Leishmania antigens defined by human immune responses

Information

  • Research Project
  • 8760287
  • ApplicationId
    8760287
  • Core Project Number
    R01AI025038
  • Full Project Number
    5R01AI025038-23
  • Serial Number
    025038
  • FOA Number
    PA-10-067
  • Sub Project Id
  • Project Start Date
    11/1/1993 - 30 years ago
  • Project End Date
    11/30/2015 - 8 years ago
  • Program Officer Name
    MO, ANNIE X. Y.
  • Budget Start Date
    12/1/2014 - 9 years ago
  • Budget End Date
    11/30/2015 - 8 years ago
  • Fiscal Year
    2015
  • Support Year
    23
  • Suffix
  • Award Notice Date
    10/31/2014 - 9 years ago

Leishmania antigens defined by human immune responses

DESCRIPTION (provided by applicant): Diseases caused by Leishmania parasites are global in scope, affecting more than 15 million individuals. The parasites Leishmania infantum and L. donovani cause visceral leishmaniasis (VL), the most severe form of the disease, while a number of other species, including L. major, cause cutaneous leishmaniasis (CL). Chemotherapeutics, many of them toxic, are generally effective, but neither drugs nor insect vector control measures will bring about elimination of leishmaniasis. It is widely appreciated that prophylactic vaccination against leishmaniasis is practically feasible based on clinical experience with first- generation whole parasite-based vaccines, as well as from preclinical evaluation of defined vaccine candidates. The goal of this project is to develop a fully efficacious subunit vaccine composed of recombinant antigens and adjuvant formulation that can be sustainably manufactured by facilities in developing countries. In the previous funding period we developed a new fusion protein called KSAC that appears to have even more favorable characteristics regarding immune responses, protection, and manufacturability compared to our previously developed fusion protein Leish-110f. KSAC, together with the adjuvant formulation MPL-SE, provides partial protection against a needle challenge of L. infantum or L. donovani. Both our preliminary studies with alternative adjuvant formulations and Toll-like receptor (TLR) agonist combinations together with literature reports on successes with heterologous prime-boost strategies indicate that the protective efficacy of our subunit vaccine can be improved significantly. The present proposal has three Specific Aims: Aim 1 will examine antigen modifications and optimized adjuvants that may further enhance immunogenicity of the KSAC antigen. In this aim we will evaluate forms of KSAC antigen with a covalently linked TLR agonist as well as characterizing formulations of (unlinked) TLR agonists that combine a novel TLR 4 agonist with other TLR agonists to identify vaccine formulations that produce enhanced immune responses in mice. We will down-select those formulations with the best immunogenicity profiles and protection studies. Aim 2 will compare heterologous DNA prime - protein+adjuvant boost combinations with down- selected protein+adjuvant vaccine formulation(s) from Aim 1. The goal of the comparison studies is to identify those vaccines providing superior long-lived protection against a challenge infection with L. infantum and determine which vaccines produce an effective immune response with fewer vaccine doses (dosage-sparing). Aim 3 will take functionally active vaccine candidates (in comparison with an inactive vaccine) to identify correlates of protection in the VL model. In these studies, we will investigate early events in immunization, including whole animal imaging and immunological markers of cellular response, and the timing and induction of different T cell types in response to the antigen and adjuvant. Upon completion of these studies, we anticipate identifying both successful vaccination strategies for prevention of VL and immune correlates of protection, which may promote assay development that, will aid the evaluation of future vaccine candidates.

IC Name
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES
  • Activity
    R01
  • Administering IC
    AI
  • Application Type
    5
  • Direct Cost Amount
    315050
  • Indirect Cost Amount
    158155
  • Total Cost
    473205
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    855
  • Ed Inst. Type
  • Funding ICs
    NIAID:473205\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    VMD
  • Study Section Name
    Vaccines Against Microbial Diseases Study Section
  • Organization Name
    INFECTIOUS DISEASE RESEARCH INSTITUTE
  • Organization Department
  • Organization DUNS
    809846819
  • Organization City
    SEATTLE
  • Organization State
    WA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    981023788
  • Organization District
    UNITED STATES