 | Xiong et al. | Sep 2016 | A1 |
20160270173 | Xiong | Sep 2016 | A1 |
20160270184 | Xiong et al. | Sep 2016 | A1 |
20160290566 | Jiang et al. | Oct 2016 | A1 |
20160290567 | Jiang et al. | Oct 2016 | A1 |
20160290568 | Jiang et al. | Oct 2016 | A1 |
20160290569 | Jiang et al. | Oct 2016 | A1 |
20160290570 | Jiang et al. | Oct 2016 | A1 |
20160290598 | Jiang | Oct 2016 | A1 |
20160290609 | Jiang et al. | Oct 2016 | A1 |
20160295706 | Jiang | Oct 2016 | A1 |
20160309550 | Xiong et al. | Oct 2016 | A1 |
20160323948 | Xiong et al. | Nov 2016 | A1 |
20160341414 | Jiang | Nov 2016 | A1 |
20160356472 | Liu et al. | Dec 2016 | A1 |
20160381746 | Ye et al. | Dec 2016 | A1 |
20160381760 | Xiong et al. | Dec 2016 | A1 |
20170001793 | Jiang et al. | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
200965185 | Oct 2007 | CN |
101715265 | May 2010 | CN |
102121690 | Jul 2011 | CN |
102155642 | Aug 2011 | CN |
202125774 | Jan 2012 | CN |
102355780 | Feb 2012 | CN |
102518972 | Jun 2012 | CN |
202546330 | Nov 2012 | CN |
102932997 | Feb 2013 | CN |
203162856 | Aug 2013 | CN |
203240337 | Oct 2013 | CN |
203384716 | Jan 2014 | CN |
203413396 | Jan 2014 | CN |
203453866 | Feb 2014 | CN |
204268162 | Apr 2014 | CN |
203585876 | May 2014 | CN |
203615110 | May 2014 | CN |
203927469 | Nov 2014 | CN |
204300737 | Apr 2015 | CN |
104595765 | May 2015 | CN |
204420636 | Jun 2015 | CN |
2011132120 | Oct 2011 | WO |
2013125803 | Aug 2013 | WO |
2013147504 | Oct 2013 | WO |
2014001475 | Jan 2014 | WO |
2015036478 | Mar 2015 | WO |
Number | Date | Country | |
---|---|---|---|
20160178135 A1 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2015/096501 | Dec 2015 | US |
Child | 15058004 | US |