Lens system

Information

  • Patent Grant
  • 8159682
  • Patent Number
    8,159,682
  • Date Filed
    Wednesday, November 12, 2008
    15 years ago
  • Date Issued
    Tuesday, April 17, 2012
    12 years ago
Abstract
A fragmented lens system for creating an invisible light pattern useful to computer vision systems is disclosed. Random or semi-random dot patterns generated by the present system allow a computer to uniquely identify each patch of a pattern projected by a corresponding illuminator or light source. The computer may determine the position and distance of an object by identifying the illumination pattern on the object.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention generally relates to interactive display systems. More specifically, the present invention relates to a lens system as might be used by an illuminator in an interactive display system.


2. Description of the Related Art


If a computer vision system uses a two-dimensional camera input and background subtraction, a random or semi-random dot pattern allows the system to more reliably detect objects that are at a different distance from a background. If the pattern is too regular, however, the object may disappear relative to the background when at a particular distance. This is a result of too many parts of a texture looking alike. Determinations as to the position of objects (or a more accurate indication thereof) therefore suffer. As a result, users may attempt to interact with an object (e.g., grab an object) that is not where the interactive display system otherwise indicates the object to presently be located. There is, therefore, a need for a system that may create lighting patterns useful to computer vision systems and to allow for more accurate tracking and determination of object positions in space.


SUMMARY OF THE CLAIMED INVENTION

In a first claimed embodiment, a system for projecting a pattern of light is disclosed. The system includes a light source (an illuminator) including multiple emitters of light. The emitters are arranged in a pattern. The system further includes a cluster of lenses located in front of the light source. The cluster of lenses focuses and projects light from the emitters in numerous directions. The focused and projected light forms a pattern of light. A camera detects the pattern of light on an object illuminated by the emitters. A computing device executes instructions stored in memory to determine a location of the object in space utilizing at least the detected pattern of light on the object.


In a variation of the aforementioned embodiment, the system may include a cluster of infrared light emitting diodes (LEDs). The light emitting diodes generate infrared light that is detectable by the camera but not by the eye of a human observer interacting with the object. The system may alternatively (or additionally) include a condenser lens located between the light source and the cluster of lenses. The condenser lens concentrates light from the light source to the cluster of lens.


A second claimed embodiment of the present invention is for a method for projecting a pattern of infrared light. Through this claimed method, light is emitted from a light source (an illuminator) including multiple emitters arranged in a pattern. A cluster of lenses focuses and projects the emitted light, the cluster of lenses located in front of the light source. The focused and projected light forms a pattern of light. That pattern is detected on an object illuminated by the emitters. As a result, the location of an object in space may be determined utilizing at least the detected pattern of light on the object. The location of the object may be determined by a computing device executing instructions stored in memory (e.g., a program).





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an exemplary lens system including a lighting source, an optional condenser lens, and lens cluster.



FIG. 2 illustrates a number of semi-random light configurations for the lighting source of FIG. 1.



FIG. 3 illustrates the assembly of a lens cluster like that of FIG. 1.



FIG. 4 illustrates a cross-sectional illustration of light as created by an LED in an illuminator light source.





DETAILED DESCRIPTION

The presently disclosed lens system may create an invisible light pattern that is useful to computer vision systems. If a computer vision system utilizes a pattern matching algorithm to identify position and distance of objects from a camera, the random or semi-random dot pattern generated by the present system allows the computer to uniquely identify each patch of the pattern projected by the illuminator. As a result, the computer may determine the position and distance of an object by identifying the illumination pattern on the object. The computer may make this determination by executing instructions corresponding to a computer program stored in memory. Results of these determinations may then be rendered on a display device, which may include user manipulation of an object on the display.


In a system where a computer vision system utilizes a stereo camera and a stereopsis algorithm to match features between two or more camera images, the vision system will attempt to find matches between texture patches in the different images. The disparity between these patches gives an indication of depth. The compared texture patches often lie along the same horizontal line in the two images. The presently disclosed lens system allows for patterned illumination that better ensures that all objects have texture thereby ensuring good performance by the stereo algorithm. This is especially true with respect to the axis along which the vision algorithm matches texture patches, is very important. The detected pattern may be aperiodic along one or more dimensions in this regard.


In this context, an embodiment of the presently disclosed invention provides for a lens system that may be used in conjunction with an illuminator to create an invisible random, semi-random, partially random, or repeating pattern useful to a computer vision system like those disclosed in U.S. Pat. No. 7,259,747 and U.S. patent application Ser. No. 12/100,737 (subsequently referred to as the '747 patent and '737 application, respectively). The system includes a lighting source composed of a pattern of light emitters, an optional condenser lens or similar hardware to focus emitted light onto a common area (namely a lens cluster), and a lens cluster containing multiple lenses. Each lens of the lens cluster may be of a similar focal length and/or designed to displace an image of the emitter pattern by a particular distance.



FIG. 1 illustrates the aforementioned exemplary lens system 100 including a lighting source 110 (such as an illuminator), an optional condenser lens 120, and lens cluster 130. Light emitted from lighting source 110 is re-aimed by condenser lens 120 so that the light is directed towards the center of lens cluster 130. Lens cluster 130 then focuses and projects light from the emitters in numerous directions. The focused and projected light forms a pattern of light, which may be detected by a camera so that a computing device may determine a location of an object in space utilizing at least the detected pattern of light on the object. This determination may involve the execution of instructions corresponding to a program stored in memory.


Lighting source 110 may be akin to the lamp of the '747 patent. A lamp (like lamp 2 of FIG. 1 of the '747 patent) may illuminate a person(s) or other object(s). The lighting source 110 of the present application may also may be comparable to the light source of component 10 in FIG. 2 of the '747 patent. Lighting source 110 may also be configured in a manner similar to those illustrated in FIGS. 3 and 4 of the '747 patent.


Light source 110 includes any number of emitters as are further discussed in the context of FIG. 2. Each emitter may be mounted such that it emits light in a cone perpendicular to the surface of lighting source 110. If each emitter emits light in a cone, the center of the cone may be aimed at the center of lens cluster 130. Aiming may involve an optional intermediate lens (like condenser lens 120). The angle of the cone of light produced by the emitters may be chosen such that the cone will completely cover the surface of lens cluster 130. In an embodiment omitting a condenser lens, the lighting source 110 may focus light onto lens cluster 130 on its own. For example, each emitter at the lighting source 110 may be individually be angled with respect to the lens cluster 130.


Optional condenser lens 120 redirects light from each of the emitters in light source 110. Condenser lens 120 may be substituted with hardware or some other component similarly capable of concentrating and/or redirecting light. Condenser lens 120 reduces wasted light by redirecting the emitters' light toward the center of the lens cluster 130 thereby seeking to ensure that as much emitted light as possible passes through lens cluster 130. Implementations of condenser lens 130 may include a convex lens, a plano-convex lens, a Fresnel lens, a set of micro-lenses, one or more prisms, or a prismatic film.


The focal length of the lenses in lens cluster 130 may be similar to the distance between lens cluster 130 and lighting source 110. A focal length of this nature helps ensure that light emitters at lighting source 110 are in focus or substantially in focus when an illuminator including lighting source 110 is pointed at a distant object. The position of the lighting source 110, optional condenser lens 120, and lens cluster 130 in system 100 may be adjusted to allow for an emitted light pattern to be focused at a variety of distances.


Lens cluster 130 takes the light from each emitter and focuses that light onto a number of points. Each lens in the lens cluster 130 may be used to focus the light of each emitter from illuminator light source 110 onto a different point. The theoretical number of points that may be created by shining the lighting source 110 through the lens cluster 130 is equal to the number of emitters in the lighting source multiplied by the number of lenses in the lens cluster 130. For example, a lighting source 110 with 200 LEDs and a lens cluster 130 with 36 lenses can create up to 7200 distinct points of light. An illuminator, lamp, or projector utilizing the present lens system 100 may create a high resolution texture that is useful to a computer vision system.


All the lenses in the lens cluster 130 may have a similar focal length. This similarity in length may better ensure that the pattern is focused together onto an object illuminated by the light source 110 (e.g., a pattern illuminator). Lenses may have somewhat different focal lengths so at least some of the pattern is in focus at different distances. In some instances, a semi-random or random pattern may be desirable to the functioning of the computer vision system. In such an instance, the lenses within the lens cluster 130 may displace the focused image by different distances to the side.



FIG. 2 illustrates a number of semi-random light configurations (210-230) for lighting source 110 of FIG. 1. The light configuration patterns may likewise be used to create a desired random or semi-random pattern as referenced above. In the patterns 220-230 illustrated in FIG. 2, each black ‘dot’ is representative of an emission of light (i.e., a light emitter). It should be noted that the black ‘dots’ are merely exemplary for the purpose of FIG. 2. The black ‘dots’ need not necessarily emit ‘black light’ or focused ‘dots’ of light although various types of light, frequencies, and patterns within the pattern (e.g., dots versus squares versus asymmetric blobs) may be emitted from light source 110 and any constituent light emitters.


In that regard, potential light sources for emission of light are inclusive of light emitting diodes, laser diodes, incandescent bulbs, metal halide lamps, sodium vapor lamps, organic light emitting diodes (OLEDs), and pixels of a liquid crystal display (LCD) screen. The emitter(s) at light source 110 may be a backlit slide or backlit pattern of holes. In an embodiment like that of FIG. 1, each emitter (i.e., each dot) ‘aims’ the light along a cone toward the lens cluster 130 or intermediate and optional condenser lens 120.


The pattern of illuminators may be randomized to varying degrees. For example, pattern 210 illustrates a rectangular grid of emitters with some removed at random. Pattern 220 illustrates a rotated grid of emitters with the columns shifted random amounts and random emitters removed. Pattern 230 consists of a randomly positioned, tight packing of emitters with a random set of emitters removed. The density of emitters on the light source varies across a variety of spatial scales. This variation in emitter density helps ensure that the emitters at light source 110 will create a pattern that varies in brightness even at distances where the emitted pattern is not entirely in focus.


The light source 110 of FIG. 1 and the pattern embodiments illustrated in FIG. 2 (210-230) are generally rectangular in shape. This rectangular configuration of the light source 110 in conjunction with a design of the lens cluster 130 helps create a pattern that roughly covers an otherwise rectangular area. The use of rectangular light sources 110 and constituent patterns facilitates clustering of illuminators thereby covering broad areas without significant overlap. Nevertheless, other shapes may be used with respect to illuminator patterns and light source 110 configurations and overlap of patterns may be desirable and incurred.


The light source 110 may also be positioned on a motorized mount. Through such a mounting, the light source 110 may move or rotate thus creating further variation and control as to emitted light patterns and focus of the same at varying distances. Emitters in the patterns (210-230) may be turned on or off via an electronic control system thereby allowing the pattern emitted from the light source 110 to vary. The emitter pattern, too, may be regular (e.g., with no variance in layout or pattern) but the pattern of emitters that are in an ‘on state’ at any given time may be random.


As initially noted above, different frequencies of light may be emitted from light source 110 with respect to emitting light in a particular pattern such as those illustrated in FIG. 2. Near-infrared, far-infrared, visible, and ultraviolet light are just some of the various light frequencies that may be emitted subject to a particular choice of light emitter. A number of different frequencies of light may be emitted from a single pattern (e.g., one ‘dot’ may emit light at a near-infrared frequency while another ‘dot’ emits light at an ultraviolet frequency). The light source 110 may be strobed in conjunction with the camera(s) of a corresponding computer vision system thereby allowing the presence and effects of ambient light to be reduced.


The pattern, frequency, strobing, and other manipulations of emitted light may be particularly useful with respect to operating a vision system like that disclosed in the '737 application. In a system like that disclosed in the '737 application, an interactive video display system allows a physical object to interact with a virtual object. A light source delivers a pattern of invisible light to a three-dimensional space occupied by the physical object and a camera detects invisible light scattered by the physical object. A computer system analyzes information generated by the camera, maps the position of the physical object in the three-dimensional space, and generates a responsive image that includes the virtual object, which is then rendered on a display. Utilizing the present lens system to project a pattern of invisible light may improve the accuracy and utility of such a vision system.



FIG. 3 illustrates the assembly of a lens cluster like lens cluster 130 in FIG. 1. In element 310, a lens is illustrated that has had several square columns removed. These removed square pieces are then reassembled into a lens cluster (like that of FIG. 1) as shown in element 320. The varying angles and displacements of these squares have ensured some randomness in the focal points of the lenses in the cluster. In FIG. 3, the rough spatial positioning of the squares (shown with the corresponding pieces numbered 1 to 13) has been preserved. While this positioning is not necessary, this arrangement does provide the advantage of helping ensure that copies of each emitter that are projected as bright dots by the lens cluster are not too far apart. Further, this arrangement helps create a roughly rectangular shape to the overall pattern.


As is also evident in FIG. 3, there are multiple sizes of squares in the diagram (e.g., square [1] versus square [8]). While not necessary, this difference in size helps the computer vision system to process a variety of illumination levels. If the square is larger, the dots produced by the pattern will be brighter. By mixing large and small squares, the pattern becomes a mix of dense dimmer dots and sparse brighter dots. The computer vision system may then see some texture from the illuminator in conditions with high ambient illumination while having high resolution texture when the ambient illumination is low.


The lens cluster need not be constructed in this method. The lens cluster may be constructed of regular lenses, Fresnel lenses, or a mix of lenses. The lenses may or may not have a square cross-sectional shape. The lenses may or may not be different sizes. Although FIG. 3 shows a lens being cut apart to construct the lens cluster, it may be fabricated by casting from a mold, machining, or another technique. The ‘pieces’ of the lens from which the lenses in the cluster are derived may or may not overlap.


If the lenses in the lens cluster focus light onto different points, the emitter may not need to be completely random. For example, if there are a small number of bright emitters in a grid pattern and a large number of lenses in the lens cluster, the light produced by the illuminator can still be semi-random. Repetition would show up over very large length scales.



FIG. 4 illustrates a cross-sectional illustration of light as created by an LED in an illuminator light source. It should be noted that the dimensions of FIG. 4 are not to scale. In a real-world scenario, the object and focal plane are typically further away from a lens cluster. As such, FIG. 4 should be considered exemplary for the purpose of aiding understanding of the present disclosure.


In FIG. 4, light is emitted in a cone from an LED in the infrared LED cluster 110, which corresponds to lighting source 110 of FIG. 1. The light path is redirected toward the center of the lens cluster by the condenser lens 120, which likewise corresponds to the optional condenser lens of FIG. 1. When the light cone hits the lens cluster 130 (which corresponds to cluster 130 of FIG. 1), different parts of the LED light are focused onto different locations on a distant plane. This causes several bright spots to be created from the light of a single LED. When all the light from all the LEDs is tracked, the result is a dense overlapping pattern of focused light beams creating a discernable pattern that may be detected by a camera(s) and processed by a corresponding computing device.


The use of infrared light (or other types of non-visible or substantially invisible light) may prove useful in that it may be invisible (or nearly invisible) to the human eye of an observer interacting with an illuminated object. In this way, the illuminated object is not obscured by an illumination pattern nor or does the overall appearance of the object appear to have been altered. Notwithstanding, a computing device coupled to a camera may detect the pattern in order to track the object and interactions with the same with an increased degree of accuracy.


While the present invention has been described in connection with a series of exemplary embodiments, these descriptions are not intended to limit the scope of the invention to the particular forms set forth herein. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art.

Claims
  • 1. A system for projecting a pattern of light, the system comprising: a light source including a plurality of emitters configured to emit light, the plurality of emitters arranged in a pattern; anda cluster of lenses comprising a plurality of lenses, wherein at least some of the lenses of the cluster of lenses have different focal lengths and each lens of the cluster of lenses is configured to focus the emitted light from each of the plurality of emitters into a plurality of points that form a light pattern, wherein at least some of the focused light falls on a portion of a human and at least some of the focused light that falls on the portion of the human is detectable by one or more imaging devices in order to determine a position of the human.
  • 2. The system of claim 1, wherein a quantity of the plurality of points in which the emitted light is focused is substantially equal to a quantity of lenses in the cluster of lenses multiplied by a quantity of the emitters.
  • 3. The system of claim 1, wherein the plurality of emitters are arranged in a random pattern.
  • 4. The system of claim 1, wherein the plurality of emitters are configured to be activated in a random spatial pattern.
  • 5. The system of claim 1, wherein at least one emitter in the plurality of emitters is configured to be strobed.
  • 6. The system of claim 1, wherein the plurality of emitters are arranged in a non-uniform arrangement.
  • 7. The system of claim 1, further comprising a condenser lens configured to concentrate the emitted light on a predetermined location of the cluster of lenses.
  • 8. The system of claim 1, wherein the cluster of lenses comprises a plurality of pieces of a single lens reassembled in a different configuration from an original configuration of the single lens.
  • 9. The system of claim 7, wherein the predetermined location is a center of the cluster of lenses.
  • 10. The system of claim 8, wherein a first piece and a second piece of the plurality of pieces are differently sized.
  • 11. A method for projecting a light pattern, the method comprising: emitting light from a plurality of light emitters;directing the emitted light towards a lens cluster comprising a plurality of lenses, wherein at least some of the lenses have different focal lengths; andfocusing the emitted light onto a plurality of points, wherein each lens of the lens cluster focuses the emitted light from each of the plurality of light emitters into a pattern of light that is at least semi-random, wherein at least some of the focused light falls on a portion of an object and is detectable by an imaging device.
  • 12. The method of claim 11, wherein the plurality of light emitters are arranged in a rectangular grid of light emitters with at least one light emitter randomly removed.
  • 13. The method of claim 11, wherein the plurality of light emitters are arranged in a rotated grid of light emitters with columns shifted by random amounts and with at least one light emitter randomly removed.
  • 14. The method of claim 11, wherein the plurality of light emitters are randomly positioned in a tightly packed pattern of light emitters with at least one light emitter randomly removed.
  • 15. The method of claim 11, wherein the plurality of light emitters that emit light are configured to manipulate one or more of the pattern, frequency, or strobing of the emitted light.
  • 16. The method of claim 11, wherein the plurality of light emitters are arranged in a non-uniform arrangement.
  • 17. The method of claim 11, wherein a quantity of the plurality of points in which the emitted light is focused is substantially equal to a quantity of lenses in the cluster of lenses multiplied by a quantity of the light emitters.
  • 18. The method of claim 11, wherein the light emitted from at least one light emitter is emitted in a cone configuration substantially perpendicular to a surface upon which the at least one light emitter is mounted.
  • 19. The method of claim 11, wherein the lens cluster comprises a plurality of pieces of a single lens reassembled in a different configuration from an original configuration of the single lens.
  • 20. The method of claim 18, wherein a center of each light cone is directed toward a center of the lens cluster.
  • 21. The method of claim 19, wherein a first piece and a second piece of the plurality of pieces are differently sized.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the priority benefit of U.S. provisional patent application No. 60/987,315 filed Nov. 12, 2007 and entitled “Fragmented Lens System,” the disclosure of which is incorporated herein by reference.

US Referenced Citations (212)
Number Name Date Kind
2917980 Grube et al. Dec 1959 A
3068754 Warren Dec 1962 A
3763468 Ovshinsky et al. Oct 1973 A
4053208 Kato et al. Oct 1977 A
4275395 Dewey et al. Jun 1981 A
4573191 Kidode et al. Feb 1986 A
4725863 Dumbreck et al. Feb 1988 A
4843568 Krueger et al. Jun 1989 A
4887898 Halliburton et al. Dec 1989 A
4948371 Hall Aug 1990 A
5001558 Burley et al. Mar 1991 A
5138304 Bronson Aug 1992 A
5151718 Nelson Sep 1992 A
5239373 Tang et al. Aug 1993 A
5276609 Durlach Jan 1994 A
5319496 Jewell et al. Jun 1994 A
5325472 Horiuchi et al. Jun 1994 A
5325473 Monroe et al. Jun 1994 A
5426474 Rubstov et al. Jun 1995 A
5436639 Arai et al. Jul 1995 A
5442252 Golz Aug 1995 A
5454043 Freeman Sep 1995 A
5497269 Gal Mar 1996 A
5510828 Lutterbach et al. Apr 1996 A
5526182 Jewell et al. Jun 1996 A
5528263 Platzker et al. Jun 1996 A
5528297 Seegert et al. Jun 1996 A
5534917 MacDougall Jul 1996 A
5548694 Gibson Aug 1996 A
5591972 Noble et al. Jan 1997 A
5594469 Freeman et al. Jan 1997 A
5633691 Vogeley et al. May 1997 A
5703637 Miyazaki et al. Dec 1997 A
5808784 Ando et al. Sep 1998 A
5861881 Freeman et al. Jan 1999 A
5882204 Iannazo et al. Mar 1999 A
5923380 Yang et al. Jul 1999 A
5923475 Kurtz et al. Jul 1999 A
5953152 Hewlett Sep 1999 A
5969754 Zeman Oct 1999 A
5978136 Ogawa et al. Nov 1999 A
5982352 Pryor Nov 1999 A
6008800 Pryor Dec 1999 A
6058397 Barrus et al. May 2000 A
6075895 Qiao et al. Jun 2000 A
6084979 Kanada et al. Jul 2000 A
6088612 Blair Jul 2000 A
6097369 Wambach Aug 2000 A
6106119 Edwards Aug 2000 A
6118888 Chino et al. Sep 2000 A
6125198 Onda Sep 2000 A
6166744 Jaszlics et al. Dec 2000 A
6176782 Lyons et al. Jan 2001 B1
6191773 Maruno et al. Feb 2001 B1
6198487 Fortenbery et al. Mar 2001 B1
6198844 Nomura Mar 2001 B1
6263339 Hirsch Jul 2001 B1
6292171 Fu et al. Sep 2001 B1
6308565 French et al. Oct 2001 B1
6323895 Sata Nov 2001 B1
6333735 Anvekar Dec 2001 B1
6335977 Kage Jan 2002 B1
6339748 Hiramatsu Jan 2002 B1
6349301 Mitchell et al. Feb 2002 B1
6353428 Maggioni et al. Mar 2002 B1
6359612 Peter et al. Mar 2002 B1
6388657 Natoli May 2002 B1
6400374 Lanier Jun 2002 B2
6407870 Hurevich et al. Jun 2002 B1
6414672 Rekimoto et al. Jul 2002 B2
6445815 Sato Sep 2002 B1
6454419 Kitazawa Sep 2002 B2
6480267 Yanagi et al. Nov 2002 B2
6491396 Karasawa et al. Dec 2002 B2
6501515 Iwamura Dec 2002 B1
6522312 Ohshima et al. Feb 2003 B2
6545706 Edwards et al. Apr 2003 B1
6552760 Gotoh et al. Apr 2003 B1
6598978 Hasegawa Jul 2003 B2
6607275 Cimini et al. Aug 2003 B1
6611241 Firester et al. Aug 2003 B1
6654734 Mani et al. Nov 2003 B1
6658150 Tsuji et al. Dec 2003 B2
6661918 Gordon et al. Dec 2003 B1
6677969 Hongo Jan 2004 B1
6707054 Ray Mar 2004 B2
6707444 Hendriks et al. Mar 2004 B1
6712476 Ito et al. Mar 2004 B1
6720949 Pryor et al. Apr 2004 B1
6732929 Good et al. May 2004 B2
6747666 Utterback Jun 2004 B2
6752720 Clapper et al. Jun 2004 B1
6754370 Hall-Holt et al. Jun 2004 B1
6791700 Omura et al. Sep 2004 B2
6826727 Mohr et al. Nov 2004 B1
6831664 Marmaropoulos et al. Dec 2004 B2
6871982 Holman et al. Mar 2005 B2
6877882 Haven et al. Apr 2005 B1
6912313 Li Jun 2005 B2
6965693 Kondo et al. Nov 2005 B1
6975360 Slatter Dec 2005 B2
6999600 Venetianer Feb 2006 B2
7015894 Morohoshi Mar 2006 B2
7042440 Pryor May 2006 B2
7054068 Yoshida et al. May 2006 B2
7058204 Hildreth et al. Jun 2006 B2
7068274 Welch et al. Jun 2006 B2
7069516 Rekimoto Jun 2006 B2
7084859 Pryor et al. Aug 2006 B1
7088508 Ebina et al. Aug 2006 B2
7149262 Nayar et al. Dec 2006 B1
7158676 Rainsford Jan 2007 B1
7170492 Bell Jan 2007 B2
7190832 Frost et al. Mar 2007 B2
7193608 Stuerzlinger Mar 2007 B2
7227526 Hildreth et al. Jun 2007 B2
7259747 Bell Aug 2007 B2
7262874 Suzuki Aug 2007 B2
7289130 Satoh et al. Oct 2007 B1
7330584 Weiguo et al. Feb 2008 B2
7339521 Scheidemann et al. Mar 2008 B2
7348963 Bell Mar 2008 B2
7379563 Shamaie May 2008 B2
7382897 Brown et al. Jun 2008 B2
7394459 Bathiche et al. Jul 2008 B2
7428542 Fink et al. Sep 2008 B1
7432917 Wilson et al. Oct 2008 B2
7536032 Bell May 2009 B2
7559841 Hashimoto Jul 2009 B2
7576727 Bell Aug 2009 B2
7598942 Underkoffler et al. Oct 2009 B2
7619824 Poulsen Nov 2009 B2
7665041 Wilson et al. Feb 2010 B2
7710391 Bell et al. May 2010 B2
7737636 Li et al. Jun 2010 B2
RE41685 Feldman et al. Sep 2010 E
7809167 Bell Oct 2010 B2
7834846 Bell Nov 2010 B1
20010012001 Rekimoto et al. Aug 2001 A1
20010033675 Maurer et al. Oct 2001 A1
20020006583 Michiels et al. Jan 2002 A1
20020032697 French et al. Mar 2002 A1
20020041327 Hildreth et al. Apr 2002 A1
20020064382 Hildreth et al. May 2002 A1
20020081032 Chen et al. Jun 2002 A1
20020103617 Uchiyama et al. Aug 2002 A1
20020105623 Pinhanez Aug 2002 A1
20020130839 Wallace et al. Sep 2002 A1
20020140633 Rafii et al. Oct 2002 A1
20020140682 Brown et al. Oct 2002 A1
20020178440 Agnihorti et al. Nov 2002 A1
20020186221 Bell Dec 2002 A1
20030032484 Ohshima et al. Feb 2003 A1
20030076293 Mattsson Apr 2003 A1
20030091724 Mizoguchi May 2003 A1
20030093784 Dimitrova et al. May 2003 A1
20030098819 Sukthankar et al. May 2003 A1
20030103030 Wu Jun 2003 A1
20030113018 Nefian et al. Jun 2003 A1
20030122839 Matraszek et al. Jul 2003 A1
20030137494 Tulbert Jul 2003 A1
20030161502 Morihara et al. Aug 2003 A1
20030178549 Ray Sep 2003 A1
20040005924 Watabe et al. Jan 2004 A1
20040015783 Lennon et al. Jan 2004 A1
20040046736 Pryor et al. Mar 2004 A1
20040046744 Rafii et al. Mar 2004 A1
20040073541 Lindblad et al. Apr 2004 A1
20040091110 Barkans May 2004 A1
20040095768 Watanabe et al. May 2004 A1
20040183775 Bell Sep 2004 A1
20050088407 Bell Apr 2005 A1
20050089194 Bell Apr 2005 A1
20050104506 Youh et al. May 2005 A1
20050110964 Bell et al. May 2005 A1
20050122308 Bell et al. Jun 2005 A1
20050132266 Ambrosino et al. Jun 2005 A1
20050147282 Fujii Jul 2005 A1
20050162381 Bell et al. Jul 2005 A1
20050185828 Semba et al. Aug 2005 A1
20050195598 Dancs et al. Sep 2005 A1
20050265587 Schneider Dec 2005 A1
20060010400 Dehlin et al. Jan 2006 A1
20060031786 Hillis et al. Feb 2006 A1
20060132432 Bell Jun 2006 A1
20060139314 Bell Jun 2006 A1
20060168515 Dorsett, Jr. et al. Jul 2006 A1
20060184993 Goldthwaite et al. Aug 2006 A1
20060187545 Doi Aug 2006 A1
20060227099 Han et al. Oct 2006 A1
20060242145 Krishnamurthy et al. Oct 2006 A1
20060256382 Matraszek et al. Nov 2006 A1
20060258397 Kaplan et al. Nov 2006 A1
20060294247 Hinckley et al. Dec 2006 A1
20070285419 Givon Dec 2007 A1
20080040692 Sunday et al. Feb 2008 A1
20080062123 Bell Mar 2008 A1
20080090484 Lee et al. Apr 2008 A1
20080150890 Bell et al. Jun 2008 A1
20080150913 Bell et al. Jun 2008 A1
20080170776 Albertson et al. Jul 2008 A1
20080245952 Troxell et al. Oct 2008 A1
20080252596 Bell et al. Oct 2008 A1
20090027337 Hildreth Jan 2009 A1
20090077504 Bell et al. Mar 2009 A1
20090102788 Nishida et al. Apr 2009 A1
20090225196 Bell Sep 2009 A1
20090235295 Bell et al. Sep 2009 A1
20100026624 Bell et al. Feb 2010 A1
20100039500 Bell et al. Feb 2010 A1
20100060722 Bell et al. Mar 2010 A1
20100121866 Bell et al. May 2010 A1
Foreign Referenced Citations (28)
Number Date Country
0055366 Jul 1982 EP
0626636 Nov 1994 EP
0913790 May 1999 EP
1689172 Jun 2002 EP
57094672 Jun 1982 JP
2000-105583 Apr 2000 JP
2002-014997 Jan 2002 JP
2002-092033 Mar 2002 JP
2002-171507 Jun 2002 JP
2003-517642 May 2003 JP
2003-271084 Sep 2003 JP
2003-0058894 Jul 2003 KR
WO 9838533 Sep 1998 WO
WO 0016562 Mar 2000 WO
WO 0163916 Aug 2001 WO
WO 0201537 Jan 2002 WO
WO 02100094 Dec 2002 WO
WO 2004055776 Jul 2004 WO
WO 2004097741 Nov 2004 WO
WO 2005041578 May 2005 WO
WO 2005041579 May 2005 WO
WO 2005057398 Jun 2005 WO
WO 2005057399 Jun 2005 WO
WO 2005057921 Jun 2005 WO
WO 2005091651 Sep 2005 WO
WO 2007019443 Feb 2007 WO
WO 2008124820 Oct 2008 WO
WO 2009035705 Mar 2009 WO
Related Publications (1)
Number Date Country
20090251685 A1 Oct 2009 US
Provisional Applications (1)
Number Date Country
60987315 Nov 2007 US