The present disclosure is directed to disposable absorbent articles and arrays of disposable absorbent articles which are designed to fit different adult body sizes, shapes and types, and as such are sized to fit a broad range of adult consumers.
The Hip Circumference measurement, due to the relationship to the prominent point of the buttocks, generally establishes the primary anchoring point of the absorbent article as it represents the maximum circumference around the body in the lower torso area. This is especially true for women who have a more cylindrical body shape or a more apple-like body shape. For products comprising one uniform elastic material or a series of uniformly strained strands of material, the hip may also be the highest force region of the article. The Body Rise and Hip Circumference are illustrated in
The Body Length and Hip Width are illustrated in
The Hip Circumference increases with BMI and Waist Circumference. The Body Rise-to-Hip Circumference Ratio and Body Length-to-Hip Silhouette both decrease as a function of BMI and Waist Circumference.
A key benefit of having the Product Length-to-Hip Silhouette closer to that of the Body Length-to-Hip Silhouette and designed to change accordingly with BMI and Waist Circumference is that the product itself more closely matches the shape of the body. This results in the product being deformed to a significantly lesser degree during application than one that is generically designed to fit a bigger range as illustrated by the current marketed products. It also results in a product fit, which is more tailored to the body shape, providing more effective gasketing and less extraneous material in the crotch and at the top of the article that may show outside of the clothing. In fact, many of the current marketed products are designed to fit increments as large as 100 pounds and, as such do not provide adequate fit, gasketing, comfort and discretion across the entire range. Additionally, product designs which mimic the general shape of the body convey to consumers a better, more tailored fit as the Product Length-to-Hip Silhouettes are more similar to consumers' Body Length-to-Hip Silhouettes.
Another consideration is that some consumers prefer a product style that provides for a lower fit, such that the front waist edge is below the navel. Products designed to fit below the navel and around the waist to the small of the back also fall into the Low Motion area of the anatomy, as described in U.S. Pat. No. 5,358,500 to LaVon, et al., providing increased product stability, comfort and gasketing. Products designed to deliver a lower fit relative to the navel will by necessity require a smaller Product Length-to-Hip Silhouette.
Another important silhouette is the Product Waist-to-Side Silhouette. The Waist Circumference and Side Length are illustrated in
The Waist Width and Side Length are illustrated in
As the Waist Circumference increases with BMI, Waist Circumference-to-Side Length Ratio and Body Waist-to-Side Silhouette both increase. For products designed to deliver fit with the front waist edge near the navel, as shown in
Adult incontinence (“AI”) absorbent articles of the present disclosure may be used to absorb and contain liquid and other discharges from the human body to prevent the body and clothing from becoming soiled. For adults who suffer from urinary incontinence, urine voiding consists of two general types: stress urinary incontinence (“SUI”) and urge urinary incontinence (“UUI”). SUI is caused by high pressure on the bladder induced by coughing, sneezing, laughing, bending, etc., and can result in a high flow rate though at a smaller urine volume that is associated with UUI. UUI can result in a full bladder release, though at a lower flow rate than that associated with SUI.
Adult Incontinence articles come in a variety of designs, each typically available in multiple sizes, including 2, 3 and 4 size arrays. The size of articles of the prior art typically affects, for example, the size of the waist opening, the size of the openings around the thighs, and the length or “pitch” of the article. Many of these prior art articles are designed to fit ranges up to 100 pounds. The prior art articles are typically sized and sold by waist circumference dimension. The various sizes can have a range in waist circumference of as much as 12 inches and in some cases up to 16 inches for a given size. If a consumer selects an adult incontinence article of the prior art which is size appropriate based on the waist circumference dimension of the wearer given the large ranges associated with the various sizes, the thigh openings or pitch of the article, for instance, may be too large for proper fit on the wearer, potentially leading to slipping, sliding, sagging, drooping, or a loss of gasketing effects that are designed to inhibit leakage. Alternatively, depending on where the wearer is within the large size range, the thigh opening or pitch of the article may be too small for proper fit, potentially leading to wearer discomfort, skin marking of the wearer's skin or improper application or positioning of the article on the wearer.
Desirably, an adult absorbent article should be designed and sized to maintain contact with and conform as closely as possible to a wearer's body. Such a body-conforming design may increase the effectiveness of the adult absorbent article by reducing the possibility that urine, or the like, will spread or travel along the wearer's body and leak out of rather than be absorbed into the adult absorbent article. However, current adult absorbent articles on the market do not adequately address body shape or product shape and therefore do not fit a broad range of users adequately or provide the desired level of close fit. Typically AI packages of adult absorbent articles are labeled with a recommended wearer waist circumference range that the packaged article is intended to fit. As a result, the waist circumference is often the sole criteria used to identify the size of an AI article. The waist size does not in itself adequately describe the body shape of the individual and therefore does not help define the hip or thigh circumference nor the pitch that may be needed to provide the proper fit, comfort, coverage and gasketing of the article. This is the case even though other characteristics and anthropometric attributes of potential wearers (for example, age, height, weight, thigh circumference, and rise) may vary widely within the recommended waist circumference range, and may result in an ill-fitting article even though a wearer's waist circumference falls within that range. There is a need for adult absorbent articles that conform well to various wearers' body shapes and sizes. While there is a wide range of body shapes and sizes among women, available products do not reflect this wide range; rather, absorbent articles available today within a given product array tend to be scaled versions of each other, and do not even follow the natural trend of body shape and dimensional changes across the range of consumers, i.e. smaller to larger women as well as women of varying shape.
Body Mass Index (BMI) is on the rise globally for both men and women. In the U.S. alone, more than ⅓ of adult females are now considered obese (BMI>30). This has changed significantly over the past 30 years; in 1980 only about 16% of U.S. adult females were obese. Larger women exhibit different ratios of body anthropometrics than smaller women, i.e., all body dimensions do not simply scale-up as women get larger. In addition, women across the range of BMI may also have very different body shapes. There is a lack of recognition and understanding of this issue by current adult absorbent article manufacturers and as such consumers' needs are not being adequately met. Therefore, there is a need to develop adult absorbent articles for a wide variety of body shapes and sizes in order to provide an improved level of fit and contact between the body and the adult absorbent article to reduce the occurrence leakage and improve the overall fit, comfort, coverage and discretion of the article. There is a clear need for adult absorbent articles which are designed for variety of wearers based on their BMI and body shape. There is also a need to communicate to wearers the benefits of such customized adult absorbent articles in an easy-to-understand manner (e.g., some women may not understand what BMI is or know their BMI number), which is not off-putting (e.g., without stigmatizing or embarrassing women based on their BMI).
These are all objects of the present disclosure; embodiments of the present disclosure may combine various objects mentioned. A particular embodiment may, but need not, embody every object as described.
“Pull-on garment” or “pant” means articles of wear which have a defined waist opening and a pair of leg openings and which are pulled onto the body of the wearer by inserting the legs into the leg openings and pulling the article up over the waist.
“Disposable” means garments, which are not intended to be laundered or otherwise restored or reused as a garment (i.e., they are intended to be discarded after a single use and to be recycled, composted or otherwise disposed of in an environmentally compatible manner). The pull-on garment may be “absorbent” such that it absorbs and contains the various exudates discharged from the body.
“Closed form” means opposing waist regions are joined to form a continuous waist opening and leg openings. The waist regions may be permanently joined, semi-permanently joined or refastenably joined. See
“Array” means a display of packages comprising disposable articles of different sizes having like article constructions (e.g., same elastomeric materials [compositionally and/or structurally] in the flaps, graphic elements) said packages having the same brand and/or sub-brand, and said packages oriented in proximity to each other in a given area of a retail store. An array is marketed as a line-up of products normally having like packaging elements (e.g., packaging material type, film, paper, dominant color, design theme, etc.) that convey to consumers that the different individual packages are part of a larger line-up. Arrays often have the same brand, for example, “Depend,” and same sub-brand, for example, “for Women Underwear.” A different array may have the brand “Depend” and the sub-brand “Silhouette For Women.” The differences between the “for Women Underwear” array and the “Silhouette For Women” arrays include different elastomeric materials in the side flaps, where “for Women Underwear” comprises strands as the elastomeric material and “Silhouette For Women” comprises a film elastomeric material. Furthermore, the packaging is distinctly different in that “for Women Underwear” is packaged in a predominately green, film bag and “Silhouette For Women” is packaged in a predominately maroon box.
Further regarding “Arrays,” as another example of two separate “arrays” having the same brand, “Certainty,” one line-up has the sub-brand “Women's Underwear.” A different array may have the same brand “Certainty” and the sub-brand “Smooth Shape Briefs for Women.” The differences between the “Women's Underwear” array and the “Smooth Shape Briefs for Women” arrays include different elastomeric materials in the side flaps, where “Women's Underwear” comprises strands as the elastomeric material and “Smooth Shape Briefs for Women” comprises a film elastomeric material. Furthermore, the packaging is distinctly different in that “Women's Underwear” is packaged in a predominately blue, film bag and “Smooth Shape Briefs for Women” is packaged in a predominately maroon box.
Arrays also often have the same trademarks, including trademarks of the brand, sub-brand, and/or features and/or benefits across the line-up.
“On-line Array” means an “Array” distributed by a common on-line source.
“Hip Circumference” means the circumference of the body measured horizontally on a standing body at the level of the maximum posterior protuberance of buttocks. See
“Hip Width” means the horizontal distance at the front of a standing body at the hips, where the hips are defined at the same level as the maximum prominent point of the buttocks as seen from the side. See
“Body Length” means the vertical distance from the navel to the maximum depth of the crotch, determined by the maximum depth of the crotch within the sagittal plane. See
“Waist Circumference” means the horizontal circumference of the waist measured horizontally on a standing body at the level of the center of the navel (omphalion). See
“Body Rise” means the surface distance from omphalion (center of navel) to the subjects back at the level horizontal to that of the navel on a standing body, measured through the crotch and over the middle of the buttock. See
“Body Rise-to-Hip Circumference Ratio” means the Body Rise (mm) divided by the Hip Circumference (mm). See
“Body Length-to-Hip Silhouette” means the Body Length (mm) divided by the Hip Width (mm). See
“Product Length-to-Hip Silhouette” means Relaxed Product Length (300) (mm) divided by the Relaxed Product Hip Width (301) (mm). See
“Waist Width” is defined as the width of the body measured horizontally on a standing body in the front of the body at the omphalion (center of navel). See
“Side Length” means the vertical distance from the navel to the level of the hip (where the hips are defined at the maximum prominent point of the buttocks as seen from the side. See
“Waist Circumference-to-Side Length Ratio” means the Waist Circumference (mm) divided by the Side Length (mm). See
“Body Waist-to-Side Silhouette” means the Waist Width (mm) divided by the Side Length (mm). See
“Product Waist-to-Side Silhouette” means Relaxed Product Waist Width (302) (mm) divided by the Relaxed Product Side Length (303) (mm). See
“Array Average Product Waist-to-Side Silhouette” means the average Product Waist-to-Side Silhouette of each size offered in a product array. For example, the Depend Underwear for Women (Maximum Absorbency) is marketed and sold in an array of 3 sizes: Small/Medium; Large and Extra Large. The Array Average Product Waist-to-Side Silhouette is the average of: The Product Waist-to-Side Silhouette for size Small/Medium; the Product Waist-to-Side Silhouette for size Large; and the Product Waist-to-Side Silhouette for size Extra Large. Table 1 shows examples of the Product Waist-to-Side Silhouette for some currently marketed product arrays. “Array Average Product Length-to-Hip Silhouette” means the average Product Length-to-Hip Silhouette of each size offered in a product array. For example, the Depend Underwear for Women (Maximum Absorbency) is marketed and sold in an array of 3 sizes: Small/Medium; Large and Extra Large. The Array Average Product Length-to-Hip Silhouette is the average of: The Product Length-to-Hip Silhouette for size Small/Medium; the Product Length-to-Hip Silhouette for size Large; and the Product Length-to-Hip Silhouette for size Extra Large. Table 1 shows examples of the Product Length-to-Hip Silhouette for some currently marketed product arrays.
“Relaxed Product Length” means the longitudinal distance between the longitudinally distal most point in the crotch region and the longitudinally distal most point along the front waist edge. The longitudinal distance is measured parallel to the longitudinal axis of the product. Refer to
“Relaxed Product Hip Width” means the lateral distance from the laterally distal most point of the left side edge of the product at the upper edge of the left leg opening to the laterally distal most point of the right side edge of the product at the upper edge of the right leg opening. Refer to
“Relaxed Product Waist Width” means the lateral distance from the distal most point at the right side of the front waist edge to the distal most point at the left side of the front waist edge. The lateral distance is measured perpendicular to the longitudinal axis of the product. Refer to
“Relaxed Product Side Length” means the linear distance from the point of intersection between the waist edge and the side edge of the product to the point of intersection between the top of the leg opening and the same side edge of the product. The relaxed product side length measurement is the average of the measurements from the left and right sides of the product. Refer to
“Target Waist Range” means the waist range as defined on each product package. For example, the Depend for Women Moderate Absorbency S/M package indicates a waist of 28-40 in (71-102 cm).
“Average Targeted Waist” means the average of the Target Waist Range. For example, the Depend for Women Moderate Absorbency S/M has a Target Waist Range (as defined on its package) of 71-102 cm. The Average Targeted Waist for this product is 86.5 cm.
Consumers who are urinary incontinent often are traumatized by the condition. Many aspects of the condition contribute to the trauma, like the fear of having an incontinent event in public. Even when wearing an absorbent article, there is still the fear of leaking, and the fear of her absorbent article being noticeable under her clothes. As such providing a product experience that helps normalize the condition by providing a more underwear-like, thin and body conforming structure across the entire BMI range is one of the objects of the present disclosure.
The body mass index (BMI) is a classification system for body shapes based upon height and mass. BMI may be calculated as follows:
The BMI comprises different classes of body mass, including: underweight (BMI<20), normal weight (BMI 20-25), overweight (BMI 25-30), obese (BMI 30-40), and morbidly obese (BMI>40).
One region where the shape of the female body changes, as BMI gets higher, is in the Body Length-to-Hip Silhouette. The Body Length-to-Hip Silhouette gets smaller on average for larger women.
It may be desirable to link the Product Length-to-Hip Silhouette to that of the targeted consumers Body Length-to-Hip Silhouette in order to achieve a better fitting, better conforming, and better gasketing product. This may increase the wearing comfort for each consumer while reducing leakage. Additionally, a product array where the Product Length-to-Hip Silhouette of each subsequently larger size follows the same general trend as the Body Length-to-Hip Silhouette for each subsequently larger size may also deliver a better fitting, better conforming, and better gasketing article to each consumer regardless of their respective BMI.
While today's AI product arrays are not targeted toward the consumer's BMI, they are targeted toward their Waist Circumference. Table 1 details some of today's marketed product arrays (“comparative example arrays” or “existing product arrays”).
Table 2 below illustrates several inventive arrays of 2, 3, and 4 packages plus a low fitting design (
Table 3 and
The absorbent articles of the present disclosure are generally designed and configured to manage bodily exudates such as urine, menses, feces or other vaginal discharges.
In one embodiment, an absorbent article may comprise a chassis comprising a topsheet, a backsheet, and an absorbent core disposed at least partially between the topsheet and the backsheet. The absorbent chassis may comprise a waistband, leg cuffs and or elastic strands. In various embodiments, referring to
In one embodiment, referring to
In one embodiment, referring to
In various embodiments, a portion of or the whole absorbent article 10 may be made to be laterally extensible. The extensibility of the absorbent article 10 may be desirable in order to allow the absorbent article 10 to conform to a body of a wearer during movement by the wearer. The extensibility may also be desirable, for example, in order to allow the caregiver to extend the front waist region 36, the back waist region 38, the crotch region 37, and/or the chassis 100 to provide additional body coverage for wearers of differing size, i.e., to tailor the absorbent article 10 to the individual wearer. Such extension may provide the absorbent article 10 with a generally hourglass shape, so long as the crotch region 37 is extended to a relatively lesser degree than the waist regions 36 and/or 38. This extension may also impart a tailored appearance to the absorbent article 10 during use.
Any or all portions of the absorbent article may comprise a bacteriophage composition as described in U.S. Ser. No. 61/931,229, titled DISPOSABLE ABSORBENT ARTICLES COMPRISING BACTERIOPHAGES AND RELATED METHODS, and filed on Jan. 24, 2014.
In one embodiment, referring to
Apertured film or nonwoven topsheets typically may be pervious to bodily exudates, yet non-absorbent, and have a reduced tendency to allow fluids to pass back through and rewet the wearer's skin. Suitable woven and nonwoven materials may comprise natural fibers, such as, for example, wood or cotton fibers, synthetic fibers, such as, for example, polyester, polypropylene, or polyethylene fibers, or combinations thereof. If the topsheet 81 comprises fibers, the fibers may be spunbond, carded, wet-laid, meltblown, hydroentangled, or otherwise processed, for example, as is generally known in the art.
The topsheet may comprise a skin care lotion. Examples of suitable lotions include, but are not limited to, those described in U.S. Pat. Nos. 5,607,760; 5,609,587; 5,635,191; 5,643,588; and 5,968,025, and as described in U.S. Application No. 61/391,353.
In one embodiment, the topsheet may comprise graphics (e.g., 116 in
In one embodiment, referring to
One suitable material for the backsheet can be a liquid impervious thermoplastic film having a thickness of from about 0.012 mm (0.50 mil) to about 0.051 mm (2.0 mils), for example including polyethylene or polypropylene. Typically, the backsheet can have a basis weight of from about 5 g/m2 to about 35 g/m2. The backsheet can be typically positioned adjacent the outer-facing surface of the absorbent core and can be joined thereto. For example, the backsheet may be secured to the absorbent core by a uniform continuous layer of adhesive, a patterned layer of adhesive, or an array of separate lines, spirals, or spots of adhesive. Illustrative, but non-limiting adhesives, include adhesives manufactured by H. B. Fuller Company of St. Paul, Minn., U.S.A., and marketed as HL-1358J. An example of a suitable attachment device including an open pattern network of filaments of adhesive is disclosed in U.S. Pat. No. 4,573,986. Another suitable attachment device including several lines of adhesive filaments swirled into a spiral pattern is illustrated by the apparatus and methods shown in U.S. Pat. Nos. 3,911,173; 4,785,996; and 4,842,666. Alternatively, the attachment device may include heat bonds, pressure bonds, ultrasonic bonds, dynamic mechanical bonds, or any other suitable attachment device or combinations of these attachment devices.
In one embodiment, the backsheet 83 may be embossed and/or matte-finished to provide a more cloth-like appearance. Further, the backsheet 83 may permit vapors to escape from the absorbent core of the absorbent article 10 (i.e., the backsheet 83 is breathable) while still preventing, or at least inhibiting, fluids or body exudates from passing through the backsheet 83. In one embodiment, the size of the backsheet 83 may be dictated by the size of the absorbent article 10 and the design or configuration of the absorbent article 10 to be formed, for example.
In various embodiments, referring to
In one embodiment, suitable absorbent cores may comprise cellulosic airfelt material. For instance, such absorbent cores may comprise less than about 40%, 30%, 20%, 10%, 5%, or even 1% of the cellulosic airfelt material as determined by weight. Additionally, such an absorbent core may be primarily comprised of an absorbent gelling material in amounts of at least about 60%, 70%, 80%, 85%, 90%, 95%, or even about 100% as determined by weight. Furthermore, a portion of the absorbent core may comprise a microfiber glue (if applicable). Such absorbent cores, microfiber glues, and absorbent gelling materials are described in U.S. Pat. Nos. 5,599,335; 5,562,646; 5,669,894; 6,790,798; and 7,521,587 and in U.S. Pat. Publ. No. 2004/0158212.
In one embodiment, the core, including multiple layers making up the core system, may be printed and embossed as described in U.S. Pat. No. 8,536,401.
In one embodiment, the core may be separable from the chassis as disclosed in U.S. Pat. Nos. 6,989,006; 7,381,202; 7,175,613; 7,824,386; 7,766,887; and 6,989,005. In such embodiments, the measurements described in this disclosure may be made to the chassis alone or may be made to the chassis in combination with the separable core/absorbent assembly.
In one embodiment, the absorbent article of the present disclosure, and particularly, a portion where the absorbent member is disposed, may have a body fluid absorption rate greater than 3 g/sec according to U.S. Pat. No. 6,649,810. According to U.S. Pat. No. 6,649,810, the expression “the portion (of the absorbent article) where the absorbent member is disposed” is intended to mean the portion occupied by the absorbent member when the absorbent article is flatly unfolded and seen in its plan view.
In one embodiment, the absorbent structure may have an intake factor greater than 3 according to U.S. Pat. No. 7,073,373, wherein the intake factor is defined as the absorbent core permeability divided by the normalized retention capacity (which is defined by the Retention Capacity Test—also according to U.S. Pat. No. 7,073,373).
In one embodiment, the absorbent composite has a body fluid absorption greater than 75 g/100 cm2, according to U.S. Pat. No. 6,649,810.
In one embodiment, a target location of the absorbent article may have a wicking value greater than 36%, according to U.S. Pat. No. 6,383,960.
In one embodiment, the absorbent article may have a bending stiffness between 0.05-1.0 gf, according to U.S. Pat. No. 5,810,796.
In one embodiment, the absorbent article may have a crotch fluid absorption rate greater than 3 g/sec according to U.S. Pat. No. 6,649,810. In one embodiment, a freeze-dried composite of the absorbent composite may have an intake rate of at least about 1.9 cubic centimeters (cc) of liquid/second at 80% composite saturation according to U.S. Pat. No. 6,689,934.
In one embodiment, referring to
In one embodiment, each leg cuff 147 may comprise a proximal edge 157a and 157b. These edges 157a and 157b are positioned proximate to the longitudinal axis 42 compared to distal edges 139a and 139b. The leg cuffs 147 may overlap the absorbent core 200, i.e., the proximal edges 157a and 157b lie laterally inward of the respective side edges 237a and 237b of the absorbent core 200. Such an overlapped configuration may be desirable in order to impart a more finished appearance to the absorbent article 10 than that imparted by a non-overlapped configuration. In other embodiments, the leg cuffs 147 may not overlap the absorbent core 200.
In one embodiment, each leg cuff 147 may be attached to the interior surface 102 of the chassis 100 in a leg cuff attachment zone (not shown) adjacent to the front waist end edge 136 and in a longitudinally opposing leg cuff attachment zone (not shown) adjacent to the back waist end edge 138. In one embodiment, between the leg cuff attachment zones, the proximal edge 157 of the leg cuff 147 remains free, i.e., not attached to the interior surface 102 of the chassis 100 or to the absorbent core 200. Also, between the longitudinally opposing leg cuff attachment zones, each leg cuff 147 may comprise one or more (specifically including one, two, three, or four elastic strands per leg cuff 147) longitudinally extensible cuff elastic gathering members 159 that may be disposed at or adjacent to the proximal edge 157 of the leg cuff 147 by any suitable methods. Each of such cuff elastic gathering members 159 may be attached over the leg cuff's entire length or over only a portion of the leg cuff's length. For example, such cuff elastic gathering members 159 may be attached only at or near the leg cuff's longitudinally opposing ends and may be unattached at the middle of the leg cuff's length. Such cuff elastic gathering members 159 may be disposed in the crotch region 37 and may extend into one or both of the front waist region 36 and the back waist region 38. For example, an elastic gathering member 159 may be attached at or adjacent to the proximal edge 157 of each of the leg cuffs 147 and extends into both the front waist region 36 and the back waist region 38.
In various embodiments, each cuff elastic gathering member 159 may be enclosed inside a folded hem for example. In various embodiments, the cuff elastic gathering members 159 may be sandwiched between two layers forming the leg cuff 147, by two layers of the chassis 100, or may be attached on a surface of the chassis 100 or the leg cuff 147 and remain exposed.
In one embodiment, when stretched, the cuff elastic gathering member 159 disposed adjacent to each leg cuff's proximal edge 157 allows the leg cuff proximal edge 157 to extend to the flat uncontracted length of the chassis 100, e.g., the length of the chassis 100. When allowed to relax, the cuff elastic gathering member 159 contracts to pull the front waist region 36 and the back waist region 38 toward each other and, thereby, bend the article 10 into a “U” shape in which the interior of the “U” shape may be formed by the portions of the article 10 that are intended to be placed toward the body of the wearer (i.e., interior surface 102). Because each of the proximal edges 157 remains free between the longitudinally oriented leg cuff attachment zones, the contractive force of the elastic gathering member 159 may lift the proximal edge 157 of the leg cuff 147 away from the interior surface 102 of the chassis 100. This lifting of the proximal edges 157 when the article 10 is in the relaxed condition lifts the leg cuffs 147 into a position to serve as side barriers to prevent, or at least inhibit, leakage of bodily exudates.
In one embodiment, referring to
In one embodiment, the elasticized waistbands may comprise materials that have been “prestrained” or “mechanically prestrained” (i.e., subjected to some degree of localized pattern mechanical stretching to permanently elongate the material). The materials may be prestrained using suitable deep embossing techniques. In other embodiments, the materials may be prestrained by directing the material through an incremental mechanical stretching system as described in U.S. Pat. No. 5,330,458. The materials may then be allowed to return to their substantially untensioned condition, thus forming a zero strain stretch material that is extensible, at least up to the point of initial stretching. Examples of zero strain materials are disclosed in U.S. Pat. Nos. 2,075,189, 3,025,199, 4,107,364, 4,209,563, 4,834,741, and 5,151,092.
The flaps 189 (a-d) may be discrete from or integral with the chassis 100. A discrete flap is formed as separate element, which is joined to the chassis 100. In some embodiments, this includes a plurality of flaps, e.g. 2 or 4 (often referred to as ear panels or side flaps) being joined to the side edges 137a and b of the chassis in the front and/or rear waist regions 36 and 38 (see
The belt-like flaps and may comprise an inner nonwoven layer and an outer nonwoven layer and elastics there between. The inner and outer nonwoven layers may be joined using adhesive or thermoplastic bonds. Various suitable belt-like flap configurations can be found in U.S. Pub. No. 2013-0211363.
An integral flap is a portion, one or more layers, of the chassis that projects laterally outward from the longitudinal edge. The integral flap may be formed by cutting the chassis to include the shape of the flap projection.
While many of the embodiments illustrated in this application having belt-like flaps are pant articles, taped articles may have belt-like flaps disposed in one or both waist regions as well.
The structure of flaps play an important role in the functionality of the absorbent article and are fundamentally different than the elastics used in underwear. As mentioned above, incontinence events, such as SUI and UUI, can result in a high flow rate and/or a full bladder release. The amounts of urine expelled during the incontinence events can vary wildly given the type of urinary incontinence as well as other circumstances such as time since last bathroom visit, amount of fluid intake, day or night, etc. Loadings can range from as low as a few drops of urine to loadings as high as 600 mls. It is not unusual to have single loadings as high as 300, 400 and even 500 mls. These levels of loading present a significant downward force associated with the loading which can be a pound or more. This downward force must be compensated for by the absorbent article chassis in order to minimize sagging, gapping and leakage. In order to sustain the fit of the article even after loading the article comprises elastomeric element(s) 146, including films and/or strands) that are disposed proximate to and along the side seams 280a and b (see, for example,
The absorbent article may also include a fastening system. When fastened, the fastening system interconnects the front waist region 36 and the rear waist region 38 resulting in a waist circumference that may encircle the wearer during wear of the absorbent article 10. This may be accomplished by flaps 189a and b in the back waist region interconnecting with flaps 189c and d in the front waist region or by flaps in the back waist region interconnecting with the chassis 100 in the front waist region. The fastening system may comprises a fastener 53a and b such as tape tabs, hook and loop fastening components, interlocking fasteners such as tabs & slots, buckles, buttons, snaps, and/or hermaphroditic fastening components, although any other known fastening means are generally acceptable. The fasteners may releasably engage with a landing zone 118, which may be a woven or nonwoven. Some exemplary surface fastening systems are disclosed in U.S. Pat. Nos. 3,848,594; 4,662,875; 4,846,815; 4,894,060; 4,946,527; 5,151,092; and 5,221,274. An exemplary interlocking fastening system is disclosed in U.S. Pat. No. 6,432,098. The fastening system may also provide a means for holding the article in a disposal configuration as disclosed in U.S. Pat. No. 4,963,140. The fastening system may also include primary and secondary fastening systems, as disclosed in U.S. Pat. No. 4,699,622. The fastening system may be constructed to reduce shifting of overlapped portions or to improve fit as disclosed in U.S. Pat. Nos. 5,242,436; 5,499,978; 5,507,736; and 5,591,152.
As disclosed in U.S. Pub. No. 2013-0211355, it may be desirable to offer an array of packages for fitting different sized wearers, but comprising identical or substantially identical chassis. For instance, an array may comprise a first package comprising a first size of absorbent articles and a second package may comprise a second size of absorbent articles, where the first and second packages comprise identical or substantially identical chassis as described in U.S. Pub. No. 2013-0211355. More particularly, the first package may comprise a first chassis and the second package may comprise a second chassis, where each of the first and second chassis comprise the same dimensions of one or more of: core width at the lateral centerline, core width at one of the front or rear core end, a distance from a left outer cuff distal edge to a right outer cuff distal edge, a distance from a left inner cuff distal edge to a left outer cuff distal edge, a distance from a left inner cuff proximal edge to a right inner cuff proximal edge, a distance from a left inner cuff proximal edge to a left outer cuff distal edge, a free height of the inner cuff, inner cuff hem fold width, inner cuff elastics length, outer cuff elastics length, core length, and backsheet width.
Further, each of the first and second chassis may comprise identical chemical compositions of one or more of a topsheet, backsheet film, backsheet nonwoven, core super absorbent polymers, core pulp, core nonwoven, core tissue, leg cuff film, leg cuff nonwoven, super absorbent polymer adhesive, core nonwoven adhesive, leg cuff elastic adhesive, and backsheet nonwoven/film adhesive.
And, each of the first and second chassis may comprise the same basis weight of one or more of the topsheet, backsheet film, backsheet nonwoven, core super absorbent polymers, core pulp, leg cuff nonwoven, leg cuff film, super absorbent polymer adhesive, leg cuff adhesive, and backsheet nonwoven/film adhesive.
And, each of the first and second chassis may comprise compositionally identical core super absorbent polymers. The first and second chassis may have identical component cross sectional order and disposition in at least one of the front waist region, back waist region, and crotch region. The inner leg cuffs of the first and second chassis may be composed of the compositionally identical materials.
And, the core adhesives of the first and second chassis may be the same adhesive(s). The first and second chassis may comprise core super absorbent polymers that are in the same chemical class and subclass.
And, each of the first and second chassis may comprise first and second wetness indicators, respectively, and wherein the first and second wetness indicators are compositionally identical.
Further, the inner leg cuffs of the first and second chassis may have identical component cross sectional order and disposition in at least one of the front waist region, back waist region, and crotch region. The distance from the left outer cuff distal edge to a right outer cuff distal edge may the same. The distance from the left inner cuff proximal edge to left outer cuff distal edge may be the same. The distance from the left inner cuff proximal edge to the right inner cuff proximal edge is the same. The lengths of the inner and outer cuffs are the same.
In some embodiments, different size offerings in an array may have identical or substantially identical chassis as the flaps or belts may be used to enable the absorbent article to fit different sized wearers. For example, first and second absorbent articles may have identical chassis (compositionally, dimensionally, cross-sectionally), but the first article may have a different length due to disposition of the belts, such that the first article may be targeted to fit a smaller wearer than the second article. As a second example, first and second absorbent articles may have identical chassis (compositionally, dimensionally, cross-sectionally), but the first article may have a different length and/or width due to the size of the belts, such that the first article may be targeted to fit a smaller wearer than the second article.
In some embodiments, first and second absorbent articles may have identical chassis compositionally, but not dimensionally, and not cross-sectionally. In some embodiments, first and second absorbent articles may have identical chassis dimensionally, but not compositionally, and not cross-sectionally. In some embodiments, first and second absorbent articles may have identical chassis cross-sectionally, but not dimensionally, and not compositionally. In still other embodiments, first and second absorbent articles may have two, but not three of (1) compositionally, (2) dimensionally, and (3) cross-sectionally identical chassis.
All measurements are conducted at 22° C.+/−2° and 50% RH+/−20%.
This method is used to prepare pant type products for subsequent dimensional measurement. The method provides a consistent means of opening a product that has been removed from a bag.
This method is applicable to all forms of pant products. A constant rate of extension tensile testing machine with computer interface is used.
A load cell is chosen so that the load cell capacity ensures accuracy of a 5N load to within 0.1N.
“C” (304) and “O” (305) Bar attachments each with a rod radius of 9.50 mm that extend longer than the length of the longest side seam. Refer to
Calibrate tensile tester equipment according to the instrument manufacturer's recommendations.
The initial gauge length is determined by removing 10 sample products from the bag, unfolding the pant products (307) and laying them flat as illustrated in
Apply the whole product (307) to the bars as shown in
Pull Sample to 5N Force then hold for 10 seconds. Return to initial gauge length.
Crosshead Speed=254.0 mm/min, Data acquisition rate=50 Hz.
Cycles=1
Remove the specimen from the bars while minimizing manipulation. Lay the specimen flat with the front side facing upward as shown in
Repeat for all 10 specimens
Each of the measurements below is to be conducted on 10 separate like specimens and the average of the 10 separate like specimens is considered to be the measurement for that specific specimen set.
Relaxed Product Length is the longitudinal distance between the longitudinally distal most point in the crotch region and the longitudinally distal most point along the front waist edge. The longitudinal distance is measured parallel to the longitudinal axis of the product. Refer to
Relaxed Product Hip Width is the lateral distance from the laterally distal most point of the left side edge of the product at the upper edge of the left leg opening to the laterally distal most point of the right side edge of the product at the upper edge of the right leg opening. Refer to
Relaxed Product Waist Width is the lateral distance from the distal most point at the right side of the front waist edge to the distal most point at the left side of the front waist edge. The lateral distance is measured perpendicular to the longitudinal axis of the product. Refer to
Relaxed Product Side Length is the linear distance from the point of intersection between the waist edge and the side edge of the product to the point of intersection between the top of the leg opening and the same side edge of the product. The relaxed product side length measurement is the average of the measurements from the left and right sides of the product. Refer to
Each of the measurements above is recorded to within +/−1.0 mm
This application claims the benefit, under 35 USC 119(e), to U.S. Provisional Patent Application No. 62/061,863 filed on Oct. 9, 2014, which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62061863 | Oct 2014 | US |