1. Field of the Invention
The present invention generally relates to lens cover assemblies and, more particularly, to a lens cover assembly for seating a lens in an electronic device and an electronic device using the same.
2. Description of Related Art
Nowadays, electronic devices with a digital camera mounted thereon are widely used. A lens cover is customarily used to prevent a digital camera from being scraped or dirtied. Therefore, a lens cover assembly for seating the lens cover in an electronic device is needed.
Referring to
However, the protrusion 124 of the lens cover 12 is easily polluted by the glue during assembly, thus the image quality might be reduced. Furthermore, the glue is unevenly distributed on the connecting surface 148 so that the base 122 of the lens cover 12 may be inclined relative to the frame 14. As a result, the appearance of the electronic device and the image quality may be affected.
Therefore, a lens cover assembly and an electronic device using the same are desired in order to overcome the above-described problems.
One embodiment of the lens cover assembly mounted in an electronic device includes a lens cover, and a frame. The lens cover includes a base and a column extending from a central area of the base. The base has at least one notch defined therein. The frame has a stepped hole defined by a first circumferential wall, a second circumferential wall, and a connecting surface connecting the first circumferential wall to the second circumferential wall. The frame has at least two blocks extending from the first circumferential wall. Each block overlies the connecting surface. In assembly, the lens cover is received in the stepped hole. The edge of the base is held between the blocks and the connecting surface by means of the at least one notch. Then the base rotates relative to an axis of the stepped hole so that the at least one notch keeps away from a corresponding block. Therefore, the lens cover is locked in the frame.
Other advantages and novel features will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present lens cover assembly. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Referring to
Also referring to
A through stepped hole 26 is formed at a middle portion of the protruding portion 24 of the frame 20. The stepped hole 26 includes a large hole 263 defined by a first circumferential wall 262, and a small hole 265 defined by a second circumferential wall 264. A connecting surface 266 connects the first circumferential wall 262 to the second circumferential wall 264. Three spaced blocks 28 perpendicularly extend from the first circumferential wall 262 and locates above the connecting surface 266. Each block 28 extends toward a central axis of the stepped hole 26. A top surface of each block 28 is substantially coplanar with a surface of the fixing portion 22 opposing the protruding portion 24. A space 29 is defined between each of the blocks 28 and the connecting surface 266 in the axis of the stepped hole 26. Each block 28 has a groove 282 defined at one side thereof toward the connecting surface 266. Each groove 282 has a semicircular shaped cross-section along a traverse direction.
The lens cover 30 is made of transparent material, such as glass, poly methyl methacrylate (PMMA) and so on. The lens cover 30 includes a base 32, and a column 34 integrally formed with the base 32. The thickness of the base 32 is configured (i.e., structured and arranged) to fit into the space 29 defined by the blocks 28 and the connecting surface 266. The base 32 has a first side surface 322 and an opposite second side surface 324. The base 32 is substantially disk-shaped, and has three latching portions 38 disposed at uniform intervals. A notch 36 is defined between each two adjacent latching portions 38. The notches 36 communicate the first side surface 322 with the second side surface 324. Each latching portion 38 has a semicircular protrusion 384 radially positioned on the second side surface 324. Each protrusion 384 is configured (i.e., structured and arranged) for being received in a given groove 282 of the block 28. One of the latching portions 38 defines an arcuate slot 382 therein. The column 34 is disposed on a central area of the first side surface 322 of the base 32, and is configured for engaging in the small hole 265 of the frame 20.
In assembly, referring to
The assembled lens cover structure 100 is assembled into the electronic device 300. Referring to
A main advantage of the lens cover assembly 100 is that the glue may be omitted during the assembly of the lens cover assembly 100. Therefore, it is not possible for the column 34 of the lens cover 30 to be polluted by glue. In addition, the lens cover 30 avoids being inclined relative to the frame thus allowing uniform distribution of the glue. As a result, the image quality is increased, and the appearance of the electronic device 300 is improved.
In another alternative embodiment, referring to
In assembly of the lens cover assembly 400, firstly, the column 64 of the lens cover 60 is lowed into the small hole 525 of the frame 50. Each block 54 is received in a corresponding notch 626, and the protrusion 664 is positioned between two contiguous blocks 54. The base 62 of the lens cover 60 is put on the connecting surface 526 of the frame 50. Then, a thin rod-like tool is inserted in the slot 662 of the lens cover 60, and brings the lens cover 60 to rotate about an axis thereof so that the protrusion 664 of the lens cover 60 is engaged in the corresponding groove 56. In this way the lens cover 60 is stably mounted on the frame 50.
In other alternative embodiments, the number of the blocks 54 may be two. The two opposite blocks 54 are disposed on the first circumferential wall 522. Accordingly, the number of notches 626 is two. It may be understood that one notch 626 may be omitted. During assembly, when the number of the notches 626 is one, a latching portion of the base 62 opposite to the notch 626 is inserted into the space between one block 54 and the connecting surface 526. Then, the opposite latching portion is rotated, and the other block 54 is received in the notch 626.
It is to be further understood that even though numerous characteristics and advantages of the present embodiments have been set forth in the foregoing description, together with details of the structures and functions of the embodiments, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
2006 1 0062176 | Aug 2006 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
4385812 | Wille et al. | May 1983 | A |
5815757 | Katsura et al. | Sep 1998 | A |
5926322 | Iwasaki | Jul 1999 | A |
6018426 | Funahashi | Jan 2000 | A |
6783286 | Maeda et al. | Aug 2004 | B2 |
6811331 | Iwasa | Nov 2004 | B2 |
6834161 | Stiehler | Dec 2004 | B1 |
7004672 | Iikawa et al. | Feb 2006 | B2 |
7292281 | Cheng | Nov 2007 | B2 |
20010053289 | Imanari et al. | Dec 2001 | A1 |
20040042093 | Nomura | Mar 2004 | A1 |
20060007551 | Sakurai et al. | Jan 2006 | A1 |
20060158750 | Takahashi | Jul 2006 | A1 |
20070269202 | Forsyth-Martinez et al. | Nov 2007 | A1 |
20080044173 | Wang et al. | Feb 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20080044173 A1 | Feb 2008 | US |