1. Technical Field
The present disclosure relates to lens modules and, particularly, to a lens module with a filter element.
2. Description of Related Art
Lens modules include at least one lens and a filter element generally positioned at an image side of the lens. The filter element includes a transparent substrate and an infrared filtering film coated on an object side of the transparent substrate. The filter element is for filtering infrared light rays while transmitting visible light rays. However, current filter elements cannot transmit 100% visible light rays and reflect a minority of visible light rays, more than about 5%, which form a glare in an image after multiple reflections.
Therefore, it is desirable to provide a lens module, which can overcome the limitations described.
Embodiments of the disclosure will now be described in detail, with reference to the accompanying drawings.
The lens barrel 10 is tubular and includes an object-side end 11 and an image-side end 12 opposite to the object-side end 11. The lens barrel 10 defines a receiving room 13 extending through the object-side end 11 and the image-side end 12. In this embodiment, the lens barrel 10 is made of light-shielding/opaque/black material(s).
The at least one lens 20 is received in the receiving room 13, adjacent to the object-side end 11. Each of the at least one lens 20 is made of plastic, glass, or other transparent materials, and is spherical or aspherical. In this embodiment, the lens module 100 includes two lenses 20 arranged in the receiving room 13 from the object-side end 11 to the image side end 12.
The filter element 30 is received in the receiving room 13, adjacent to the image side end 12. The filter element 30 includes a transparent substrate 31, an anti-reflection film 32, and an infrared filtering film 33. The transparent substrate 31 includes an object-side surface 311 facing the object-side end 11 and an image-side surface 312 facing the image-side end 12. The anti-reflection film 32 is coated on the object-side surface 311, and the infrared filtering film 33 is coated on the image-side surface 312.
In this embodiment, the transparent substrate 31 is made of glass, and a thickness of transparent substrate 31 is from about 0.2 mm to about 0.8 mm. A little of copper oxide (CuO) is doped in the materials of making the transparent substrate 31 for absorbing a part of infrared light rays. The anti-reflection film 32 includes first to fourth layers orderly stacked on the object-side surface 311. The odd numbered layers of the anti-reflection film 32 are made from titanium dioxide (TiO2) and the even numbered layers of the anti-reflection film 32 are made from silicon dioxide (SiO2). The material and thickness of each layer of the anti-reflection film 32 are shown in Table 1.
The infrared filtering film 33 includes first to fifty fourth layers orderly stacked on the image-side surface 312. The odd numbered layers of the infrared filtering film 33 are made from TiO2, and the even numbered layers of the infrared filtering film 33 are made from SiO2. The material and thickness of each layer of the infrared filtering film 33 are shown in Table 2.
The anti-reflection film 32 can be stacked by any number of layers with other materials for anti-reflecting light rays. The infrared filtering film 33 can be stacked by any number of layers with other materials for filtering infrared light rays.
The image sensor 40 is positioned at the image-side end 12 for covering the receiving room 13. The light rays penetrating the at least one lens 20 and the filter element 30 are projected on an imaging surface of the image sensor 40 for converting the light rays to electrical signals.
Referring to
Particular embodiments are shown and described by way of illustration only. The principles and the features of the present disclosure may be employed in various and numerous embodiments thereof without departing from the scope of the disclosure as claimed. The above-described embodiments illustrate the scope of the disclosure but do not restrict the scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
100131098 A | Aug 2011 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
7215466 | Chen et al. | May 2007 | B2 |
7663686 | Chen | Feb 2010 | B2 |
20050068456 | Ohta et al. | Mar 2005 | A1 |
20060050416 | Chung et al. | Mar 2006 | A1 |
20070024958 | Choi et al. | Feb 2007 | A1 |
20070081264 | Hara et al. | Apr 2007 | A1 |
20110141346 | Ryu | Jun 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20130050811 A1 | Feb 2013 | US |