The present disclosure relates generally to leg elevating devices, systems, and methods, in particular, a device, system, or method to elevate the legs from an angled position to a horizontal position.
Movement of limbs can be challenging for persons with disabilities, the elderly, or persons recovering from recent surgery when those persons transfer from one location to another, whether independently or assisted. For example, in the case of persons with mobility impairments, it is often quite difficult to get into and out of a bed without assistance.
Several efforts have been made to alleviate the problem associated with getting into and out of a bed without assistance. For example, devices equipped with a hoop and pulley-system have been developed so that a person can put their feet into the hoop and pull their legs to bed level. Similar devices are also available where the hoop is attached to a rod so that the person can put their foot into the hoop and pull the rod up so that the foot is level with the bed. These devices, however, have drawbacks such as limited portability in the case of the pulley system, and limited physical capabilities of the person operating the device in the case of the rod and hoop system. Additionally, in both cases the devices require upper and lower body strength to pull the legs upwards to bed level. In cases where persons are disabled or recovering from recent surgery, the persons may not have the strength necessary to operate the devices.
Accordingly, it would be desirable to provide a portable leg elevating device for lifting the legs of a person without requiring substantial upper and lower body strength.
For persons with disabilities, it is often difficult to get into and out of a bed without assistance. In particular, it can be difficult for a person to lift their legs into the bed when that person has limited upper and lower body strength. Embodiments of the present disclosure provide various devices, methods, and systems for elevating the legs of an individual to assist the individual when getting into and out of a bed.
In some embodiments, a leg elevating device includes a leg support platform, a base platform, and a first and second lift. In such embodiments the base platform can be positioned adjacent the leg support platform and the first and second lift can be positioned between and coupled to the leg support platform and the base platform. In addition, in various embodiments the leg support platform can have a first horizontal position relative the base platform when the first lift and second lift are in a first position, an angled position relative the base platform when the first lift is in a second position and the second lift is in the first position, and a second horizontal position relative the base platform when the first lift and second lift are in the second position. Also, the leg elevating device can move between the first horizontal position, the angled position, and the second horizontal position such that while in the first horizontal position, the leg support platform can be at a predetermined height above a floor surface such that the leg elevating device is locatable under furniture.
Embodiments of the present disclosure will now be described in relation to the accompanying drawings, which will at least assist in illustrating the various features of the various embodiments.
In the Figures, the first digit of a reference number refers to the Figure in which it is used, while the remaining two digits of the reference number refer to the same or equivalent parts of embodiment(s) of the present disclosure used throughout the several figures of the drawing. The scaling of the figures does not represent precise dimensions and/or dimensional ratios of the various elements illustrated herein.
In some embodiments the leg support platform 102 can be formed of a plastic material. For example, the leg support platform 102 can be formed of polyvinyl chloride (PVC), high density poly ethylene (HDPE), low density polyethylene (LDPE), and/or Polyethylene Terephthalate (PETE). Other materials for the leg support platform 102 are also possible. For example, in one embodiment, the leg support platform 102 can be formed of metal, metal-alloy, wood, glass, and/or ceramic.
In some embodiments, the leg support platform 102 can be in the shape of a square. In various embodiments the leg support platform 102 can have other shapes including, but not limited to, rectangular, circular, ovular, diamond-shaped, and/or triangular. In addition, embodiments of the leg support platform 102 can have various dimensions. In some embodiments, the leg support platform 102 has a length and a width approximately equal to twenty-four (24) inches, and a height approximately equal to one (1) inch. The leg support platform 102 can also have other lengths and widths, as discussed herein.
In some embodiments, the layer of material 115 can have a thickness ranging from one-half (0.5) inch to three (3) inches. Embodiments of the layer of material 115 can be formed of such materials as polyurethane memory foam, Styrofoam, and/or rubber, among other materials. In addition, in some embodiments, the layer of material 115 can also include a moisture-proof covering to protect the layer of material 115 and/or to increase its durability.
As illustrated in
In addition, in various embodiments, the base platform 104 can include at least one wheel 106 coupled to the base platform 104 to make the leg lifting device 100 easily movable and/or portable. In some embodiments, the base platform can include at least four wheels 106 coupled to the base platform 104. In some embodiments, the wheels 106 can be in the form of a caster assembly where a small wheel 106 has the ability to swivel and is coupled to the base platform 104 to make the leg elevating device 100 easy to move. In addition, in such embodiments, the wheels 106 can include a brake mechanism 113 to lock the wheels 106 into place.
In some embodiments, the base platform 104 can include a location where a handle 108 can be releasably and/or pivotably connected on one end 112 of the base platform 104. In such embodiments, the handle 108 can be used to push and/or pull the leg elevating device 100 into position to use the leg elevating device 100. For example, the handle 108 can be used to position the leg elevating device 100 next to a bed. To facilitate the positioning of the leg elevating device 100 using the handle, in some embodiments the handle 108 can move (e.g., pivot and/or rotate) relative the base platform 104 as shown with arrow 121.
Additionally, the handle 108 can be used to move the leg elevating device 100 out of the way when the leg elevating device 100 is not in use. For example, the handle 108 can be used to push and/or pull the leg elevating device 100 to the head of a bed so that a user will not stumble on the leg elevating device 100 while getting out of a bed. In various embodiments, the handle 108 can also be used to lock and/or unlock the wheels 106 to fix the leg elevating device's 100 position either while in use and/or while the leg elevating device 100 is not being used.
As illustrated in
The handle 108 can releasably couple to the leg elevating device 100 in a number of ways. For example, the handle 108 can releasably couple to the leg elevating device 100 by providing a threaded opening in the base platform 104 and a complimentary threaded end on the handle 108. Other ways to releasably couple the handle 108 to the leg elevating device 100 are also possible.
In one embodiment, the handle 108 can be a circular rod with a height ranging from thirty (30) inches to forty-two (42) inches. The handle 108 can also have different cross-sectional shapes such as a square, oval, ellipse, or triangle. In addition, in some embodiments the handle 108 can be formed of a metal, metal-alloy, glass, wood, plastic, or the like. The handle 108 can also be formed of different materials.
As illustrated in
As discussed herein, the handle 108 can move (e.g., pivot and/or rotate) relative the base platform 104. In some embodiments, the handle 108 can move between an upright position where the handle 108 can be perpendicular the base platform, as shown in
As discussed herein, a front set of wheels 119 can be coupled to a lockable bracket 121 that pivots around a pivot point. In some embodiments, the leg elevating device 100 includes the front set of wheels 119 coupled to the lockable bracket 121 and the handle 108 that can be retracted into a receiving member 127 when the handle 108 is in a horizontal position. In some embodiments, when the front set of wheels 119 are in the second position 125, the lockable bracket 121 can lock the front set of wheels 119 into the second position 125, and the handle 108 can be retracted to a fixed position in the receiving member 127. As illustrated in
In some embodiments, the leg elevating device 100 can include power driven wheels 106 (e.g., electrically powered) controlled via a remote control device. In such embodiments, the driving mechanisms for the wheels 106 are typically electric motors actuated by servos, belts, and gears. Embodiments using power driven wheels 106 can move the leg elevating device 100 so that it abuts the side of a bed while the leg elevating device 100 is in the second horizontal position, making it easier for the user to slide their lower legs directly onto a bed.
As discussed herein, the leg elevating device 100 can have a leg support platform 102 that moves between a first horizontal position 103, an angled position 105, and a second horizontal position 107. In one embodiment, the leg support platform 102 is coupled to the base platform 104 via a first lift 116 and a second lift 118. As used herein, “lift” refers to a device designed to raise something. In some embodiments, the leg elevating device 100 can include additional lifts. For example, if the leg elevating device were equipped with an additional leg support platform to lift the left leg and right leg separately, the additional leg support platform could be moved between the horizontal and angled positions using two additional lifts.
In addition, in some embodiments, the leg elevating device 100 can include additional lifts depending on the shape of the leg support platform 102. For example, in some embodiments, the leg support platform 102 can have a circular shape. In this example, the leg elevating device 100 can include four lifts positioned in a diamond shaped pattern so that the leg support platform 102 is well-balanced from each side. Other combinations of leg support platform 102 shapes and the number of lifts are also possible. In addition, the leg support platform 102 can also vacillate in a controlled manner, using, for example, a hydraulic pump coupled to an electric motor. Other ways to control the vacillation movement are also possible.
In some embodiments, the leg support platform 102 can be coupled to the first lift 116 and second lift 118 such that the leg support platform 102 can vacillate around a center axis 133 of the leg support platform 102 that runs between the first lift 116 and the second lift 118 of the leg support platform 102. In such embodiments, the leg support platform 102 can be coupled to the first and second lift 116, 118 using hinges to limit the range of vacillation of the leg support platform 102. For example, the hinges can allow for a side of the leg support platform 102 to move downward one (1) inch, while the opposite side of the leg support platform 102 moved upward one (1) inch. Other values for the range of vacillation are also possible. In some embodiments, the range of vacillation can depend on the depth of the leg placement marker on the layer of material overlying the leg support platform 102, as discussed herein with respect to
As illustrated in
In some embodiments, the leg elevating device 100 can include a hydraulic cylinder in each of the first and second lift 116, 118, as discussed herein, as well as a power system. For example, the hydraulic cylinder can be controlled by an electrically energized hydraulic power system including an electric motor 120 and control box 122 to cause the first and second lifts 116, 118 to move upwardly and downwardly from the first position to the second position, as discussed herein. Other control and actuation systems can be used in various embodiments as desired such as an electric motor without the use of hydraulic or pneumatic cylinders, for example.
In some embodiments, the electric motor 120 can be a motor powered by at least one rechargeable battery. In some embodiments, a charger can be included with the leg elevating device 100, such that the charger can be releasably coupled to the leg elevating device 100 to charge the rechargeable battery. In some embodiments, the charger can be of an appropriate size to be locatable under furniture. In such embodiments, the leg elevating device 100 can be guided back to the charger using a remote device, as discussed herein. In some embodiments, the leg elevating device 100 can be programmed to return to the charger automatically when the at least one rechargeable battery reaches a defined lower limit of stored energy.
In some embodiments, the electric motor 120 can be a battery powered motor. Additionally, in various embodiments, the electric motor 120 can be powered via an electrical connection to an electrical wall socket. Other types of motors can also be used.
As discussed herein, the leg support platform 102 can move from a first horizontal position 103, to an angled position 105, and to a second horizontal position 107 as illustrated in
As shown in
In some embodiments, the second lift 118 can move from a first position, as shown in
In some embodiments, the leg elevating device 100 is configured to move from the first horizontal position 103 as shown in
In some embodiments, the leg elevating device 200 can include a hydraulic cylinder 226 adjacent each of the first and second lifts 216, 218. In such embodiments, the hydraulic cylinder 226 can be controlled by an electrically energized hydraulic power system including an electric motor 220 and control box 222. Embodiments including an electrically energized hydraulic power system can cause the first and second lifts 216, 218 to move horizontally on the base platform 204 to cause the leg support platform 202 to move upward and downward between the first horizontal position 203, the angled position 205, and the second horizontal position 207, as discussed herein. Other control and actuation systems can also be used as desired such as a pneumatic system, for example. In addition, in some embodiments, the control and actuation systems can include rack-and-pinion systems and/or nut-and-spindle systems connected to an electric motor 220 and a control box 222.
In some embodiments, the first and second lifts 216, 218, the hydraulic cylinders 226, the electric motor 220, and the control box 222 are enclosed in a hard plastic shell to prevent damage to the mechanisms. In addition, the moving parts can be enclosed to prevent injury to the user and/or other individuals standing near the leg elevating device 200. In some embodiments, the leg elevating device 200 including the plastic shell can have a weight in the range of five (5) to fifteen (15) pounds. In addition, in some embodiments, the leg elevating device 200 can be accompanied by a traveling sleeve to protect the device during travel, and also to provide the user with some level of privacy when transporting the leg elevating device 200 in public.
In some embodiments, the leg elevating device 200 can include a sensor on the base platform 204 inside the control box 220 to actuate the movement of the first lift 216 and second lift 218 from the first position to the second position. In such embodiments, a remote device 215 can be used to actuate the base platform 204 sensor. Also, in some embodiments, the control box 220 can include a receiver to receive the signal transmitted from the remote device 215.
In some embodiments, the remote device 215 can include a transmitter to send a signal to the sensor on the base platform 204. As such, when the transmitter in the remote device 215 is actuated, a signal can be transmitted to the sensor, indicating an activation of the remote device. Once the signal is received, the sensor can actuate the movement of the first lift 216 and second lift 218 from the first position to the second position. In some embodiments, the sensor is configured so that the first activation of the remote device 215 actuates the movement of the first lift 216 from the first position to the second position. In such embodiments, the second activation of the remote device 215 can then actuate the movement of the second lift 218 from the first position to the second position, and the third activation of the remote device 215 can also then actuate the movement of the first and second lift 216, 218 from the second position to the first position. Other movements can also be controlled using the remote device, including other sequences of movements.
In some embodiments, the control box 220 can include a radio frequency range wireless receiver with an antenna for receiving a radio frequency range control signal from a transmitter in a remote device 215. In such embodiments, the transmitter can be provided with an antenna for emitting radiation in the radio frequency range for reception by the receiver. The receiver and the transmitter can both be of a type commercially available and suitable for remote control operation for up to approximately twenty (20) feet operating range between the transmitter and the receiver. In some embodiments, the receiver and transmitter can communicate using infrared. In one embodiment, the control box 220 is connected to the remote device 215 via a wire that can have a length ranging from three (3) feet to seven (7) feet.
In some embodiments, the leg support platform 302 can be in the shape of a triangle, as shown in
Additionally, although the base platform 304 is shown in
In various embodiments, the second component 438 to the leg support platform 402 can be connected to the first component 436 of the leg support platform 402. Embodiments including a second component 438 to the leg support platform 402 can have the second component 438 positioned above the first component 436 with a gap 439 between the two components 436, 438.
As discussed herein, in some embodiments, the second component 438 to the leg support platform 402 can be connected to the first component 436 of the leg support platform 402. For example, the second component 438 can be pivoted on turret 440 while the turret 440 remains fixed, e.g, at a stationary location relative to the base platform of the leg elevating device, in order to move the user's lower legs closer to a bed. In various embodiments, the user can control the rotation of the second component 438 on turret 440 using a remote device. Embodiments including a second component 438 rotated on turret 440 can use an electric motor and actuators to move the second component 438. In addition, embodiments including a second component 438 can be configured such that the gap 439 between the two components 436, 438 is maintained while the leg elevating device is in use. In various embodiments, the leg elevating device can be designed to support at least three hundred (300) pounds on the second component 438 while maintaining the gap 439 between the two components 436, 438.
In some embodiments, the swing arm 542 can be a telescoping arm. In some embodiments, the swing arm 542 can be formed of metal, metal-alloy, composite material, and/or plastic, among other materials. In addition, in various embodiments, the swing arm 542 can be formed such that it can withstand up to at least a three hundred (300) pound force without bending.
In some embodiments, the second component 538 can be coupled to the first component 536 of the leg support platform 502. Embodiments including a second component 538 can have the second component 538 positioned below the first component 536. In various embodiments, the second component 538 can be connected to the first component 536 with a swing arm 542 that is capable of rotating at least one hundred eighty (180) degrees relative the first component 536 of the leg support platform 502. In addition, in such embodiments, the user can control the rotation of the second component 538 using a remote device. Embodiments including a second component 538 attached to a swing arm 542 can use an electric motor and actuators to move the second component 538. Also, embodiments including a second component 538 positioned below the first component 536 can be designed so that the second component 538 can be positioned between the first and second lifts 516, 518 and not interfere with the operation of the first and second lifts 516, 518.
In some embodiments, the leg elevating device can be equipped with more than one leg support platform to enable the right and left leg of the user to be lifted separately. In such embodiments, the first lift and second lift would work as discussed herein in that the first lift and second lift would move from a first position to a second position. However, the leg elevating device could also include a third lift and a fourth lift, as discussed herein, to move from a first position to a second position to enable the additional leg support platform to move from a first horizontal position, to an angled position, and to a second horizontal position, as discussed herein, separately from the original leg support platform. In some embodiments, the leg elevating device can also use more than two leg support platforms.
While the present disclosure has been shown and described in detail, changes and modifications may be made without departing from the scope of the disclosure. As such, that which is set forth in the foregoing description and accompanying drawings is offered by way of illustration only and not as a limitation. In addition, various features may have been grouped together in several embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the embodiments of the disclosure require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.
This present patent application is a continuation of U.S. application Ser. No. 12/587,769, filed Oct. 13, 2009, which is a continuation in part of U.S. application Ser. No. 11/581,288, filed Oct. 16, 2006, the entire specification of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3611452 | Turko et al. | Oct 1971 | A |
3611453 | Lokken | Oct 1971 | A |
3739406 | Koetter | Jun 1973 | A |
5181288 | Heaton et al. | Jan 1993 | A |
5316370 | Newman | May 1994 | A |
5613255 | Bish et al. | Mar 1997 | A |
5636394 | Bartley | Jun 1997 | A |
5740997 | Van Wieran | Apr 1998 | A |
6421854 | Heimbrock | Jul 2002 | B1 |
6516479 | Barbour | Feb 2003 | B1 |
6575052 | Toennesland et al. | Jun 2003 | B2 |
6615430 | Heimbrock | Sep 2003 | B2 |
6691349 | Blevins | Feb 2004 | B2 |
6701554 | Heimbrock | Mar 2004 | B2 |
6772460 | Heimbrock et al. | Aug 2004 | B2 |
6820294 | Shiery et al. | Nov 2004 | B2 |
6823541 | Egan | Nov 2004 | B2 |
6941594 | Mosley | Sep 2005 | B1 |
6976698 | Kuiken | Dec 2005 | B2 |
6983501 | Heimbrock et al. | Jan 2006 | B2 |
7000272 | Allen et al. | Feb 2006 | B2 |
7014264 | Alderman et al. | Mar 2006 | B2 |
D521301 | Dickson | May 2006 | S |
7082630 | Castonguay et al. | Aug 2006 | B2 |
20020104164 | Heimbrock | Aug 2002 | A1 |
20030196268 | Heimbrock | Oct 2003 | A1 |
20080086820 | Brenner | Apr 2008 | A1 |
Number | Date | Country |
---|---|---|
3737410 | May 1989 | DE |
0576924 | Jan 1994 | EP |
Entry |
---|
Amcar Motors Corp., Conversion Packages, http://www.amcarmotors.com, 3 pgs, Accessed Oct. 16, 2006. |
Amsvans, Inc, Adaptive Mobility Systems, http://www.amvans.com/?page=conversionDimConsumer, 1 pg, Accessed Oct. 16, 2006. |
Handicap Vehicle Specialists, Wheelchair & Scooter Lifts, Single Post Lift, http://www.handicapvehicle.com/Occupied—lifts.html, 10 pgs, Accessed Oct. 13, 2006. |
All-WaysAccessible, Bathtub Lifts, http://www.all-waysaccessible.com/bathtub—lifts.htm, 2 pgs, Accessed Oct. 13, 2006. |
Heliohealth, Self Powered Lifting Commode Assist, http://www.healiohealth.com/tek9.asp?pg=products&specific=jqpnqqj8, 4 pgs, Accessed Oct. 13, 2006. |
American Discount Home Medical Equipment, Invacare Patient Lifts, http:home-med-equip.com/patient-lift/, 7 pgs, Accessed Oct. 13, 2006. |
Planet Mobility, Showroom, http://www.planetmobility.com/store/seating/uplift/index.html, 18 pgs, Accessed Oct. 13, 2006. |
Nordic Rehab, Capella 201, http://www.nordicrehab.com/nordic—capella201.htm, 4 pgs, Accessed Oct. 13, 2006. |
Disability Products, Bath Aids & Toilet Aids, http://www.disabilityproducts.com, 14 pgs, Accessed Oct. 13, 2006. |
Disability Products, Help at Home/ Driving http://www.disabilityproducts.com, 13 pgs, Accessed Oct. 13, 2006. |
Uplift Technologies Inc., Upeasy Power Seat http://www.upeasy.com, 2 pgs, Accessed Oct. 16, 2006. |
Number | Date | Country | |
---|---|---|---|
20120306255 A1 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12587769 | Oct 2009 | US |
Child | 13584289 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11581288 | Oct 2006 | US |
Child | 12587769 | US |