1. Field of the Invention
This invention relates to an apparatus and method for implanting a conduit to allow communication of fluids from one portion of a patient's body to another; and, more particularly, to a blood flow conduit to allow communication from a heart chamber to a vessel or vice versa, and/or vessel to vessel. Even more particularly, the invention relates to a left ventricular conduit and related conduit configurations for controlling the flow of blood through the conduit to achieve bypass of an occluded coronary artery.
2. Description of Related Art
Coronary artery disease is a major problem in the U.S. and throughout the world. In fact, about 1.1 million “open heart” procedures are performed each year, and current estimates are that approximately 4.8 million people suffer from some degree of congestive heart failure.
When coronary arteries or other blood vessels become clogged with plaque, the results are at the very least impairment of the efficiency of the heart's pumping action. On the more severe side of the scale are heart attack and death. In some cases, clogged arteries can be unblocked through minimally invasive techniques such as balloon angioplasty. In more difficult cases, a surgical bypass of the blocked vessel is necessary.
In a bypass operation, one or more arterial or venous segments are harvested from the body and then surgically inserted between the aorta and the coronary artery. The inserted vessel segments, or transplants, act as a bypass of the blocked portion of the coronary artery and thus provide for a free or unobstructed flow of blood to the heart. More than 500,000 bypass procedures are performed in the U.S. every year.
Coronary artery bypass grafting (CABG) has been used for more than 30 years. Initially, the saphenous vein (SV) served as the principal conduit for coronary bypass, but studies over the last dozen years have shown a 35-40% increase in 10-year patency rate for the internal thoracic artery (ITA) compared with the SV. The SV, in fact, has only been shown to have a 10-year patency rate of 50%. Since the mid 1980's, not only the ITA, but also the alternative arterial conduits have been increasingly used. These conduits include the grastroepiploic artery (GEA), inferior epigastric artery (IEA), and radial artery (RA), which have been used primarily as supplements to both the right and left ITA.
Although the use of arterial conduits results in demonstrably better long-term patency, use of arteries in place of the SV often requires complex technical challenges, such as free grafts, sequential anastomosis, and conduit-to-conduit anastomosis. Some of the reasons for the difficulty in using arterial conduits reside in the fact that they are much more fragile than the SV and therefore easier to damage, and due to their smaller size, easier to occlude completely or partially through technical error during grafting.
Such coronary artery bypass surgery, however, is a very intrusive procedure that is expensive, time-consuming and traumatic to the patient. The operation requires an incision through the patient's sternum (sternotomy), and the patient be placed on a bypass pump so that the heart can be operated on while not beating. A vein graft is harvested from the patient's leg, another highly invasive procedure, and a delicate surgical procedure is required to piece the bypass graft to the coronary artery (anastomosis). Hospital stays subsequent to the surgery and convalescence periods are prolonged.
As mentioned above, another conventional treatment is percutaneous transluminal coronary angioplasty (PTCA) or other types of angioplasty. However, such vascular treatments are not always indicated due to the type or location of the blockage, or due to the risk of the emboli formation.
One bypass technique employed in the prior art is taught by Wilk (U.S. Pat. Nos. 5,287,861, 5,409,019, 5,662,124, and 5,429,144, the entirety of each of which is hereby incorporated herein by this reference). These Wilk references teach the use of a stent which is introduced through the myocardial wall from an adjacent coronary artery to provide a bypass conduit between the left ventricle and the adjacent coronary artery. In one embodiment, this technique teaches the delivery of a transmyocardial bypass shunt in a collapsed, reduced-profile configuration, which requires radial expansion subsequent to delivery in a bore pre-formed in the myocardial wall. The bore is formed, for example, by a drill, needle, Seldinger wire, dilating wires or catheters, or other devices prior to stent placement and expansion.
In another embodiment, Wilk discloses the disposition of a stent in the myocardium so that the stent extends only in the myocardium. The stent may extend only partially through the myocardium, from the left ventricle of the heart or from a coronary artery, upstream of a vascular obstruction. Alternatively, the stent may extend completely through the myocardium to establish a blood flow path or conduit from the left ventricle to a coronary artery, downstream of a vascular obstruction.
Where stents are used in the Wilk cardiac revascularization techniques to guide blood from the left ventricle, the stents may be designed to lock upon opening from collapsed insertion configurations. Such stents enable the infusion of blood into the myocardium during systole. The stents may be provided with one-way valves to regulate or control the backflow of blood during diastole.
Thus, there is a continuing need for improved bypass methods and apparatus that allow for the realization of increased long-term patency rates, and that are less physically traumatic to the patient.
Thus, in one preferred embodiment there is provided a new apparatus and method for performing a coronary artery by-pass operation which is less invasive and less traumatic to the patient than conventional by-pass surgery. Another advantage of this embodiment is that it requires no incision through the chest wall. In another embodiment there is provided a catheter assembly for use in performing the method of the invention.
Conduit Utilizing Intrapericardial Space
In another embodiment, there is provided methodology and related medical devices for effectively bypassing a blocked or partially blocked coronary artery and providing oxygenated blood to the myocardium. In accordance with this embodiment, a coronary artery bypass method utilizes a fluid communication conduit or shunt member. An upstream end portion of the shunt member is disposed in the myocardium of a patient's heart so that the upstream end portion communicates with the left ventricle of the patient's heart. An opposite downstream end portion of the shunt member is placed in communication with a coronary artery of the patient downstream of a blockage in the coronary artery, so that an intermediate or middle portion of the shunt member is disposed in an intrapericardial space of the patient, outside of the myocardium and outside of the coronary artery. The downstream end portion of the shunt is inserted into the coronary artery or, alternatively, attached to a generally anterior wall of the coronary artery.
Where the downstream end portion of the shunt is attached to the anterior wall of the coronary artery, the method further comprises forming an aperture in the anterior wall of the coronary artery after attaching the downstream end portion of the shunt member to the anterior wall, thereby opening communication between the shunt member and the coronary artery. The shunt member is preferably delivered intravascularly into the left ventricle of the patient's heart. The downstream end portion of the shunt member is then passed completely through the myocardium and the intrapericardial space to the anterior wall of the coronary artery. The aperture in the coronary artery is formed by inserting a free end portion of an incising instrument intravascularly and through the shunt member after disposition of the upstream end portion of the shunt member in the myocardium and after attaching of the downstream end portion of the shunt member to the coronary artery. The incising instrument is operated, after inserting thereof, to perforate the anterior wall of the coronary artery.
The incising instrument may be a laser instrument including an optical fiber. The incising instrument is operated in part by transmitting monochromatic or laser radiation through the optical fiber to the anterior wall of the coronary artery.
The method utilizing the shunt member further comprises forming a passageway through the myocardium prior to the disposing of the upstream end portion of the shunt member in the myocardium. The passageway is formed by inserting a surgical instrument intravascularly into the left ventricle of the patient and operating the instrument from outside the patient to bore or tunnel through the myocardium. The upstream end portion of the shunt member is disposed in the passageway and subsequently the downstream end portion of the shunt member is placed in communication with the coronary artery of the patient.
The shunt member may be deployed in a pericardioscopic operation wherein pericardioscopic surgical instruments are operated from outside the patient to manipulate the downstream end portion of the shunt member and to place the downstream end portion of the shunt member into communication with the coronary artery of the patient after passing of the downstream end portion of the shunt member through the passageway in the myocardium.
Where the downstream end portion of the shunt member is inserted into the coronary artery, the sequence of operations is similar to the case where the shunt member is attached to the anterior wall of the coronary artery. The shunt member is delivered intravascularly into the left ventricle of the patient's heart and subsequently the downstream end portion of the shunt member is passed through the myocardium; the downstream end portion of the shunt member is then inserted into the coronary artery. In this case, as well, the shunt member may be deployed in a pericardioscopic operation wherein pericardioscopic surgical instruments are operated from outside the patient to place the downstream end portion of the shunt member in communication with the coronary artery.
Generally, in the above-described procedure, the downstream end portion of the shunt member communicates with the coronary artery downstream of a blockage. During systole, blood travels from the patient's left ventricle through the shunt member to the coronary artery and then to the myocardium along natural vessels. It may be necessary, in some patients, to provide two or more shunt members, depending on the number of blockages and their locations along the coronary artery.
Conduit Construction
The shunt or conduit member comprises a generally tubular, rounded or circumferential member having a length greater than a width of the myocardium. The shunt member is made of a biocompatible material such as polyethylene or GORTEX™ and is flexible at least along the middle or intermediate portion thereof. Accordingly, the intermediate or middle portion of the shunt member may be bent into an arc to facilitate the formation of a proper junction between the downstream end portion of the shunt member and the coronary artery of the patient. The tubular shunt member may be provided with a one-way valve preventing back flow of blood from the coronary artery into the ventricle. In a specific embodiment of the invention, the upstream end portion of the tubular shunt member is wider than the downstream end portion.
As discussed above, an upstream end portion of a generally tubular shunt member may be disposed in a myocardium of a patient's heart so that the upstream end portion communicates with a left ventricle of the patient's heart, while a downstream end portion of the shunt member is inserted into a coronary artery of the patient downstream of a blockage in the coronary artery so that the downstream end portion is disposed inside the coronary artery. In a variation of the present invention, the shunt member is deployed so as to be disposed only inside the myocardium and the coronary artery. In contrast to the above-described methodology, no portion of the shunt member lies in the intrapericardial space. In this variation of the method, the shunt member is again delivered intravascularly into the left ventricle of the patient's heart, with the downstream end portion being passed through the myocardium. However, in this variation, the downstream end portion is inserted directly into the coronary artery through a posterior wall thereof in contact with the myocardium.
Posterior Wall Access
A method for performing a myocardial revascularization comprises, in accordance with another embodiment of the present invention, forming a passageway at least partially through a myocardium of a patient from an outer surface of the patient's heart, and performing a surgical operation at an outer end of the passageway to permanently close the passageway at the outer end. In a particular implementation of this embodiment of the invention, the passageway includes a portion extending though a posterior wall of a coronary artery and is produced by forming an aperture in an anterior wall of the coronary artery and forming the passageway in substantial alignment with the aperture. In this case, the closure of the passageway is effectuated particularly by closing the aperture in the anterior wall of the coronary artery. The closing of the aperture in the anterior wall of the coronary artery may be effectuated by one or more of several techniques, including suturing, plugging, and laser coagulation. To reinforce the closure of the artery wall, a brace may be placed over the closure. The brace may take the form of a biocompatible patch attached to the heart via suturing or laser welding.
Conduit Configurations
Pursuant to another feature of a myocardial revascularization technique, in accordance with yet another embodiment of the present invention, a stent is inserted into the passageway formed at least partially through the patient's myocardium. The inserting of the stent is preferably performed prior to the performing of the surgical operation to close the passageway at the outer end. The myocardial revascularization technique, including the insertion of the stent, may be performed in open heart surgery or in a pericardioscopic operation. In either case, the aperture in the anterior wall of the coronary artery and the passageway in the myocardium are formed by operating an instrument taken from the group consisting of a surgical drill and a surgical laser.
The passageway formed to communicate at an inner end with a left ventricle of the patient may communicate at an outer end with a coronary artery or, alternatively, may terminate in the myocardium after closure of the outer end of the passageway. In the former case, blood flows from the left ventricle through the passageway, the coronary artery and blood vessels communicating with the coronary artery. In the latter case, the myocardium is revascularized directly by the passageway, rater than indirectly through the coronary artery and its tributaries.
In a myocardial revascularization technique in accordance with another embodiment of the present invention, the passageway may be one of a plurality of similarly formed passageways extending from the coronary artery into the myocardium of the patient. Each passageway is produced by forming a plurality of openings in the anterior wall of the coronary artery and forming the passageways in alignment with respective ones of the openings. The passageways are effectively closed from the external environment (the intrapericardial space) by closing the openings in the anterior wall of the coronary artery. Where a myocardial passageway formed in accordance with this embodiment does not extend through or into a coronary artery, the closure of the passageway is effectuated on an epicardium of the patient.
A stent for a coronary artery bypass or myocardium revascularization procedure in accordance with another embodiment of the present invention has a collapsed configuration and an expanded configuration. The expanded configuration may have an arcuate form, to provide a curved flow path for blood upon implantation of the stent into a myocardium of a patient. This curved flow path smoothly redirects blood flow and minimizes possible adverse effects that the impulsive force of the blood might have on the patient's coronary artery and other layers of heart tissue. The stent may have a one-way valve for preventing retrograde flow of blood.
Another stent in accordance with another embodiment has a collapsed configuration and an expanded configuration and is provided with a sensor and means for transmitting signals from the sensor to a receiver external to the stent. The sensor is taken from the group consisting of a pressure sensor and a flow sensor.
Self-Inserting Conduits
In yet another embodiment of the present bypass apparatus there is provided a self-inserting conduit for diverting blood directly from the left ventricle of the heart to the coronary artery at a point distal to the blockage, therefore bypassing the blocked portion of the vessel. The shunt comprises a stent in the form of a single conduit having an opening at either end, and adapted to be positioned in the myocardium. The coronary artery, the myocardium and the wall of the left ventricle of the heart are pierced by the conduit from an outside space or tissue in a transverse manner to provide a channel completely through from the coronary artery to the left ventricle of the heart. An opening located on the distal end of the conduit is positioned in the coronary artery. Oxygenated blood is pumped from the left ventricle, through the distal opening, through the hollow central portion of the conduit, out of the proximal opening and into the coronary artery distal to the blockage. The conduit is anchored in the myocardium to provide a permanent passage for blood to flow between the left ventricle of the heart and the coronary artery, distal to the blockage.
The apparatus of the present invention is preferably implanted in a minimally invasive manner using thoroscopy or another endoscopic procedure, although open surgery or other means of vascular access are also possible.
Coronary Bypass
The present system preferably utilizes a combination conduit comprising an access and shunt device for forming a diversion of the blood from the coronary and proximally to the stenosis. A similar access and shunt device is located in the vessel distal of the stenosis to receive the diverted blood and allow it to continue on its course downstream. The combination access/shunt device comprises a conduit element for providing access to the vessel and anchoring the system in place. The conduit pierces the artery from the outside and travels completely through it and into the myocardium or other heart tissue adjacent the coronary artery. The conduit has a conduit or barb or series of barbs on its distal end and is otherwise designed so that it has substantial resistance to pull back or exit from the vessel. As noted, the conduit pierces through the vessel from an outside space or tissue in a transverse manner. Mounted on top of the conduit is a shunt device which comprises an aperture and a diversion conduit. With the conduit in its anchoring position, the shunt device is located partially in the vessel and partially outside of the vessel from the direction in which the conduit entered. The aperture resides in the vessel to allow blood to enter therein and from there to the diversion tube which is in fluid communication with the aperture. This provides the shunt of blood into the diversion tube of the combination access/shunt device. Mounted on top of the diversion tube is a connector piece which mates with a bypass conduit. These elements are also in fluid communication to allow the blood to bypass the blockage and to be shunted to a location distal thereof.
At such distal location, another similar combination access/shunt device is placed to allow the shunted blood to re-enter the artery in a free-graft configuration, and continue on its path downstream. However, a single device can be used distal of the restriction and connected to an appropriate graft for revascularization.
The apparatus of the present invention is preferably implanted in a minimally invasive manner using thoroscopy or other endoscopic procedure, although open surgery or other means of vascular access are also possible. The apparatus can be implanted permanently, or can be used temporarily to provide a bypass system during various surgical procedures, including coronary bypass procedures.
Thus, the present system is used to direct the flow of blood around the blocked portion of the vessel. In one embodiment, a shunt is used to direct blood directly from the left ventricle of the heart to the coronary artery at a point distal to the blockage. According to one aspect of the invention, the shunt comprises a rigid, generally elongated stent in the form of a single conduit having an opening at either end, and adapted to be positioned in the myocardium. The coronary artery, the myocardium and the wall of the left ventricle of the heart are pierced by the conduit from an outside space or tissue in a transverse manner to provide a channel completely through from the coronary artery to the left ventricle of the heart. An opening located on the distal end of the conduit is positioned within the left ventricle. An opening on the proximal end of the conduit is positioned in the coronary artery. Oxygenated blood is pumped from the left ventricle, through the distal opening, through the hollow central portion of the conduit, out of the proximal opening and into the coronary artery distal to the blockage. The conduit is anchored in the myocardium to provide a permanent passage for blood to flow between the left ventricle of the heart and the coronary artery, distal to the blockage.
Alternatively, the conduit can be used temporarily to maintain blood flow through the coronary artery during therapeutic procedures, such as coronary bypass. The conduit can be used to deliver a vein graft and to provide for the passage of blood around the blockage until the anastomosis of the graft is complete.
FIGS. 40 and 40A-40Q show a variety of members for securing segments of tissue to each other, as well as conduit members.
In the drawings, the same reference designations are used to designate the same objects. The word “distal” when used herein designates an instrument end which is spaced from the surgeon, radiologist or other operator. The physical relation of the instrument to the patient is not determinative.
The principles of the present invention are not limited to left ventricular conduits, and apply to conduits for communicating bodily fluids from any space within a patient to another space within a patient, including any mammal. Furthermore, such fluid communication through the conduits is not limited to any particular direction of flow and can be antegrade or retrograde with respect to the normal flow of fluid. Moreover, the conduits may communicate between a bodily space and a vessel or from one vessel to another vessel (such as an artery to a vein or vice versa). Moreover, the conduits can reside in a single bodily space so as to communicate fluids from one portion of the space to another. For example, the conduits can be used to achieve a bypass within a single vessel, such as communicating blood from a proximal portion of an occluded coronary artery to a more distal portion of that same coronary artery.
In addition, the conduits and related methods can preferably traverse various intermediate destinations and are not limited to any particular flow sequence. For example, in one preferred embodiment of the present invention, the conduit communicates from the left ventricle, through the myocardium into the intrapericardial space, and then into the coronary artery. However, other preferred embodiments are disclosed, including direct transmyocardial communication from a left ventricle, through the myocardium and into the coronary artery. Thus, as emphasized above, the term “transmyocardial” should not be narrowly construed in connection with the preferred fluid communication conduits, and other non-myocardial and even non-cardiac fluid communication are preferred as well. With respect to the walls of the heart (and more specifically the term “heart wall”), the preferred conduits and related methods are capable of fluid communication through all such walls including, without limitation, the pericardium, epicardium, myocardium, endocardium, septum, etc.
The bypass which is achieved with certain preferred embodiments and related methods is not limited to a complete bypass of bodily fluid flow, but can also include a partial bypass which advantageously supplements the normal bodily blood flow. Moreover, the occlusions which are bypassed may be of a partial or complete nature, and therefore the terminology “bypass” or “occlusion” should not be construed to be limited to a complete bypass or a complete occlusion but can include partial bypass and partial occlusion as described.
The preferred conduits and related methods disclosed herein can also provide complete passages or partial passages through bodily tissues. In this regard, the conduits can comprise stents, shunts, or the like, and therefore provide a passageway or opening for bodily fluid such as blood. Moreover, the conduits are not necessarily stented or lined with a device but can comprise mere tunnels or openings formed in the tissues of the patient.
The conduits of the present invention preferably comprise both integral or one-piece conduits as well as plural sections joined together to form a continuous conduit. In this regard, the anastomotic devices and methods utilized in connection with the various embodiments of the present invention are to be broadly construed to relate to connections of these various components. The present conduits can be deployed in a variety of methods consistent with sound medical practice including vascular or surgical deliveries, including minimally invasive techniques. For example, various preferred embodiments of delivery rods and associated methods are disclosed. In one embodiment, the delivery rod is solid and trocar like. It may be rigid or semi-rigid and capable of penetrating the tissues of the patient and thereby form the conduit, in whole or in part, for purposes of fluid communication. The delivery rod may be an incising instrument such as a laser or a drill. In other preferred embodiments, the delivery rods may be hollow so as to form the conduits themselves (e.g., the conduits are preferably self-implanting or self-inserting) or have a conduit mounted thereon (e.g., the delivery rod is preferably removed leaving the conduit installed). Thus, the preferred conduit device and method for installation is preferably determined by appropriate patient indications in accordance with sound medical practices.
Further details regarding conduits and conduit delivery systems are described in patent applications U.S. patent application Ser. No. 09/368,868, filed Aug. 4, 1999, now U.S. Pat. No. 6,261,304, entitled DELIVERY METHODS FOR LEFT VENTRICULAR CONDUIT, U.S. application Ser. No. 09/369,048, filed Aug. 4, 1999, now U.S. Pat. No. 6,290,728, entitled DESIGNS FOR LEFT VENTRICULAR CONDUIT, U.S. application Ser. No. 09/369,061, filed Aug. 4,1999, now U.S. Pat. No. 6,254,564, entitled LEFT VENTRICULAR CONDUIT WITH BLOOD VESSEL GRAFT, U.S. application Ser. No. 09/368,393, filed Aug. 4,1999, entitled VALVE DESIGNS FOR LEFT VENTRICULAR CONDUIT, and U.S. application Ser. No. 09/368,644, filed Aug. 4, 1999, now U.S. Pat. No. 6,302,892, entitled BLOOD FLOW CONDUIT DELIVER SYSTEM AND METHOD OF USE, and U.S. Pat. Nos. 5,429,144 and 5,662,124, the disclosures of which are all hereby incorporated by reference in their entirety.
Conduits Utilizing Intrapericardial Space
In a transmyocardial coronary artery bypass operation illustrated in
Upon ejection of a distal tip of optical fiber 14 from catheter 12 into left ventricle LV, the fiber tip is placed into contact with a heart wall HW of the patient at a predetermined location downstream of an arterial blockage BL in the coronary artery CA of the patient, as illustrated in
After the formation of passageway 18, optical fiber 14 is withdrawn from catheter 12 and replaced with a guidewire 20 (FIG. 1C). In addition, catheter 12 is pushed in a forward direction through passageway 18 so that a distal end portion of the catheter extends outwardly from passageway 18 into an intrapericardial space IS. A shunt 22 made of flexible biocompatible material such as polyethylene or GORTEX™ is then passed over guidewire 20 and through catheter 12. At this juncture, a forceps instrument 24 (
After the attachment of shunt 22 to anterior wall AW of coronary artery CA, optical fiber 14 is again inserted through catheter 12 and through shunt 22 to anterior wall AW of coronary artery CA. Laser source 16 is temporarily activated to form an aperture in anterior wall AW of coronary artery CA inside shunt 22, thereby establishing a transmyocardial coronary artery bypass path from left ventricle LV into the coronary artery downstream of blockage BL as illustrated in FIG. 1E. After the formation of the aperture in coronary artery CA, fiber 14 is withdrawn from shunt 22 and catheter 12 is withdrawn from heart wall HW. Optical fiber 14 may be used at that time (or previously) to attach an upstream end of shunt 22 to heart wall HW at left ventricle LV. The optical fiber 14 and catheter 12 are then extracted from the patient. The deployed shunt 22 extends from left ventricle LV through heart wall or myocardium HW to anterior wall AW of coronary artery CA, with a middle or intermediate portion (not separately designated) of shunt 22 being disposed in intrapericardial space IS.
The structure of shunt 28, as well as different uses thereof, is described and illustrated in U.S. Pat. No. 5,470,320, the disclosure of which is hereby incorporated by reference.
In another variation (not illustrated) of the transmyocardial coronary artery bypass of
As illustrated in
Conduit Configurations
The embodiment of
As depicted in
Shunt 52 is curved and bears the force of the blood ejected from left ventricle LV through passageway or channel 60 during systole.
Other one way valve embodiments are shown in
As illustrated in
Several shunt members 22 or 52 may be necessary in cases of multiple coronary artery blockages. These multiple shunt members each tap into the coronary artery at a point downstream of a respective blockage.
As depicted in
As seen in
Other stent designs may be used like the parallelpiped shaped stents 818 of
A shunt or stent 74 may be provided with a pressure sensor 76 and/or a flow sensor 78, as illustrated in FIG. 9. Sensors 76 and 78 are attached to or incorporated into a wall 80 of shunt or stent 74 and have outputs operatively connected to a transmitter 82 which is also attached to or incorporated into shunt or stent wall 80. Output signals from sensors 76 and 78 which encode data pertaining to pressures and flow rates are relayed to a receiver 84 via transmitter 82. Transmitter 82 may be wireless or connected by a wire 86 to receiver 84. The pressure and flow rate data collected via sensors 76 and 78 are useful for monitoring the effectiveness of the implanted stents or shunts for any particular patient and thereby determining whether additional stents or shunts may be necessary for that patient. Receiver 84 may be physically located on a chest of the patient or otherwise nearby.
Posterior Wall Access
As illustrated in
Upon the formation of passageway 90, a stent 94 (
After the formation of passageway 90 and after the installation of stent 94 via an extravascular operation, aperture 92 is closed, via sutures (not shown) and/or via a plug 98 (
Myocardial Plugs
The various conduits or stents disclosed herein may be provided with a layer of polymeric material carrying a biochemical composition, e.g., angiogenesis factor or the nucleic acid instructions therefor, for generating, stimulating, and enhancing blood vessel formation. As illustrated in
If desired, the stent or conduit of the present invention can be formed of biodegradable or bioabsorbable materials and/or used to deliver drugs directly into the myocardium and the coronary circulation. Such a stent 952 is illustrated in FIG. 16B. The biodegradable stent 952 can extend only partially through the heart wall HW as illustrated in
Such a stent is also illustrated in
Turning now to
It is to be appreciated that the drawings herein are schematic. The stents and shunt portions in the forms of stents described herein may have a conventional wire infrastructure not shown in the drawings. Alternatively, the stents may be made of an elastic material having an internal spring constant permitting the stent to be temporarily collapsed and then returned to an opened configuration.
Intravascular or extravascular incising instruments disclosed herein for use in forming passageways or channels in the myocardium may be contact lasers or rotating or reciprocating drills. Other drilling or cutting instruments suitable for forming channels or tunnels may be used alternatively or additionally. Such instruments may take the form of ultrasonic cavitation devices, chemical devices for dissolving tissues, or heat treatment (electrocautery) devices.
Although suturing, gluing and laser welding are discussed herein for attaching plugs and reinforcement patches or braces to the cardiac tissues, equivalent alternatives to these techniques include stapling and tacking. Also, apertures in the epicardium or coronary artery may be closed without plugs or patches, for example, by the direct application of sutures or staples or by coagulation (electrical, thermal or laser).
It is to be understood that stents are preferred for maintaining open blood flow passageways in or through the myocardium. However, in some cases, stents may be omitted, for example, in the embodiments of
Generally, stent 36 (FIG. 3), upstream portion 56 (
Self-Inserting Conduits
As is well known, the coronary artery CA branches off the aorta AO and is positioned along the external surface of the heart wall HW. Oxygenated blood flows from the heart PH to the aorta AO, into the coronary artery CA, and on to the rest of the body. In some individuals, plaque builds up within the coronary artery CA, blocking the free flow of blood and causing complications ranging from mild angina to heart attack and death.
In view of restoring the flow of oxygenated blood through the coronary artery CA, embodiments are disclosed which provide for the shunting of blood directly from the heart to a site in the coronary artery CA which is distal to the blockage BL. In a similar manner to that described above, a single rod-like conduit may utilize posterior heart wall access in order to be inserted through the walls of the coronary artery CA and the heart wall HW, and from there into the left ventricle LV of the heart PH which lies beneath the coronary artery CA. The hollow conduit is positioned such that the openings on either end of the conduit are within the coronary artery CA and the left ventricle LV. Blood flows through the opening in the left ventricle LV, through the hollow conduit and out of the opening positioned in the coronary artery CA distal to the site of the blockage BL. Thus, the self-inserting conduit is preferably rigid or at least semi-rigid in order to provide the ability to pierce through the heart wall or other tissue of the patient and to install the conduit as described above. In this case, the conduit is preferably a delivery rod in that it provides for its own delivery.
Referring to
Referring to
Each shunt device 210 (
The distal end of the conduit 214 may be blunt (
As illustrated in
In installing the device of this embodiment, the surgeon may make a small incision of a keyhole type in order to gain access to the blocked vessel. Visual access may be obtained through thoroscopy or similar endoscopic procedure. Such access is very minimally invasive. Once the area of blockage is located (through fluoroscopy, etc.), the conduit 210 is implanted in the body in the manner described above. The conduit device 210 is preferably introduced by way of an automatic gun or needle in order to reduce procedure time and avoid bleeding, but the conduit 210 may be implanted in other ways as well.
One method for implanting the device is illustrated in
In an alternate method illustrated in
The conduit 230 is preferably anchored in place in the heart wall HW as described above to prevent migration and to ensure that the free flow of blood from the left ventricle LV to the coronary artery CA is maintained.
Coronary Bypass
Referring to
Referring to
Each access/shunt device 312 (e.g., see also
In a preferred embodiment, a biocompatible fabric or mesh (not shown) is incorporated into the structure of the device. This fabric or mesh helps to seal the vessel to prevent bleeding and provides a structure which allows endothelial cells to infiltrate the device 312 and incorporate it into the surrounding tissues.
Likewise,
In installing the device 310, the surgeon may make a small incision of a keyhole type in order to gain access to the blocked vessel. Visual access may be obtained through thoracoscopy or similar endoscopic procedure. Such access is very minimally invasive. Once the area of blockage is located (through fluoroscopy, etc.), one or both of the combination access/shunt devices 312 are installed in the artery in the manner described above. The conduit devices 312 would preferably be introduced by way of an automatic gun which would implant both conduit devices 312 and the conduit 314 at the same time in order to reduce procedure time and avoid bleeding. Alternatively, the conduits 312 could be introduced individually, provided that bleeding is controlled.
The device 310 can be sutured in place to provide for permanent bypass; alternatively, the device can be implanted temporarily to maintain the flow of blood through the coronary artery CA during bypass surgery. The device 310 is implanted as described above. A vein graft is sutured in place, with one end anastomosed to the aorta, and the other end to the coronary artery CA at a site distal to the blockage. The device 310 provides blood flow from the aorta to the coronary artery CA at a site distal to the blockage BL during the anastomosis. Once blood flow has been established through the vein graft, the bypass device may be removed.
Referring now to
A side-by-side bypass device 412 is depicted in
For illustrative purposes, it has been found that an anastomosis shunt device of the type depicted in
Anastomosis Devices and Methods
It will be noted in connection with the coronary bypass devices, systems, and methods described above that various connections from one conduit to another are necessary. The term “anastomosis” refers to the joining of two conduits or two vessels in a similar fashion; although, in the context of the present application, that term should not be limited to a particular medical definition or practice, but refers broadly to the connection of various conduits in connection with bypass systems. Thus, as described above, prefit connections from one conduit onto a hub of another conduit are possible, although other anastomosis configurations are described below.
As shown in
In one embodiment of the present invention, the conduit 600 is used to maintain blood flow through the coronary artery CA during bypass surgery (FIG. 39A). The vein graft VG is loaded on top of the stent 600 prior to implantation. The conduit 600 is implanted as described above, at the point of the vein graft VG anastomosis. The vein graft VG is sutured to the aorta and to the CA at a point distal to the blockage BL. If desired, the sutures can be preloaded onto the graft VG to facilitate the anastomosis. Once the vein graft VG has been attached, the conduit 600 is removed, and blood flow occurs from the aorta AO, through the vein graft VG, and down the coronary artery CA. The conduit 600 can be sutured in place during the anastomosis procedure for permanent attachment, if desired.
Other embodiments for connecting vessels or segments of vessels together are shown in
A technique for securing the vessels 1200 and 1202 to the disc members is illustrated in
Another conduit device 1254 is shown in
Another conduit member 1320 is shown in FIG. P. The member 1320 includes a ring 1324 and a plurality of teeth 1328. When in use, the ring 1324 contacts the inside of the coronary artery CA, whereas the teeth 1328 engage the vessel 1200 in a manner analogous to the embodiment of
Conduits With Flow Resistance
One of the advantages of certain embodiments of the present conduits is that they can be designed to optimize fluid or blood flow through them. That is, the design or configuration of a conduit may be such that it automatically achieves flow control without microvalves, check valves, or other moving devices. (See, for example, the conduits of
Experimentation has shown, however, that the above characteristics may not necessarily produce optimized flow rate in the coronary artery. Thus, it should be remembered that flow rate through the conduit should be controlled such that it enhances total coronary flow rate, which total coronary flow rate is essential for perfusion of the heart tissues. Thus, experimentation has shown that the degree of proximal occlusion may have an effect on total coronary flow rate. It has been determined that, where a proximal occlusion is only partial, the total flow rate in the distal coronary artery may increase with greater systolic resistance in the conduit. This may be due, at least in part, to the back pressure which the flow through the conduit sees as a result of the partial occlusion. Thus, optimization under these circumstances must take into consideration the degree of proximal occlusion. In this regard, it has been determined that total coronary flow rate is increased with increasing systolic resistance through the conduit. Preferably, diastolic resistance remains high. For example, it has been found that with mild systolic resistance, an increase in coronary flow rate was achieved with approximately zero negative diastolic flow.
Thus, referring to
It will also be observed at the proximal end 1404 of the conduit 1400 that the entrance 1412 is shaped so as to have a high radius of curvature, which is approximately ½ of the difference between the diameter at the exit 1416 and the diameter of the conduit 1400 at the entrance 1412. This curvature tends to reduce flow losses (or in other words, decreases resistance to flow) at the entrance 1412, thereby maximizing flow through the conduit during systole. At the same time, it will be observed that the decreased diameter at the entrance 1412 increases the resistance to reverse diastolic flow at that location, thus tending to decrease negative flow through the conduit 1400 or flow from the coronary artery CA back into the ventricle LV. Thus, the proximal portion of the conduit 1400 is designed so as to achieve an abrupt expansion resulting in large exit losses and consequently high resistance to diastolic flow.
At the distal end 1408, on the other hand, flow losses are minimized, so as to minimize flow resistance. Such exit losses are essentially zero because the exit diameter of the conduit 1400 proximates or matches the diameter of the coronary artery CA. Moreover, during diastolic flow, there will be an “entrance” losses at the exit of the conduit 1400, thus increasing the resistance to such negative flow. Moreover, the curved configuration of the distal end 1408 of the conduit 1400 minimizes flow loss during diastole which results from proximal flow through a partial occlusion. In other words, the distal end 1408 of the conduit 1400 can be constructed so as to allow a proximal flow passing a partial occlusion and contributing to the flow through the conduit 1400 to produce an advantageous total coronary flow rate. Such distal designs for the conduit 1400 are described elsewhere herein and are compatible with the conduit of FIG. 41. Moreover, the conduit 1400 can be constructed from a rigid or flexible material, it may be a solid wall or lattice structure (e.g., stent-like) as described below.
Thus, the conduit 1400 of
Referring to
Similarly, as shown in
When the flow direction is reversed, such as that shown in
A conduit 1480 utilizing this type of vortex diode device is shown in FIG. 44C. Thus, in this embodiment, the tangential flow port 1484 is placed in the coronary artery CA such that a high resistance to reverse flow is generated. On the other hand, the entrance 1486 to the axial flow port is placed in the ventricle LV so that blood flow into the conduit 1480 sees low resistance.
Conduits With Proximal Extensions
As discussed above, flow resistance in the direction of ventricle LV to coronary artery CA can be reduced by an increased exit diameter at the conduit distal portion which opens into the coronary artery CA. At this location, a conduit exit diameter which approximates or matches the diameter of the coronary will result in decreased flow losses and minimize flow resistance. Due to the curvature of the conduit, the flow at the conduit exit is approximately parallel to the axial flow in the coronary. Thus, this distal conduit portion may serve not only as an advantageous controller of the flow, but the extension nature of the distal portion can also serve to anchor or support the conduit in its position. Furthermore, as noted above, this distal portion of the conduit can be designed to allow proximal flow past a partial occlusion, past the distal portion of the conduit, and into the lower coronary regions for profusion of the heart.
Thus, referring to
The conduit 1600 of
An alternate embodiment of the conduit 1600 of
Another embodiment of a conduit 1670 having a proximal extension is shown in FIG. 49. In this case, the proximal portion 1674 of the conduit 1670 and the main body 1678 portion thereof which extends to the myocardium HW are relatively stiff or rigid regions. These portions of the conduit 1670 can be constructed from a smooth material, such as a metallic stainless steel or nitinol hypotube. Thus, a laminar flow pattern is generated in the conduit 1670 in these regions.
On the other hand, as the flow approaches the artery CA, the conduit 1670 can be constructed from a combination of laser cut hypotube and elastomer to provide a flexible distal portion which extends proximally into the coronary artery CA. In the embodiment of
Alternatively, as shown in
The lattice construction of the conduit 1690 of
The conduit 1730 of
The bypass devices and methods herein provide significant improvements in the treatment of vascular blockages. It should be understood that while various anatomical features have been discussed herein for ease of reference, the anastomosis devices described herein can also be used in connection with vessels other than coronary artery, etc. Thus, it is intended that the present invention is applicable to a wide range of uses where vascular anastomosis is indicated. It is further intended that the present invention may applicable during a wide variety of surgical techniques, from conventional sternotomy or “open chest” procedures, to minimally-invasive direct coronary artery bypass (MIDCAB) and even vascular approaches.
Accordingly, it is to be understood that the drawings and descriptions herein are proffered by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.
This application is a continuation of application Ser. No. 09/534,038, filed Mar. 24, 2000, which is a continuation of application Ser. No. 09/369,039, filed Aug. 4, 1999, now abandoned, which is a continuation-in-part of application Ser. No. 09/016,485, filed Jan. 30, 1998, now abandoned, and a continuation-in-part of PCT Application No. PCT/US99/03484, filed internationally Feb. 17,1999, and which claims the benefit of U.S. Provisional Application Nos. 60/099,691, 60/099,720, and 60/099,767 each filed Sep. 10, 1998; and U.S. Provisional Application No. 60/104,397, filed Oct. 15, 1998, all of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4503568 | Madras | Mar 1985 | A |
4531936 | Gordon | Jul 1985 | A |
4733665 | Palmaz | Mar 1988 | A |
4769029 | Patel | Sep 1988 | A |
4995857 | Arnold | Feb 1991 | A |
5035702 | Taheri | Jul 1991 | A |
5071407 | Termin et al. | Dec 1991 | A |
5135467 | Citron | Aug 1992 | A |
5180366 | Woods | Jan 1993 | A |
5190058 | Jones et al. | Mar 1993 | A |
5193546 | Shaknovich | Mar 1993 | A |
5226889 | Sheiban | Jul 1993 | A |
5258008 | Wilk | Nov 1993 | A |
5287861 | Wilk | Feb 1994 | A |
5330486 | Wilk | Jul 1994 | A |
5342348 | Kaplan | Aug 1994 | A |
5344426 | Lau et al. | Sep 1994 | A |
5385541 | Kirsch et al. | Jan 1995 | A |
5389096 | Aita et al. | Feb 1995 | A |
5409019 | Wilk | Apr 1995 | A |
5423744 | Gencheff et al. | Jun 1995 | A |
5423851 | Samuels | Jun 1995 | A |
5429144 | Wilk | Jul 1995 | A |
5443497 | Venbrux | Aug 1995 | A |
5456694 | Marin et al. | Oct 1995 | A |
5456712 | Maginot | Oct 1995 | A |
5456714 | Owen | Oct 1995 | A |
5470320 | Tiefenbrun et al. | Nov 1995 | A |
5527337 | Stack et al. | Jun 1996 | A |
5554119 | Harrison et al. | Sep 1996 | A |
5578075 | Dayton | Nov 1996 | A |
5593434 | Williams | Jan 1997 | A |
5609626 | Quijano et al. | Mar 1997 | A |
5618299 | Khosravi et al. | Apr 1997 | A |
5643278 | Wijay | Jul 1997 | A |
5655548 | Nelson et al. | Aug 1997 | A |
5662124 | Wilk | Sep 1997 | A |
5676670 | Kim | Oct 1997 | A |
5733267 | Del Toro | Mar 1998 | A |
5755682 | Knudson et al. | May 1998 | A |
5758663 | Wilk et al. | Jun 1998 | A |
5797920 | Kim | Aug 1998 | A |
5797933 | Snow et al. | Aug 1998 | A |
5807384 | Mueller | Sep 1998 | A |
5810836 | Hussein et al. | Sep 1998 | A |
5810871 | Tuckey et al. | Sep 1998 | A |
5824038 | Wall | Oct 1998 | A |
5824071 | Nelson et al. | Oct 1998 | A |
5830222 | Makower et al. | Nov 1998 | A |
5840059 | March et al. | Nov 1998 | A |
5843163 | Wall | Dec 1998 | A |
5851232 | Lois | Dec 1998 | A |
5855597 | Jayaraman | Jan 1999 | A |
5865723 | Love | Feb 1999 | A |
5876419 | Carpenter et al. | Mar 1999 | A |
5878751 | Hussein et al. | Mar 1999 | A |
5908028 | Wilk | Jun 1999 | A |
5908029 | Knudson et al. | Jun 1999 | A |
5925012 | Murphy-Chutorian et al. | Jul 1999 | A |
5935119 | Guy et al. | Aug 1999 | A |
5935161 | Robinson et al. | Aug 1999 | A |
5935162 | Dang | Aug 1999 | A |
5944019 | Knudson et al. | Aug 1999 | A |
5961548 | Shmulewitz | Oct 1999 | A |
5968093 | Kranz | Oct 1999 | A |
5971993 | Hussein et al. | Oct 1999 | A |
5976153 | Fischell et al. | Nov 1999 | A |
5976155 | Foreman et al. | Nov 1999 | A |
5976159 | Bolduc et al. | Nov 1999 | A |
5976169 | Imran | Nov 1999 | A |
5976181 | Whelan et al. | Nov 1999 | A |
5976182 | Cox | Nov 1999 | A |
5976192 | McIntyre et al. | Nov 1999 | A |
5976650 | Campbell et al. | Nov 1999 | A |
5979455 | Maginot | Nov 1999 | A |
5980530 | Willard et al. | Nov 1999 | A |
5980533 | Holman | Nov 1999 | A |
5980548 | Evans et al. | Nov 1999 | A |
5980551 | Summers et al. | Nov 1999 | A |
5980552 | Pinchasik et al. | Nov 1999 | A |
5980553 | Gray et al. | Nov 1999 | A |
5980566 | Alt et al. | Nov 1999 | A |
5984955 | Wisselink | Nov 1999 | A |
5984956 | Tweden et al. | Nov 1999 | A |
5984963 | Ryan et al. | Nov 1999 | A |
5984965 | Knapp et al. | Nov 1999 | A |
5985307 | Hanson et al. | Nov 1999 | A |
5989207 | Hughes | Nov 1999 | A |
5989263 | Schmulewitz | Nov 1999 | A |
5989287 | Yang et al. | Nov 1999 | A |
5993481 | Marcade et al. | Nov 1999 | A |
5993482 | Chuter | Nov 1999 | A |
5997525 | March et al. | Dec 1999 | A |
5997563 | Kretzers | Dec 1999 | A |
5997573 | Quijano et al. | Dec 1999 | A |
5999678 | Murphy-Chutorian et al. | Dec 1999 | A |
6001123 | Lau | Dec 1999 | A |
6004261 | Sinofsky et al. | Dec 1999 | A |
6004347 | McNamara et al. | Dec 1999 | A |
6004348 | Banas et al. | Dec 1999 | A |
6005020 | Loomis | Dec 1999 | A |
6007543 | Ellis et al. | Dec 1999 | A |
6007544 | Kim | Dec 1999 | A |
6007575 | Samuels | Dec 1999 | A |
6007576 | McClellan | Dec 1999 | A |
6010530 | Goicoechea | Jan 2000 | A |
6017365 | Von Oepen | Jan 2000 | A |
6029672 | Vanney et al. | Feb 2000 | A |
6036697 | DiCaprio | Mar 2000 | A |
6039721 | Johnson et al. | Mar 2000 | A |
6042581 | Ryan et al. | Mar 2000 | A |
6045565 | Ellis et al. | Apr 2000 | A |
6053911 | Ryan et al. | Apr 2000 | A |
6053924 | Hussein | Apr 2000 | A |
6053942 | Eno et al. | Apr 2000 | A |
6067988 | Mueller | May 2000 | A |
6068638 | Makower et al. | May 2000 | A |
6071292 | Makowen et al. | Jun 2000 | A |
6076529 | Vanney et al. | Jun 2000 | A |
6080163 | Hussein et al. | Jun 2000 | A |
6092526 | LaFontaine et al. | Jul 2000 | A |
6093166 | Knudson et al. | Jul 2000 | A |
6093177 | Javier, Jr. et al. | Jul 2000 | A |
6095997 | French et al. | Aug 2000 | A |
6102941 | Tweden et al. | Aug 2000 | A |
6106538 | Shiber | Aug 2000 | A |
6110201 | Quijano et al. | Aug 2000 | A |
6113823 | Eno | Sep 2000 | A |
6117165 | Becker | Sep 2000 | A |
6120520 | Saadat et al. | Sep 2000 | A |
6120570 | Packer et al. | Sep 2000 | A |
6123682 | Knudson et al. | Sep 2000 | A |
6126649 | Van Tassel et al. | Oct 2000 | A |
6139541 | Vanney et al. | Oct 2000 | A |
6152141 | Stevens et al. | Nov 2000 | A |
6159196 | Ruiz | Dec 2000 | A |
6159225 | Makower | Dec 2000 | A |
6162245 | Jayaraman | Dec 2000 | A |
6182668 | Tweden et al. | Feb 2001 | B1 |
6186972 | Nelson et al. | Feb 2001 | B1 |
6187034 | Frantzen | Feb 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6193726 | Vanney | Feb 2001 | B1 |
6196230 | Hall et al. | Mar 2001 | B1 |
6197050 | Eno et al. | Mar 2001 | B1 |
6197324 | Crittenden | Mar 2001 | B1 |
6203556 | Evans et al. | Mar 2001 | B1 |
6214041 | Tweden et al. | Apr 2001 | B1 |
6223752 | Vanney et al. | May 2001 | B1 |
6224584 | March et al. | May 2001 | B1 |
6231568 | Loeb et al. | May 2001 | B1 |
6231587 | Makower | May 2001 | B1 |
6237607 | Vanney et al. | May 2001 | B1 |
6238406 | Ellis et al. | May 2001 | B1 |
6245102 | Jayaraman | Jun 2001 | B1 |
6248112 | Gambale et al. | Jun 2001 | B1 |
6250305 | Tweden | Jun 2001 | B1 |
6251079 | Gambale et al. | Jun 2001 | B1 |
6251116 | Shennib et al. | Jun 2001 | B1 |
6251418 | Ahern et al. | Jun 2001 | B1 |
6253768 | Wilk | Jul 2001 | B1 |
6254564 | Wilk et al. | Jul 2001 | B1 |
6258119 | Hussein et al. | Jul 2001 | B1 |
6261304 | Hall et al. | Jul 2001 | B1 |
6283951 | Flaherty et al. | Sep 2001 | B1 |
6283983 | Makower et al. | Sep 2001 | B1 |
6287317 | Makower et al. | Sep 2001 | B1 |
6290719 | Garberoglio | Sep 2001 | B1 |
6290728 | Phelps et al. | Sep 2001 | B1 |
6293955 | Houser et al. | Sep 2001 | B1 |
6302875 | Makower | Oct 2001 | B1 |
6302892 | Wilk | Oct 2001 | B1 |
6306125 | Parker et al. | Oct 2001 | B1 |
6309370 | Haim et al. | Oct 2001 | B1 |
6322548 | Payne et al. | Nov 2001 | B1 |
RE37463 | Altman | Dec 2001 | E |
6329348 | Crystal et al. | Dec 2001 | B1 |
6330884 | Kim | Dec 2001 | B1 |
6331527 | Parmacek et al. | Dec 2001 | B1 |
6350248 | Knudson et al. | Feb 2002 | B1 |
6361519 | Knudson et al. | Mar 2002 | B1 |
6363938 | Saadat et al. | Apr 2002 | B2 |
6363939 | Wilk | Apr 2002 | B1 |
6375615 | Flaherty et al. | Apr 2002 | B1 |
6379319 | Garibotto et al. | Apr 2002 | B1 |
6387119 | Wolf et al. | May 2002 | B2 |
6395208 | Herweck et al. | May 2002 | B1 |
6402719 | Ponzi et al. | Jun 2002 | B1 |
6406488 | Tweden et al. | Jun 2002 | B1 |
6406491 | Vanney | Jun 2002 | B1 |
6409697 | Eno et al. | Jun 2002 | B2 |
6409751 | Hall et al. | Jun 2002 | B1 |
6416490 | Ellis et al. | Jul 2002 | B1 |
6416510 | Altman et al. | Jul 2002 | B1 |
6423089 | Gingras et al. | Jul 2002 | B1 |
6432119 | Saadat | Aug 2002 | B1 |
6432126 | Gambale et al. | Aug 2002 | B1 |
6432127 | Kim et al. | Aug 2002 | B1 |
6432132 | Cottone et al. | Aug 2002 | B1 |
6443949 | Altman | Sep 2002 | B2 |
6447522 | Gambale et al. | Sep 2002 | B2 |
6447539 | Nelson et al. | Sep 2002 | B1 |
6454760 | Vanney | Sep 2002 | B2 |
6454794 | Knudson et al. | Sep 2002 | B1 |
6458092 | Gambale et al. | Oct 2002 | B1 |
6458140 | Akin et al. | Oct 2002 | B2 |
6458323 | Boekstegers | Oct 2002 | B1 |
6464709 | Shennib et al. | Oct 2002 | B1 |
6475226 | Belef et al. | Nov 2002 | B1 |
6475244 | Herweck et al. | Nov 2002 | B2 |
6482220 | Mueller | Nov 2002 | B1 |
6491707 | Makower et al. | Dec 2002 | B2 |
6514271 | Evans et al. | Feb 2003 | B2 |
6517558 | Gittings et al. | Feb 2003 | B2 |
6544230 | Flaherty et al. | Apr 2003 | B1 |
6561998 | Roth et al. | May 2003 | B1 |
6565528 | Mueller | May 2003 | B1 |
6565555 | Ryan et al. | May 2003 | B1 |
6569145 | Shmulewitz et al. | May 2003 | B1 |
6569147 | Evans et al. | May 2003 | B1 |
6582444 | Wilk | Jun 2003 | B2 |
20010004683 | Gambale et al. | Jun 2001 | A1 |
20010004690 | Gambale et al. | Jun 2001 | A1 |
20010004699 | Gittings et al. | Jun 2001 | A1 |
20010008969 | Evans et al. | Jul 2001 | A1 |
20010012948 | Vanney | Aug 2001 | A1 |
20010014813 | Saadat et al. | Aug 2001 | A1 |
20010016700 | Eno et al. | Aug 2001 | A1 |
20010025643 | Foley | Oct 2001 | A1 |
20010027287 | Shmulewitz et al. | Oct 2001 | A1 |
20010029385 | Shennib et al. | Oct 2001 | A1 |
20010034547 | Hall et al. | Oct 2001 | A1 |
20010037086 | Gambale et al. | Nov 2001 | A1 |
20010037117 | Gambale et al. | Nov 2001 | A1 |
20010037149 | Wilk | Nov 2001 | A1 |
20010039426 | Makower et al. | Nov 2001 | A1 |
20010039445 | Hall et al. | Nov 2001 | A1 |
20010041902 | Lepulu et al. | Nov 2001 | A1 |
20010044631 | Akin et al. | Nov 2001 | A1 |
20010047165 | Makower et al. | Nov 2001 | A1 |
20010049523 | DeVore et al. | Dec 2001 | A1 |
20010053932 | Phelps et al. | Dec 2001 | A1 |
20020002349 | Flaherty et al. | Jan 2002 | A1 |
20020004662 | Wilk | Jan 2002 | A1 |
20020004663 | Gittings et al. | Jan 2002 | A1 |
20020007138 | Wilk et al. | Jan 2002 | A1 |
20020019629 | Dietz et al. | Feb 2002 | A1 |
20020029079 | Kim et al. | Mar 2002 | A1 |
20020032476 | Gambale et al. | Mar 2002 | A1 |
20020049486 | Knudson et al. | Apr 2002 | A1 |
20020058897 | Renati | May 2002 | A1 |
20020062146 | Makower et al. | May 2002 | A1 |
20020065478 | Knudson et al. | May 2002 | A1 |
20020072699 | Knudson et al. | Jun 2002 | A1 |
20020077566 | Laroya et al. | Jun 2002 | A1 |
20020077654 | Javier, Jr. et al. | Jun 2002 | A1 |
20020092535 | Wilk | Jul 2002 | A1 |
20020092536 | LaFontaine et al. | Jul 2002 | A1 |
20020095111 | Tweden et al. | Jul 2002 | A1 |
20020100484 | Wolf et al. | Aug 2002 | A1 |
20020111669 | Pazienza et al. | Aug 2002 | A1 |
20020111672 | Kim et a. | Aug 2002 | A1 |
20020123698 | Garibotto et al. | Sep 2002 | A1 |
20020138087 | Shennib et al. | Sep 2002 | A1 |
20020143285 | Eno et al. | Oct 2002 | A1 |
20020143289 | Ellis et al. | Oct 2002 | A1 |
20020144696 | Sharkawy et al. | Oct 2002 | A1 |
20020161383 | Akin et al. | Oct 2002 | A1 |
20020161424 | Rapacki et al. | Oct 2002 | A1 |
20020165479 | Wilk | Nov 2002 | A1 |
20020165606 | Wolf et al. | Nov 2002 | A1 |
20020177772 | Altman et al. | Nov 2002 | A1 |
20020179098 | Makower et al. | Dec 2002 | A1 |
20020183716 | Herweck et al. | Dec 2002 | A1 |
20030018379 | Knudson et al. | Jan 2003 | A1 |
20030044315 | Boekstegers | Mar 2003 | A1 |
20030045828 | Wilk | Mar 2003 | A1 |
20030055371 | Wolf et al. | Mar 2003 | A1 |
20030073973 | Evans et al. | Apr 2003 | A1 |
20030100920 | Akin et al. | May 2003 | A1 |
20030105514 | Phelps et al. | Jun 2003 | A1 |
Number | Date | Country |
---|---|---|
0 732 088 | Sep 1996 | EP |
0 824 903 | Feb 1998 | EP |
0 876 803 | Nov 1998 | EP |
0 903 123 | Mar 1999 | EP |
0 904 745 | Mar 1999 | EP |
0 955 017 | Nov 1999 | EP |
0 955 019 | Nov 1999 | EP |
0 962 194 | Dec 1999 | EP |
1 020 166 | Jul 2000 | EP |
1 027 870 | Aug 2000 | EP |
1 029 511 | Aug 2000 | EP |
1 166 721 | Jan 2002 | EP |
0 959 815 | Dec 2002 | EP |
2316322 | Oct 1998 | GB |
WO 9416629 | Aug 1994 | WO |
WO 9632972 | Oct 1996 | WO |
WO 9635469 | Nov 1996 | WO |
WO 9713463 | Apr 1997 | WO |
WO 9713471 | Apr 1997 | WO |
WO 9718768 | May 1997 | WO |
WO 9727893 | Aug 1997 | WO |
WO 9727897 | Aug 1997 | WO |
WO 9727898 | Aug 1997 | WO |
WO 9732551 | Sep 1997 | WO |
WO 9741916 | Nov 1997 | WO |
WO 9743961 | Nov 1997 | WO |
WO 9802099 | Jan 1998 | WO |
WO 9806356 | Feb 1998 | WO |
WO 9808456 | Mar 1998 | WO |
WO 9810714 | Mar 1998 | WO |
WO 9816161 | Apr 1998 | WO |
WO 9819607 | May 1998 | WO |
WO 9819614 | May 1998 | WO |
EP 0 853 921 | Jul 1998 | WO |
WO 9844869 | Oct 1998 | WO |
WO 9846115 | Oct 1998 | WO |
WO 9846119 | Oct 1998 | WO |
WO 9849964 | Nov 1998 | WO |
WO 9853759 | Dec 1998 | WO |
WO 9855027 | Dec 1998 | WO |
WO 9857591 | Dec 1998 | WO |
WO 9908624 | Feb 1999 | WO |
WO 9917683 | Apr 1999 | WO |
WO 9921490 | May 1999 | WO |
WO 9921510 | May 1999 | WO |
WO 9922655 | May 1999 | WO |
WO9925273 | May 1999 | WO |
WO 9929251 | Jun 1999 | WO |
WO 9932051 | Jul 1999 | WO |
WO 9933407 | Jul 1999 | WO |
WO 9936000 | Jul 1999 | WO |
WO 9936001 | Jul 1999 | WO |
WO 9937218 | Jul 1999 | WO |
WO 9938459 | Aug 1999 | WO |
WO 9940868 | Aug 1999 | WO |
WO 9947071 | Sep 1999 | WO |
WO 9947078 | Sep 1999 | WO |
WO 9948427 | Sep 1999 | WO |
WO 9948545 | Sep 1999 | WO |
WO 9949790 | Oct 1999 | WO |
WO 9949793 | Oct 1999 | WO |
WO 9949910 | Oct 1999 | WO |
WO 9951162 | Oct 1999 | WO |
WO 9952481 | Oct 1999 | WO |
WO 9953863 | Oct 1999 | WO |
WO 9955406 | Nov 1999 | WO |
WO 9960941 | Dec 1999 | WO |
WO 9962430 | Dec 1999 | WO |
WO 0009195 | Feb 2000 | WO |
WO 0010623 | Mar 2000 | WO |
WO 0012029 | Mar 2000 | WO |
WO 0015146 | Mar 2000 | WO |
WO 0015147 | Mar 2000 | WO |
WO 0015148 | Mar 2000 | WO |
WO 0015149 | Mar 2000 | WO |
WO 0015275 | Mar 2000 | WO |
WO 0018302 | Apr 2000 | WO |
WO 0018325 | Apr 2000 | WO |
WO 0018326 | Apr 2000 | WO |
WO 0018331 | Apr 2000 | WO |
WO 0018462 | Apr 2000 | WO |
WO 0021436 | Apr 2000 | WO |
WO 0021461 | Apr 2000 | WO |
WO 0021463 | Apr 2000 | WO |
WO 0024449 | May 2000 | WO |
WO 0024452 | May 2000 | WO |
WO 0033725 | Jun 2000 | WO |
WO 0035376 | Jun 2000 | WO |
WO 0036997 | Jun 2000 | WO |
WO 0041632 | Jul 2000 | WO |
WO 0041633 | Jul 2000 | WO |
WO 0043051 | Jul 2000 | WO |
WO 0045711 | Aug 2000 | WO |
WO 0054660 | Sep 2000 | WO |
WO 0056387 | Sep 2000 | WO |
WO 0066007 | Nov 2000 | WO |
WO 0066009 | Nov 2000 | WO |
WO 0066035 | Nov 2000 | WO |
WO 0069345 | Nov 2000 | WO |
WO 0069504 | Nov 2000 | WO |
WO 0071195 | Nov 2000 | WO |
WO 0108602 | Feb 2001 | WO |
WO 0110340 | Feb 2001 | WO |
WO 0110341 | Feb 2001 | WO |
WO 0110347 | Feb 2001 | WO |
WO 0110348 | Feb 2001 | WO |
WO 0110349 | Feb 2001 | WO |
WO 0110350 | Feb 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20020165479 A1 | Nov 2002 | US |
Number | Date | Country | |
---|---|---|---|
60099691 | Sep 1998 | US | |
60099720 | Sep 1998 | US | |
60099767 | Sep 1998 | US | |
60104397 | Oct 1998 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09534038 | Mar 2000 | US |
Child | 10184933 | US | |
Parent | 09369039 | Aug 1999 | US |
Child | 09534038 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09016485 | Jan 1998 | US |
Child | 09369039 | US | |
Parent | PCT/US99/03484 | Feb 1999 | US |
Child | 09016485 | US |