This application claims the benefit of U.S. provisional application No. 62/201,472 filed Aug. 5, 2015. This and all other referenced extrinsic materials are incorporated herein by reference in their entirety. Where a definition or use of a term in a reference that is incorporated by reference is inconsistent or contrary to the definition of that term provided herein, the definition of that term provided herein is deemed to be controlling.
The field of the invention is radio frequency antenna technology.
The following description includes information that may be useful in understanding the present invention. It is not an admission that any of the information provided herein is prior art or relevant to the presently claimed invention, or that any publication specifically or implicitly referenced is prior art.
Radio and microwave frequencies are widely used in wireless communication. Antennae utilized in receiving and sending such signals are often used in conjunction with a reflector (e.g., a parabolic reflector) that serves to focus electromagnetic energy in the desired spectral range on a feed that is positioned at the focal point of the reflector and is in communication with a receiver or transmitter. Such an arrangement, however, requires repositioning or aiming of the reflector in order to direct it towards different sources.
As an alternative to the use of a reflector, a lens capable of focusing radio frequency (RF) or microwave frequencies can be used. One suitable lens is a Luneburg lens, a spherically (or substantially spherical) symmetrical lens with a refractive index gradient that decreases from the center to the surface of the sphere. Electromagnetic energy traveling through such a lens necessarily takes the path that it can traverse in the least amount of time. In a classical Luneburg lens the gradient of refractive index is selected so that a focal point for electromagnetic energy impinging across a portion of the sphere is located on the opposing surface of the sphere. Some variations of the Luneburg lens are configured to place the focal point slightly beyond the opposing surface of the sphere in order to accommodate certain feed designs (such as a feed horn). The use of a Luneburg lens permits movement changing the direction of observation or transmission by simply moving the feed about the surface of the lens. In some designs, multiple feeds are arranged on or about the lens in order to permit gathering radio or microwave energy from a number of directions simultaneously without the need to move either the lens or the feeds. For example, a multi-beam station based on a single Luneburg lens can cover 120° in azimuth and thus support multiple beams. In a typical installation, a 1.8 meter spherical Luneburg antenna can support 12 beams having a 10° beam width at 10dB separation for frequencies of 1.7 to 2.7 GHz. Increasing capacity beyond this can be accomplished by decreasing the beam width along the azimuth plane, however this restricts the utility of the device. An alternative is to increase the size of the Luneburg lens, however this approach rapidly encounters issues with the manufacturability of large lenses and the practical issues introduced by the size and weight of the larger lens.
One solution to this problem is to provide multiple lenses, where each lens is equipped with a single feed and where individual feeds are oriented towards different directions. In order to minimize space requirements such lens arrays are typically arranged on a plane in a linear fashion. Unfortunately, such an arrangement greatly restricts the relative angles of reception/transmission of adjacent feeds due to intersection of the transmitted or received signal with a portion of an adjacent lens. For example, in a conventional horizontal arrangement beams with a beam orientation of greater than 30° in the azimuth plane will intersect adjacent lenses. Such antenna arrays are also subject to the generation of undesirable grating lobes as a result of rapid decreases in field amplitudes between adjacent lenses.
Thus, there is still a need for a simple and effective device for providing accessible foci for radio and/or microwave frequencies from multiple directions
All publications herein are incorporated by reference to the same extent as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Where a definition or use of a term in an incorporated reference is inconsistent or contrary to the definition of that term provided herein, the definition of that term provided herein applies and the definition of that term in the reference does not apply.
The inventive subject matter provides apparatus, systems and methods in which two or more spherical lenses are each associated with individual feed elements, and in which the spherical lenses are arranged in an array in an offset fashion such that electromagnetic energy focused by a first lens onto a first feed element does not intersect a second lens of the array. Grating lobes can be minimized in such arrangements by orienting radiating feeds towards the center of the lens array.
In another aspect of the inventive subject matter, the feed elements in a spherical lens elements array are tilted in a way such that the amplitude of the combined RF signals generated collectively by the feed elements in the array has minimal dips across the array.
Various objects, features, aspects and advantages of the inventive subject matter will become more apparent from the following detailed description of preferred embodiments, along with the accompanying drawing figures in which like numerals represent like components.
Throughout the following discussion, numerous references will be made regarding servers, services, interfaces, engines, modules, clients, peers, portals, platforms, or other systems formed from computing devices. It should be appreciated that the use of such terms is deemed to represent one or more computing devices having at least one processor (e.g., ASIC, FPGA, DSP, x86, ARM, ColdFire, GPU, multi-core processors, etc.) configured to execute software instructions stored on a computer readable tangible, non-transitory medium (e.g., hard drive, solid state drive, RAM, flash, ROM, etc.). For example, a server can include one or more computers operating as a web server, database server, or other type of computer server in a manner to fulfill described roles, responsibilities, or functions. One should further appreciate the disclosed computer-based algorithms, processes, methods, or other types of instruction sets can be embodied as a computer program product comprising a non-transitory, tangible computer readable media storing the instructions that cause a processor to execute the disclosed steps. The various servers, systems, databases, or interfaces can exchange data using standardized protocols or algorithms, possibly based on HTTP, HTTPS, AES, public-private key exchanges, web service APIs, known financial transaction protocols, or other electronic information exchanging methods. Data exchanges can be conducted over a packet-switched network, a circuit-switched network, the Internet, LAN, WAN, VPN, or other type of network.
As used in the description herein and throughout the claims that follow, when a system, engine, or a module is described as configured to perform a set of functions, the meaning of “configured to” or “programmed to” is defined as one or more processors being programmed by a set of software instructions to perform the set of functions.
The following discussion provides example embodiments of the inventive subject matter. Although each embodiment represents a single combination of inventive elements, the inventive subject matter is considered to include all possible combinations of the disclosed elements. Thus if one embodiment comprises elements A, B, and C, and a second embodiment comprises elements B and D, then the inventive subject matter is also considered to include other remaining combinations of A, B, C, or D, even if not explicitly disclosed.
As used herein, and unless the context dictates otherwise, the term “coupled to” is intended to include both direct coupling (in which two elements that are coupled to each other contact each other) and indirect coupling (in which at least one additional element is located between the two elements). Therefore, the terms “coupled to” and “coupled with” are used synonymously.
In some embodiments, the numbers expressing quantities of ingredients, properties such as concentration, reaction conditions, and so forth, used to describe and claim certain embodiments of the inventive subject matter are to be understood as being modified in some instances by the term “about.” Accordingly, in some embodiments, the numerical parameters set forth in the written description and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by a particular embodiment. In some embodiments, the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the inventive subject matter are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable. The numerical values presented in some embodiments of the inventive subject matter may contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
As used in the description herein and throughout the claims that follow, the meaning of “a,” “an,” and “the” includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise.
Unless the context dictates the contrary, all ranges set forth herein should be interpreted as being inclusive of their endpoints and open-ended ranges should be interpreted to include only commercially practical values. The recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value within a range is incorporated into the specification as if it were individually recited herein. Similarly, all lists of values should be considered as inclusive of intermediate values unless the context indicates the contrary.
All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g. “such as”) provided with respect to certain embodiments herein is intended merely to better illuminate the inventive subject matter and does not pose a limitation on the scope of the inventive subject matter otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the inventive subject matter.
Groupings of alternative elements or embodiments of the inventive subject matter disclosed herein are not to be construed as limitations. Each group member can be referred to and claimed individually or in any combination with other members of the group or other elements found herein. One or more members of a group can be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is herein deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.
In one aspect of the inventive subject matter, a lens array arrangement that includes multiple spherical lenses is provided to achieve improved signal performance and reduce signal interferences between adjacent lenses is provided. The lens array includes two sub arrays of lenses. The lenses in the first sub array are aligned along a first plane, while the lenses in the second sub array are aligned along a second plane that is parallel to the first plane, but having a perpendicular offset from the first plane. Each lens in the second sub array is disposed in between two adjacent lenses in the first sub array, such that adjacent lenses in the lens array are not aligned on the same plane. This arrangement of lenses in the array has the effect of reducing signal interferences and impingement between adjacent lens elements.
A spherical lens is a lens with an exterior surface having a shape of (or substantially having a shape of) a sphere. As defined herein, a lens with a surface that substantially conform to the shape of a sphere means at least 50% (preferably at least 80%, and even more preferably at least 90%) of the surface area conforms to the shape of a sphere. Examples of spherical lenses include a spherical-shell lens, the Luneburg lens, drum-shaped lens (a sphere with the top and bottom portions cut off and flattened), etc. The spherical lens can include only one layer of dielectric material, or multiple layers of dielectric material. A conventional Luneburg lens is a spherically symmetric lens that has multiple layers inside the sphere with varying indices of refraction.
In some embodiments, the lens array includes multiple lens elements. Each lens element includes a spherical lens and at least one feed element. The feed element is an electronic device for emitting RF signals, detecting RF signals, or both. In some embodiments, the feed element is disposed near the surface of the spherical lens (e.g., within 5 inches, preferably within 2 inches of the surface of the lens). Preferably, each lens element also includes a mechanism for moving the feed element along the surface of the lens in order to adjust the angles and direction in which the feed element emits/receives the RF signals. Details of this mechanism for moving the feed elements can be found in a co-owned U.S. patent application Ser. No. 14/958,607, titled “Spherical Lens Array Based Multi-Beam Antennae,” filed Dec. 3, 2015, which is incorporated in its entirety herein by reference.
The feed elements 125 and 130 are configured to emit and/or receive RF signals via the lenses 115 and 120. When the feed elements 125 and 130 are positioned along the surface of the lenses 115 and 120 to emit RF signals having a major axis that is perpendicular to the plane 135 (e.g., at positions 145 and 150), the signals emitted by the feed elements 125 and 130 will be in-phase, and do not cause interference or impingement with each other. As defined herein, the major axis of an RF signal refers to the axis of an ellipse representing amplitude of the RF signal.
However, when the feed elements 125 and 130 are positioned along the surface of the lenses 115 and 120 to emit RF signals having a major axis that is not perpendicular to the plane 135 (e.g., at positions 165 and 170), a portion (e.g., the portion of the signals within the area 140) of the RF signal emitted by the feed element 125 would impinge on the RF signal emitted by the feed element 130. The impingement causes reduction in quality of the signals being transmitted by the lens array, resulting in undesirable distortion and defocusing in that portion of the signal. Similarly, the RF signal emitted by the feed element 130 would impinge on the RF signal emitted by the feed element 125 when the feed elements 125 and 140 are at positions 155 and 160.
As shown, the lens element 305 is arranged on a virtual plane 335 while the lens element 310 is arranged on a virtual plane 340. The virtual planes 335 and 340 are perpendicular to the drawing sheet. The virtual planes 335 and 340 are parallel to each other (and in some embodiments also parallel to the ground on top of which the lens array 300 is disposed) while having an offset 360 in a direction that is perpendicular to the planes 335 and 340. In some embodiments, the offset 360 between the planes 335 and 340 is at least 50% of the height of the spherical lenses 315 and 320. Preferably, the offset 360 between the planes 335 and 340 is at least 60% (even more preferably at least 70%) of the height of the spherical lenses 315 and 320. Preferably, the offset 360 is less than 100% of the height of the spherical lenses 315 and 320. As defined herein, the height of a spherical lens is calculated along a dimension of the spherical lens that is perpendicular to the planes 335 and 340. In some embodiments, the lens elements 305 and 310 are also arranged on another plane that is perpendicular to the virtual planes 335 and 340 (parallel to the drawing sheet).
The vertical offset of adjacent lens elements in the lens array 300 has the effect of eliminating entirely or at least reducing impingement of the signals received by or transmitted from the adjacent lens elements. This arrangement advantageously reduces or eliminates distortion, loss of focus, and absorption of such signals by the adjacent lens without increasing the size or weight of individual lens elements.
It is conceived that the arrangement of lens array 300 can be extended to form a chessboard pattern.
As shown, the lens elements 405 and 415 are arranged on a virtual plane 450 while the lens element 410 is arranged on a virtual plane 455. The virtual planes 450 and 455 are perpendicular to the drawing sheet. The lens elements 405 and 415 forms a sub-array, while the lens element 410 (can have additional lens element that is not shown in this figure) forms another sub-array. The planes 450 and 455 are parallel to each other while having an offset 460 in a direction that is perpendicular to the planes 450 and 455. In some embodiments, the offset 460 between the planes 450 and 455 is at least 50% of the height of the spherical lenses 420, 425, and 430. Preferably, the offset 460 between the planes 450 and 455 is at least 60% (even more preferably at least 70%) of the height of the spherical lenses 420, 425, and 430. In some embodiments, the lens elements 405, 410, and 415 are also arranged on another virtual plane that is perpendicular to the planes 450 and 455 (parallel to the drawing sheet).
The lens element 410 that is arranged on the plane 455 is disposed in between the lens elements 405 and 415. Specifically, a portion of the spherical lens 425 of the lens element 410 is disposed within the space (gap) in between the lens elements 405 and 415. In some embodiments, the space between the adjacent lens elements within a sub array (e.g., the lens elements 405 and 415) is less than the width of a spherical lens (e.g., spherical lenses 420, 425, and 430). As defined herein, the width of a lens is measured along a dimension of the spherical lens that is parallel to the virtual planes 450 and 455.
Although the lens array 400 shown in
The vertical offset of adjacent lens elements in this arrangement relative to the azimuth plane (horizontal plane that is parallel to the ground) avoids mutual impingement of the signals received by or transmitted from the lens/feed element units adjacent to each other. At the same time, the space provided between the coplanar lens/feed element units prevents impingement between these lens/feed element units.
It should be appreciated that the basic unit arrangement shown in
It is also appreciated that the basic unit arrangement shown in
Although the lens array 600 shown in
Alternatively, the basic unit arrangement shown in
The virtual planes of each pair of adjacent sub-array of lens elements have a vertical offset that is substantially similar to the offset 460 in
In another aspect of the inventive subject matter, a lens array with the two end (most outward) lens elements in the array having feed elements angled toward each other is presented. It is noted that arrays of lens/feed element units tend to develop unwanted grating lobes, represented by relatively large drops in amplitude between adjacent lenses. This phenomenon is illustrated in
In order to alleviate the amplitude dip, the feed elements 925 and 930 are angled toward each other such that the major axes 945 and 950 are no longer perpendicular to the axis 902. Specifically, the major axes 945 and 950 are not perpendicular to the axis 902. Instead, each one of the major axes 945 and 950 forms an angle with respect to the axis 902. As shown, the major axis 945 forms an angle 955 with respect to the axis 902 while the major axis 950 forms an angle 960 with respect to the axis 902. In some embodiments, the feed elements 925 and 930 are oriented such that the angle 955 is substantially (e.g., at least 90%, at least 95%, etc.) the same as the angle 960, but in the opposite direction. In other words, the major axes 945 and 950 converge in the direction of the RF signal amplitudes. Preferably, the feed elements 925 and 930 are oriented in a way such that the angles 955 and 960 are between 5° and 30°, inclusively. Even more preferably the feed elements 925 and 930 are oriented in a way such that the angles 955 and 960 are between 10° and 20°, inclusively.
When the lens elements array has an odd number of lens elements, the feed element of the center lens element is oriented in its normal operational orientation to produce RF signals having a major axis that is perpendicular to the axis along which the lens elements in the array are aligned.
When the lens elements array has more than three lens elements, the feed elements of the lens elements other than the center element (if the array has an odd number of lens elements) are also oriented such that their respective major axes converge in the direction toward the center of the array.
Furthermore, it is contemplated that the feed elements of the lens elements that are located farther away from the center of the lens array 1100 (e.g., the lens elements 1105 and 1120) are oriented such that the major axes form a smaller angle with respect to the axis 1102 (i.e., the feed elements are more tilted toward each other) than the feed elements of the lens elements that are more toward the inside of the lens array 1100 (e.g., the lens elements 1110 and 1115). In other words, the farther away the lens elements are located from the center of the array 1100, the more tiled are the feed elements. Similarly, the closer the lens elements are located from the center of the array 1100, the less tilted are the feed elements. Similar to the configuration in
It is important to note that while these feed elements are tiled (angled or oriented) with respect to the axis along which the lens elements are aligned in the array, the locations of the feed elements remained the same, which is parallel to the axis. The feed elements are still located in the positions along the surfaces of the spherical lenses to generate RF signals in the direction that is perpendicular to the axis, and as such, the feed elements are not relocated to another position along the surface of the spherical lenses to achieve this result.
It should be apparent to those skilled in the art that many more modifications besides those already described are possible without departing from the inventive concepts herein. The inventive subject matter, therefore, is not to be restricted except in the spirit of the appended claims. Moreover, in interpreting both the specification and the claims, all terms should be interpreted in the broadest possible manner consistent with the context. In particular, the terms “comprises” and “comprising” should be interpreted as referring to elements, components, or steps in a non-exclusive manner, indicating that the referenced elements, components, or steps may be present, or utilized, or combined with other elements, components, or steps that are not expressly referenced. Where the specification claims refers to at least one of something selected from the group consisting of A, B, C . . . and N, the text should be interpreted as requiring only one element from the group, not A plus N, or B plus N, etc.
Number | Date | Country | |
---|---|---|---|
62201472 | Aug 2015 | US |