This disclosure relates to length extensible implantable devices and methods for making such devices that may be used for providing a lumen for fluid flow in bodily cavities, organs, and vessels within a patient.
Medical devices are frequently used to treat the anatomy of patients. Such devices can be permanently or semi-permanently implanted in the anatomy to provide treatment to a patient. Frequently, these devices, including stents, grafts, stent-grafts, filters, valves, occluders, markers, mapping devices, therapeutic agent delivery devices, prostheses, pumps, bandages, and other endoluminal and implantable devices, are inserted into the body at an insertion point and delivered to a treatment site using a catheter.
Implantable devices such as grafts and stent-grafts are used in a variety of places in the human body to repair, support, and/or replace anatomical lumens, such as blood vessels, respiratory ducts, gastrointestinal ducts, and the like. Such devices can, for example, provide lumens for blood flow. In such configurations, flexible and durable devices are needed.
The selection of such implantable devices can pose potential issues. For example, the particularities of the anatomy of one patient may require a device having a different length than a device suitable for another patient. As a result, it may be difficult to determine the necessary size of a device, and, in many instances, the desired device size may be difficult to obtain.
As such, there is an ongoing need to provide devices, such as grafts and/or stent-grafts, which have adjustable length properties to provide a range of available lengths. Such devices may improve the ability of a treatment provider to properly size a device for the anatomy of a patient.
In a first general aspect, a length extensible implantable device for supporting, repairing, and/or replacing a lumen in the body of a patient includes a porous tubular member capable of being extended to a desired length. The porous tubular member comprises a longitudinally compressed portion covered and maintained in the compressed configuration by a longitudinal constraining member. The longitudinal constraining member can comprise a film wrap or a perforated tube, among other structures.
In various implementations, a length extensible implantable device is formed by longitudinally compressing a porous tubular member, surrounding a portion of the tubular member with a longitudinal constraining member, and releasing the compressive force. In such implementations, the longitudinally constraining member constrains the portion of the tubular member in the longitudinally compressed configuration. The longitudinal constraining member can optionally be secured to the portion of the porous tubular member by, for example, an adhesive. More than one longitudinal constraining member can used. Further, more than one portion of the porous tubular member can be surrounded by one or more longitudinal constraining members.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and the drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
This disclosure describes devices, systems, and methods that are useful, for example, for repairing, supporting, and/or replacing anatomical lumens. Several implantable medical devices are described herein, and in general any of the features described with respect to a particular device may also be used with any of the other devices described herein. In some examples, one or more features described with respect to a particular device may be added to or included with another device. Also, various combinations or sub-combinations of any of the features described herein may generally be used with any of the devices described herein.
In general, any of the implantable devices described herein can be delivered to, and deployed at, an in vivo deployment site within a body of a patient using variously minimally invasive surgical techniques. Likewise, these devices may also be surgically implanted via vascular surgical techniques.
Further, any of the implantable medical devices described herein can be delivered to, and deployed at, an in vivo deployment site within a body of a patient using various minimally invasive transcatheter deployment techniques. For example, any of the implantable medical devices described herein may be releasably attached to a delivery catheter, and the device and delivery catheter may be loaded into a delivery sheath. The delivery sheath may be introduced to the vasculature of the patient and advanced through the vasculature, until a distal end of the delivery sheath is located at or near the target in vivo deployment site. The implantable medical device may be deployed at the deployment site, for example, by retracting the delivery sheath and/or advancing the delivery catheter and the implantable medical device and detaching the implantable medical device from the delivery catheter. The delivery catheter and delivery sheath can then be withdrawn or retracted from the body of the patient.
Any of the implantable medical devices discussed herein can be used to repair, replace, and/or provide support to a body lumen. In various embodiments, implantable medical devices of the present disclosure can be used in a body lumen, including those within the circulatory and gastrointestinal systems.
As used herein, “implantable” means implanted in the body of a patient for more than 29 days.
As used herein, the term “constrain” means: (i) to limit extension, occurring either through self-expansion or assisted expansion, of the length of an implantable device; or (ii) to cover or surround, but not otherwise restrain, an implantable device such as for storage or biocompatibility reasons and/or to provide protection to the implantable device and/or the vasculature.
In various embodiments, porous tubular member 102 comprises a compressible, porous polymeric material, preferably an open celled material. For example, member 102 can comprise a porous expanded polymer, including expanded polytetrafluoroethylene (“ePTFE”), expanded modified PTFE (e.g. coated materials as described further below), expanded copolymers of PTFE, nylons, polycarbonates, polyethylenes, polypropylenes, polyurethanes and the like. These materials may also include materials having a porous fibrillated microstructure. It is also appreciated that these types of materials may be provided with coatings such as elastomeric coatings and coatings including therapeutic agents (e.g., heparin). Coatings may be provided as surface coatings or alternatively may partially or entirely impregnate the porous materials. Any suitable compressible porous polymer material is within the scope of the present disclosure.
Porous tubular member 102 can, for example, comprise an ePTFE construct. In various embodiments, porous tubular member 102 comprises a longitudinally extruded and longitudinally expanded ePTFE tube, such as the tubes described in U.S. Pat. Nos. 3,953,566 and 4,187,390. In other embodiments, polymeric tubular member 102 comprises a wrapped ePTFE film tube. For example, member 102 can comprises a tube made from an ePTFE film that has been cigarette wrapped on the surface of a mandrel or, alternatively, has been helically wrapped on the surface of a mandrel. Such ePTFE films of this type can be made generally as taught by U.S. Pat. Nos. 3,953,566 and 4,187,390. Likewise, conventional longitudinally extruded and expanded ePTFE tubes may be usefully reinforced with an external wrap of ePTFE film, typically, a helical wrap. However, any suitable porous ePTFE tubular member is within the scope of the present disclosure.
In various embodiments, porous tubular member 102 comprises an ePTFE tube having a multiplicity of fibrils which in turn can be connected to a multiplicity of nodes. The microstructure of porous tubular member 102 can comprise a multiplicity of fibrils having a mean fibril length. Mean fibril length can be determined, for example, by examining a photomicrograph of the surface of porous tubular member 102 and by taking the mean of ten measurements made in the predominant direction of the fibrils between nodes connected by fibrils. First, a photomicrograph is made of a representative region of the sample surface, of adequate magnification to show at least five sequential fibrils within the length of the photomicrograph. A series of five measurements are taken along a straight line drawn across the surface of the photomicrograph in the predominant direction of the fibrils followed by a second series of five measurements made along a second line drawn parallel to the first. A measurement constitutes the distance between adjacent nodes connected by at least one fibril. The ten measurements obtained by this method are meant to obtain the mean fibril length of the region.
For example, as illustrated in
In various embodiments, in the longitudinally uncompressed configuration, porous tubular member 102 can comprise a multiplicity of straight or unbent fibrils 214. Similarly, visual observation of a magnified longitudinal cross section of porous tubular member 102 indicates that a majority of the fibrils straight or unbent.
For example, after longitudinal compression, portion 110 of porous tubular member 102 comprises a multiplicity of bent fibrils 224. Similarly, visual observation of a magnified longitudinal cross section of portion 110 can indicate that a majority of the fibrils 224 connected to nodes 222 are relatively straight or unbent.
In various embodiments, at least a portion of porous tubular member 102 is held in a longitudinally compressed configuration by longitudinal constraining member 104. As illustrated in
In various embodiments, portion 110 of porous tubular member 102, when compressed to the laterally compressed configuration, comprises a multiplicity of bent fibrils. In such embodiments, the mean fibril length in portion 110 is shorter than the mean fibril length of porous tubular member 102 in the initial, longitudinally uncompressed configuration. Further, visual observation of a magnified surface of portion 110 can indicate that a majority of the fibrils are relatively non-parallel and bent in relation to the longitudinal axis of the tubular member.
Longitudinal constraining member 104 can be capable of rupturing when force is applied in a particular direction. For example, in configurations in which a portion 110 of porous tubular member 102 is held in the longitudinal compressed configuration, applying tension to one or both ends of porous tubular member can cause longitudinal constraining member 104 to rupture. Rupture of longitudinal constraining member 104 can permit portion 110 to extend from the longitudinally compressed configuration to a less compressed configuration having fibrils that are less bent.
In other embodiments, longitudinal constraining member 104 can be ruptured by applying a radial force. For example, a balloon can be used to apply radial force to porous tubular member 102, rupturing longitudinal constraining member 104 and permitting extension of portion 110 to a lesser compressed configuration having fibrils that are less bent.
With reference to
In various embodiments, as illustrated in
In yet other embodiments, longitudinal constraining member 104 can comprise a tubular member capable of rupturing upon the application of a sufficiently large force. Such a tubular member can comprise a tubular wall having a multiplicity of slits, holes, and/or perforations that facilitate rupturing. As illustrated in
As illustrated in the perspective view of
In various embodiments, first portion 110 and second portion 330 can comprise at least a part of the same portion, such that second longitudinal constraining member 334 surrounds first longitudinal constraining member 104. For example, the perspective view of
First longitudinal constraining member 104 and/or second longitudinal constraining member 334 can optionally be secured to porous tubular member 102, for example, to maintain the longitudinal constraining members in a desired orientation and position relative to porous tubular member 102. For example, first longitudinal constraining member 104 and/or second longitudinal constraining member 334 can be secured to porous tubular member 102 by applying an adhesive to a segment of an abluminal surface of porous tubular member 102 and/or the inner surface of the longitudinal constraining members. In various embodiments, a thermoplastic polymer adhesive, including a tetrafluoroethylene and perfluoromethyl vinyl ether copolymer, such as those described in U.S. Pat. No. 7,462,675, can be used. In other embodiments, a fluoroelastomer adhesive, such as a FEP, can be used. Any means capable of securing first longitudinal constraining member 104 and/or second longitudinal constraining member 334 to first porous tubular member 102 is within the scope of the present disclosure.
A method for making a length extensible implantable device of the present disclosure is described as follows. A porous tubular member in a longitudinally uncompressed configuration is obtained and fitted coaxially over a mandrel having an outside diameter the same as or slightly larger than the inside diameter of the porous tubular member. The tubular member is longitudinally compressed by a compressive force so that the length of the tube is reduced to a desired length. A longitudinal constraining member is placed over at least a portion of the porous tubular member to maintain the portion of the member in the longitudinally compressed configuration. The longitudinal constraining member can optionally be secured to the porous tubular member. The compressive force on the porous tubular member is released, and the longitudinally compressed porous tubular member is removed from the mandrel.
In various embodiments, l2 can comprise a length that is between about 50% and 75% of l1, such that compression from l1 to l2 reduces the length of porous tubular member 102 to between 50% and 75% of its uncompressed length. In other embodiments, l2 can comprise a length that is between about 25% and 50% of l1. In yet other embodiments, l2 can comprise a length that is between about 5% and 25% of l1. Any relationship between l2 and l1 is within the scope of the present disclosure.
After porous tubular member 102 is compressed to a desired length l2, at least one longitudinal constraining member 104 is applied around the abluminal surface of porous tubular member 102 to maintain at least a portion 110 of porous tubular member 102 in the longitudinally compressed configuration. For example,
In various embodiments, longitudinal constraining member 104 comprises a film. In such embodiments, the film is wrapped around portion 110 of porous tubular member 102 in the longitudinally compressed configuration. As previously discussed, the film can be wrapped at a relatively low (about 0° to 45°) or a relatively high (about 45° to 90°) wrap angle relative to a longitudinal axis of porous tubular member 102. The film can also be wrapped at multiple angles, such as embodiments in which multiple layers of film are wrapped in multiple directions along the abluminal surface of porous tubular member 102.
In other embodiments, longitudinal constraining member 104 comprises a tubular element, such as a perforated tube. In such configurations, the tubular element is fitted along the surface of portion 110 of porous tubular member 102 in the longitudinally compressed configuration.
Longitudinal constraining member 104 can optionally be secured to porous tubular member 102. For example, an adhesive can be applied to the abluminal surface of porous tubular member 102. In other examples, an adhesive can be applied to the inner surface of longitudinal constraining member 104. However, as mentioned above, any manner of securing a longitudinal constraining member to a porous tubular member is within the scope of the present disclosure.
After portion 110 of porous tubular member 102 has been secured in the longitudinally compressed configuration by at least one longitudinal constraining member 104, the compressive force used to shorten porous tubular member 102 from l1 to l2 can be relieved while longitudinal constraining member 104 maintains portion 110 in a compressed configuration, forming length extensible implantable device 100. If portion 110 comprises less than the entire length of porous tubular member 102, upon release of the compressive force, the segment of porous tubular member 102 not constrained can expand to its original length, leaving only portion 110 in the longitudinally compressed configuration. In embodiments in which the entirety length of porous tubular member 102 is covered by longitudinal constraining member 104 (in other words, where portion 110 is equal to l2), all of porous tubular member 102 remains in the longitudinally compressed configuration.
In various embodiments, a second porous tubular member can be positioned around portion 110, portion 330, and or all of porous tubular member 102. In such configurations, longitudinal constraining members 104 and/or 334 are sandwiched between porous tubular member 102 and a second porous tubular member, such that longitudinal constraining members 110 and/or 330 cannot be seen when visually examining the outer surface of length extensible implantable device 100.
After length extensible implantable device 100 is formed, it can be adjusted and configured for use within the body of a patient. In various embodiments, as illustrated in
In various embodiments, portion 110 of porous tubular member 102 can be extended from the longitudinally compressed configuration to a longer length (such as l3) by applying a force parallel to the longitudinal axis of porous tubular member 102. In other embodiments, portion 110 of porous tubular member 102 can be extended from the longitudinally compressed configuration to l3 by applying a radial force to portion 110.
For example, a treatment provider can determine a desired length of length extensible implantable device 100 before implanting the device into the vasculature of a patient. In other cases, the treatment provider can determine the desired length of length extensible implantable device 100 during the course of implanting the device into the vasculature and delivering the device to a treatment area of the patient.
Several characteristics and advantages have been set forth in the preceding description, including various alternatives together with details of the structure and function of the devices and methods. The disclosure is intended as illustrative only and as such is not intended to be exhaustive or limiting. It will be evident to those skilled in the art that various modifications may be made, especially in matters of structure, materials, elements, components, shapes, sizes, and arrangements of parts including combinations within the principles described herein, to the full extent indicated by the broad, general meaning of the terms in which the appended claims are expressed. To the extent that these various modifications depart from the spirit and scope of the appended claims, they are intended to be encompassed therein.
Number | Name | Date | Kind |
---|---|---|---|
3953566 | Gore | Apr 1976 | A |
4187390 | Gore | Feb 1980 | A |
4332035 | Mano | Jun 1982 | A |
4877661 | House et al. | Oct 1989 | A |
4955899 | Della Corna et al. | Sep 1990 | A |
5026513 | House et al. | Jun 1991 | A |
5071609 | Tu et al. | Dec 1991 | A |
5476589 | Bacino | Dec 1995 | A |
5534007 | St. Germain et al. | Jul 1996 | A |
5549663 | Cottone et al. | Aug 1996 | A |
5673102 | Suzuki et al. | Sep 1997 | A |
5708044 | Branca | Jan 1998 | A |
5718973 | Lewis et al. | Feb 1998 | A |
5752934 | Campbell et al. | May 1998 | A |
5759192 | Saunders | Jun 1998 | A |
5769884 | Solovay | Jun 1998 | A |
5772884 | Tanaka et al. | Jun 1998 | A |
5788626 | Thompson | Aug 1998 | A |
5814405 | Branca et al. | Sep 1998 | A |
5824043 | Cottone, Jr. | Oct 1998 | A |
5843158 | Lenker et al. | Dec 1998 | A |
5843161 | Solovay | Dec 1998 | A |
5843171 | Campbell et al. | Dec 1998 | A |
5853419 | Imran | Dec 1998 | A |
5925061 | Ogi et al. | Jul 1999 | A |
5935162 | Dang | Aug 1999 | A |
6010529 | Herweck et al. | Jan 2000 | A |
6013854 | Moriuchi | Jan 2000 | A |
6042588 | Munsinger et al. | Mar 2000 | A |
6042605 | Martin et al. | Mar 2000 | A |
6042606 | Frantzen | Mar 2000 | A |
6174329 | Callol et al. | Jan 2001 | B1 |
6190406 | Duerig et al. | Feb 2001 | B1 |
6217609 | Haverkost | Apr 2001 | B1 |
6245012 | Kleshinski | Jun 2001 | B1 |
6261320 | Tam et al. | Jul 2001 | B1 |
6261620 | Leadbeater | Jul 2001 | B1 |
6336937 | Vonesh et al. | Jan 2002 | B1 |
6352552 | Levinson et al. | Mar 2002 | B1 |
6379382 | Yang | Apr 2002 | B1 |
6436132 | Patel et al. | Aug 2002 | B1 |
6488701 | Nolting et al. | Dec 2002 | B1 |
6541589 | Baillie | Apr 2003 | B1 |
6620190 | Colone | Sep 2003 | B1 |
6626939 | Burnside et al. | Sep 2003 | B1 |
6673102 | Vonesh | Jan 2004 | B1 |
6673107 | Brandt et al. | Jan 2004 | B1 |
6730120 | Berg et al. | May 2004 | B2 |
6755856 | Fierens et al. | Jun 2004 | B2 |
6758858 | McCrea et al. | Jul 2004 | B2 |
6890350 | Walak | May 2005 | B1 |
7022132 | Kocur | Apr 2006 | B2 |
7049380 | Chang et al. | May 2006 | B1 |
7083642 | Sirhan et al. | Aug 2006 | B2 |
7105018 | Yip et al. | Sep 2006 | B1 |
7306729 | Bacino et al. | Dec 2007 | B2 |
7419678 | Falotico | Sep 2008 | B2 |
7531611 | Sabol et al. | May 2009 | B2 |
7789908 | Sowinski et al. | Sep 2010 | B2 |
7811314 | Fierens et al. | Oct 2010 | B2 |
7815763 | Fierens et al. | Oct 2010 | B2 |
7927364 | Fierens et al. | Apr 2011 | B2 |
7927365 | Fierens et al. | Apr 2011 | B2 |
7935141 | Randall et al. | May 2011 | B2 |
7967829 | Gunderson et al. | Jun 2011 | B2 |
8585753 | Scanlon et al. | Nov 2013 | B2 |
9345601 | Jantzen et al. | May 2016 | B2 |
9737422 | Armstrong et al. | Aug 2017 | B2 |
9795496 | Armstrong et al. | Oct 2017 | B2 |
9839540 | Armstrong et al. | Dec 2017 | B2 |
9931193 | Cully et al. | Apr 2018 | B2 |
10166128 | Armstrong et al. | Jan 2019 | B2 |
10279084 | Goepfrich et al. | May 2019 | B2 |
10335298 | Armstrong et al. | Jul 2019 | B2 |
10507124 | Armstrong et al. | Dec 2019 | B2 |
20010053929 | Vonesh et al. | Dec 2001 | A1 |
20020076542 | Kramer et al. | Jun 2002 | A1 |
20020198588 | Armstrong | Dec 2002 | A1 |
20030055494 | Bezuidenhout et al. | Mar 2003 | A1 |
20030060871 | Hill et al. | Mar 2003 | A1 |
20030180488 | Lim et al. | Sep 2003 | A1 |
20040024442 | Sowinski et al. | Feb 2004 | A1 |
20040024448 | Chang et al. | Feb 2004 | A1 |
20040044400 | Cheng et al. | Mar 2004 | A1 |
20040044401 | Bales et al. | Mar 2004 | A1 |
20040133266 | Clerc et al. | Jul 2004 | A1 |
20040170782 | Wang et al. | Sep 2004 | A1 |
20040224442 | Grigg | Nov 2004 | A1 |
20040260277 | Maguire | Dec 2004 | A1 |
20050080476 | Gunderson et al. | Apr 2005 | A1 |
20050137680 | Ortiz et al. | Jun 2005 | A1 |
20050283224 | King | Dec 2005 | A1 |
20060009835 | Osborne et al. | Jan 2006 | A1 |
20060015171 | Armstrong | Jan 2006 | A1 |
20060036311 | Nakayama et al. | Feb 2006 | A1 |
20060106337 | Blankenship | May 2006 | A1 |
20060118236 | House | Jun 2006 | A1 |
20060135985 | Cox et al. | Jun 2006 | A1 |
20060161241 | Barbut et al. | Jul 2006 | A1 |
20060190070 | Dieck | Aug 2006 | A1 |
20060259133 | Sowinski et al. | Nov 2006 | A1 |
20060271091 | Campbell et al. | Nov 2006 | A1 |
20060276883 | Greenberg et al. | Dec 2006 | A1 |
20070012624 | Bacino et al. | Jan 2007 | A1 |
20070060999 | Randall et al. | Mar 2007 | A1 |
20070129786 | Beach et al. | Jun 2007 | A1 |
20070207186 | Scanlon et al. | Sep 2007 | A1 |
20070207816 | Spain | Sep 2007 | A1 |
20070208421 | Quigley | Sep 2007 | A1 |
20070213800 | Fierens et al. | Sep 2007 | A1 |
20070250146 | Cully et al. | Oct 2007 | A1 |
20070250153 | Cully et al. | Oct 2007 | A1 |
20070254012 | Ludwig et al. | Nov 2007 | A1 |
20080051876 | Ta et al. | Feb 2008 | A1 |
20080097301 | Alpini et al. | Apr 2008 | A1 |
20080097579 | Shanley et al. | Apr 2008 | A1 |
20080097582 | Shanley et al. | Apr 2008 | A1 |
20080119943 | Armstrong et al. | May 2008 | A1 |
20080319531 | Doran et al. | Dec 2008 | A1 |
20090005854 | Huang et al. | Jan 2009 | A1 |
20090030499 | Bebb et al. | Jan 2009 | A1 |
20090036976 | Beach et al. | Feb 2009 | A1 |
20090043373 | Arnault De La Menardiere et al. | Feb 2009 | A1 |
20090104247 | Pacetti | Apr 2009 | A1 |
20090182413 | Burkart et al. | Jul 2009 | A1 |
20090306766 | McDermott et al. | Dec 2009 | A1 |
20100016940 | Shokoohi et al. | Jan 2010 | A1 |
20100094394 | Beach et al. | Apr 2010 | A1 |
20100094405 | Cottone | Apr 2010 | A1 |
20100106240 | Duggal et al. | Apr 2010 | A1 |
20100159171 | Clough | Jun 2010 | A1 |
20100256738 | Berglund | Oct 2010 | A1 |
20100286760 | Beach et al. | Nov 2010 | A1 |
20100305682 | Furst | Dec 2010 | A1 |
20110009953 | Luk et al. | Jan 2011 | A1 |
20110087318 | Daugherty et al. | Apr 2011 | A1 |
20120323211 | Ogle et al. | Dec 2012 | A1 |
20130131780 | Armstrong et al. | May 2013 | A1 |
20130183515 | White | Jul 2013 | A1 |
20130184807 | Kovach et al. | Jul 2013 | A1 |
20130197624 | Armstrong et al. | Aug 2013 | A1 |
20130204347 | Armstrong et al. | Aug 2013 | A1 |
20130253466 | Campbell et al. | Sep 2013 | A1 |
20130297003 | Pinchuk | Nov 2013 | A1 |
20140135897 | Cully et al. | May 2014 | A1 |
20140172066 | Goepfrich et al. | Jun 2014 | A1 |
20140180402 | Bruchman et al. | Jun 2014 | A1 |
20150005870 | Kovach et al. | Jan 2015 | A1 |
20150313871 | Li et al. | Nov 2015 | A1 |
20160015422 | De Cicco et al. | Jan 2016 | A1 |
20170065400 | Armstrong et al. | Mar 2017 | A1 |
20170216062 | Armstrong et al. | Aug 2017 | A1 |
20180177583 | Cully et al. | Jun 2018 | A1 |
20190125517 | Cully et al. | May 2019 | A1 |
20190209739 | Goepfrich et al. | Jul 2019 | A1 |
20190216592 | Cully et al. | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
2462509 | Apr 2003 | CA |
101926699 | Dec 2010 | CN |
0293090 | Nov 1988 | EP |
0313263 | Apr 1989 | EP |
0 775 472 | May 1997 | EP |
0815806 | Jan 1998 | EP |
0893108 | Jan 1999 | EP |
1666003 | Jun 2006 | EP |
2255750 | Dec 2010 | EP |
02-000645 | Jan 1990 | JP |
H09241412 | Sep 1997 | JP |
H11290448 | Oct 1999 | JP |
11-512635 | Nov 1999 | JP |
2001509702 | Jul 2001 | JP |
2007-526098 | Sep 2007 | JP |
2008-506459 | Mar 2008 | JP |
2010-500107 | Jan 2010 | JP |
2010504174 | Feb 2010 | JP |
2010535075 | Nov 2010 | JP |
2124986 | Jan 1999 | RU |
9413224 | Jun 1994 | WO |
WO9416802 | Aug 1994 | WO |
WO9505555 | Feb 1995 | WO |
9607370 | Mar 1996 | WO |
1996040348 | Dec 1996 | WO |
WO9710871 | Mar 1997 | WO |
1999026558 | Jun 1999 | WO |
WO0041649 | Jul 2000 | WO |
WO0047271 | Aug 2000 | WO |
0164278 | Sep 2001 | WO |
WO0174272 | Oct 2001 | WO |
WO02060506 | Aug 2002 | WO |
2003003946 | Jan 2003 | WO |
2004000375 | Dec 2003 | WO |
2006019626 | Feb 2006 | WO |
2006058322 | Jun 2006 | WO |
2008021002 | Feb 2008 | WO |
2008028964 | Mar 2008 | WO |
2008036870 | Mar 2008 | WO |
2008049045 | Apr 2008 | WO |
2008097589 | Aug 2008 | WO |
2009017827 | Feb 2009 | WO |
2009100210 | Aug 2009 | WO |
2009108355 | Sep 2009 | WO |
2010006783 | Jan 2010 | WO |
2010008570 | Jan 2010 | WO |
2010030766 | Mar 2010 | WO |
2010132707 | Nov 2010 | WO |
2010150208 | Dec 2010 | WO |
2011098565 | Aug 2011 | WO |
2012011261 | Jan 2012 | WO |
2012099979 | Jul 2012 | WO |
2012158944 | Nov 2012 | WO |
2013074663 | May 2013 | WO |
2013109337 | Jul 2013 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT/US2014/068430 dated Feb. 20, 2015, corresponding to U.S. Appl. No. 14/558,296, 4 pages. |
International Search Report and Written Opinion issued in PCT/US2011/061165, dated Oct. 1, 2012, 20 pages. |
International Search Report and Written Opinion issued in PCT/US2012/066518, dated Feb. 4, 2013, 10 pages. |
International Search Report issued in PCT/US2014/013496, dated Dec. 2, 2014, 3 pages. |
Nakayama, Yasuhide. Microporous Stent Achieves Brain Aneurysm Occlusion Without Disturbing Branching Flow. NeuroNews Nov. 2012; 8:1-2. |
Nishi S, Nakayama Y, Ishibashi-Ueda H, Okamoto Y, Yoshida M. Development of microporous self-expanding stent grafts for treating cerebral aneurysms: designing micropores to control intimal hyperplasia. J Artif Organs 2011; 14:348-356. |
International Preliminary Report on Patentability issued in PCT/US2016/028671, dated Nov. 1, 2018, 12 pages. |
European Search Report and Search Opinion Received for EP Application No. 16899644.5, dated Oct. 30, 2019, 8 pages. |
European Search Report and Search Opinion Received for EP Application No. 18167101, dated Jul. 25, 2018, 9 pages. |
European Search Report from EP16196687.4, dated Nov. 21, 2017, 5 pages. |
Extended European Search Report issued in EP Application No. 17186750.0, dated Oct. 24, 2017, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US11/61165, dated Jul. 25, 2013, 14 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US12/65066, dated May 30, 2014, 14 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US14/68430, dated Jun. 16, 2016, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/076405, dated Jul. 2, 2015, 10 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/013496, dated Aug. 11, 2016, 7 pages. |
International Search Report and Written Opinion issued in PCT/US2012/064908, dated Feb. 4, 2013, 10 pages. |
International Search Report and Written Opinion issued in PCT/US2012065066, dated Nov. 11, 2013, 9 pages. |
International Search Report and Written Opinion issued in PCT/US2016/028671, dated Jul. 28, 2016, 19 pages. |
International Search Report for PCT/US2014/013496 dated Dec. 2, 2014,corresponding to U.S. Appl. No. 13/755,481, 4 pages. |
International Search Report issued in PCT/US2013/076405, dated May 6, 2014, 7 pages. |
International Written Opinion received for PCT Patent Application No. PCT/US2014/013496, dated Dec. 2, 2014, 5 pages. |
Partial International Search Report for PCT/US2012/065066, dated Jul. 1, 2013, corresponding to U.S. Appl. No. 13/675,959, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20150157770 A1 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
61912414 | Dec 2013 | US |