The present application claims priority under 35 U.S.C. §119 to Japanese Patent Application No. 2008-251819, filed on Sep. 29, 2008, entitled “LENS UNIT, IMAGE PICKUP APPARATUS AND ELECTRONIC DEVICE”. The content of which is incorporated by reference herein in its entirety.
Embodiments of the present invention relate generally to image pickup devices, and more particularly relate to lens units for optical systems.
With the rapid development of digitalization of information, digitalization in image processing is increasingly required. In digital cameras in particular, solid-state image pickup devices, such as Charge Coupled Devices (CCD) and Complementary Metal Oxide Semiconductor (CMOS) sensors, have been used instead of film.
In image pickup apparatuses including CCDs or CMOS sensors, an image of an object is optically taken by an optical system and is extracted by an image pickup device in a form of an electric signal. Such an image pickup apparatus may be used for reading close-up still images such as a barcode, an iris, or a character.
In lens systems used for optical imaging, depth of field is an important characteristic of the lens system. Depth of field is, without limitation, a portion of an imaged region (field) that appears sharp in an image. Since a lens system has a characteristic that a focus amount increases as an object distance decreases, depth of field extension is often useful. In barcode reading, for example, the depth of field can be extended by decreasing an aperture of the optical system. Unfortunately, when the aperture of the optical system is decreased, the amount of light decreases. As a result, a shutter speed required for imaging decreases, and a risk of motion blurring may increase.
Alternatively, automatic focusing can be used for depth of field extension. However, a driving section for automatic focusing is necessary, and this increases a cost and reduces durability and reliability of the image pickup apparatuses. Accordingly, a high-performance lens, such as a multifocal lens for extending the depth of field or a lens for extending the depth of field with a phase modulation element, is sometimes used. However, optical performance of the lens system may be reduced by an influence of reflection and diffraction by an edge in the high-performance lens having a discontinuous shape caused by variations in manufacturing of the lens system. Further, since a point-spread-function of the high-performance lens may be rotationally asymmetric, a size of a restoration filter of the high-performance lens increases, and a false image may be formed when restoration is insufficient.
Therefore, there is a need for an optical system for extending depth of field that uses a filter of a smaller size for image restoration while suppressing sensitivity to variations in manufacturing of the optical system.
A lens unit comprising an aberration control module is disclosed. The lens unit can be operable to intentionally produce aberration. In the lens unit, a point-spread-function of a light beam passing through the aberration control optical system becomes substantially circular.
A first embodiment comprises a lens unit comprising a plurality of lenses and an aberration control module. The aberration control module is operable to produce an aberration in a light beam passing through the lens unit if a point-spread-function of the light beam becomes substantially circular.
A second embodiment comprises an image pickup apparatus. The image pickup apparatus comprises a lens unit. The lens unit comprises a plurality of lenses and an aberration control module. The aberration control module is operable to produce an aberration in a light beam passing through the lens unit if a point-spread-function of the light beam becomes substantially circular. The image pickup apparatus also comprises an image pickup device operable to capture an object image in the light beam.
A third embodiment comprises an electronic device comprising a lens unit and an image pickup device. The lens unit comprises a plurality of lenses and an aberration control module. The aberration control module is operable to produce an aberration in a light beam passing through the lens unit if a point-spread-function of the light beam becomes substantially circular. The image pickup apparatus also comprises a variable aperture stop operable to limit the light beam, and an image pickup device operable to capture an object image in the light beam.
A fourth embodiment comprises an image aberration control method in an image pickup apparatus comprising a lens unit. The image aberration control method comprises providing an aberration control surface to produce an aberration, operating a variable aperture stop to limit a light beam passing through the lens unit, and operating an image pickup device to capture an object image in the light beam. The object image is captured if a point-spread-function of the light beam becomes substantially circular.
Embodiments of the present invention are hereinafter described in conjunction with the following figures, wherein like numerals denote like elements. The figures are provided for illustration and depict exemplary embodiments of the present invention. The figures are provided to facilitate understanding of the present invention without limiting the breadth, scope, scale, or applicability of the present invention. The drawings are not necessarily made to scale.
The following description is presented to enable a person of ordinary skill in the art to make and use the embodiments of the invention. The following detailed description is exemplary in nature and is not intended to limit the invention or the application and uses of the embodiments of the invention. Descriptions of specific devices, techniques, and applications are provided only as examples. Modifications to the examples described herein will be readily apparent to those of ordinary skill in the art, and the general principles defined herein may be applied to other examples and applications without departing from the spirit and scope of the invention. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description. The invention should be accorded scope consistent with the claims, and not limited to the examples described and shown herein.
The following detailed description is exemplary in nature and is not intended to limit the invention or the application and uses according to one embodiments of the invention. Descriptions of specific devices, techniques, and applications are provided only as examples. Modifications to the examples described herein will be readily apparent to those of ordinary skill in the art, and the general principles defined herein may be applied to other examples and applications without departing from the spirit and scope of the invention. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description. The invention should be accorded scope consistent with the claims, and not limited to the examples described and shown herein.
Embodiments of the invention are described herein in the context of practical non-limiting applications, namely image processing. Embodiments of the invention, however, are not limited to such image processing applications, and the techniques described herein may also be utilized in other optical applications such as, but without limitation, to image reader, image projection apparatuses, and the like. For example, the embodiments of the invention can be used, for example and without limitation, in a digital still camera, a mobile phone camera, a Personal Digital Assistant (PDA) camera, a camera used for a vehicle, an image inspection apparatus, an industrial camera used for automatic control, and the like.
As would be apparent to one of ordinary skill in the art after reading this description, these are merely examples and the embodiments of the present invention are not limited to operating in accordance with these examples. Other embodiments may be utilized and structural changes may be made without departing from the scope of the exemplary embodiments of the present invention.
The information code reading device 100 comprises a main body 110 coupled to a processing device such as an electronic register (not shown) via a cable 111. The information code reading device 100 is operable to read an information code 121. The information code 121 may be, for example and without limitation, a symbol, or a code having different reflectivity printed on a reading object 120, and the like. For example, but without limitation, the information code 121 may be a one-dimensional barcode 122 (
The image pickup apparatus 200 comprises an aberration control optical system 210 and an imaging element 220 (image pickup device 220). The image pickup apparatus 200 further comprises an analog front end module (AFE) 230, an image processing module 240, a camera signal processing module 250, an image display memory 260, an image monitoring module 270, an operation module 280, and a control module 290.
In the aberration control optical system 210, the fourth lens 215 and the fifth lens 216 are coupled to each other. That is, the lens unit of the aberration control optical system 210 comprises a cemented lens.
The aberration control optical system 210 serves as an optical system that employs an aberration control surface 213a having an aberration control function operable to intentionally produce aberration (i.e. coma aberration in an embodiment).
In an embodiment, an aberration control surface 213a can be used in order to produce a spherical aberration as an aberration control module. Alternatively, a separate aberration control element can serve as an aberration control module as described later. That is, an aberration control effect may be obtained by inserting a separate aberration control element.
In the embodiment shown in
In this document, the term “aberration control surface” refers to a lens surface having an aberration control effect similar to the aberration control element. The aberration control optical system 210 has an aberration characteristic that a depth of field extending effect (function) is maintained even when an aperture diameter of the variable aperture stop 214 changes.
The aberration control surface 213a produces an aberration in a light beam passing through the aberration control optical system 210, if a point-spread-function (PSF) of the light beam passing through the aberration control optical system 210 is substantially circular. If the aberration control surface 213a of the aberration control optical system 210 has a periodic shape having at least two periods in a circumferential direction, a point-spread-function (PSF) of the light beam passing through the aberration control optical system 210 can become substantially circular
An aberration control optical system 210 shown in
The aberration control optical system 210 is operable to intentionally produce aberration by employing an aberration control element having an aberration control function. The aberration control optical system 210 has an aberration characteristic that allows the aberration control function of the aberration control optical system 210 to change (is variable) in response to a change in an aperture diameter of the variable aperture stop 214.
In the aberration control optical system 210, at least one inflection point is provided in the refractive index of spherical aberration within the aperture diameter of the variable aperture stop 214, regardless of size of the aperture diameter.
The difference in refractive index of the inflection point from a center portion of an optical axis OX increases from the center portion toward a peripheral portion.
Further, the difference in refractive index of the inflection point from the center portion of the optical axis OX increases as the aperture diameter of the variable aperture stop 214 decreases.
The aberration control optical system 210 employs the externally dependent aberration control element 213 (third lens 213) as an element that can change the aberration control function (i.e., the aberration control function is variable) of the aberration control optical system 210 in response to a change in aperture diameter of the variable aperture stop 214.
The externally dependent aberration control element 213 is configured to perform independently. That is, the externally dependent aberration control element 213 is controlled from outside of the aberration control optical system 210. The externally dependent aberration control element 213 performs an aberration control function which can change aberration in image formation on a light receiving surface of the image pickup device 220. For example, but without limitation, the externally dependent aberration control element 213 can also control the degree of the change of the aberration including no change.
When a control module 290 exerts control so that the aberration control function of the externally dependent aberration control element 213 is not performed, the aberration control optical system 210 is brought into a single-focus state and provides high imaging performance. In contrast, when the control module 290 exerts control so that the aberration control function is performed, the aberration control optical system 210 is brought into a multi-focus state.
When the aberration control function of the externally dependent aberration control element 213 is performed, the degree of performance of the aberration control function is changed (is variable) under the control of the control module 290 in accordance with the change of the variable aperture stop 214.
The externally dependent aberration control element 213 may comprise, for example but without limitation, a liquid crystal element (liquid crystal lens) 213a, as shown in
When a voltage is applied to the aberration control surface 213a such as the liquid crystal lens by the control module 290, for example, the aberration control surface 213a (liquid crystal lens) is controlled so as to perform the aberration control function, and the aberration control optical system 210 is brought into a multi-focus state, as shown in
In contrast, when voltage is not applied, or switched to a level lower than in the state in which the aberration control function is performed, by the control module 290, the aberration control surface 213a (liquid crystal lens) is controlled so as not to perform the aberration control function, and the aberration control optical system 210 is brought into a single-focus state, as shown in
In the state in which the aberration control function of the aberration control surface 213a (liquid crystal lens) is performed, the degree of performance of the aberration control function changes (is variable) in accordance with the change of the variable aperture stop 214 under the control of the control module 290.
Voltage applied to the aberration control surface 213a (liquid crystal lens) is changed to control the degree of performance of the aberration control function. The applied voltage can be changed, for example but without limitation, linearly, stepwise, or the like. In this manner, a multi-focus state of the aberration control surface 213a (liquid crystal lens) can change in response to the change in the applied voltage.
In one embodiment, the aberration control surface 213a of the aberration control optical system 210 has a periodical shape defined by a continuous function of a combination of trigonometric waves, and has different focal lengths in arbitrary cross sections including the optical axis.
The aberration control surface 213a is based on the following relationships:
z=α×[exp {β(x2×y2)}−1]×cos {nθ}, or
z=α×[exp {β(x2×y2)}−1]×sin {nθ}
where z is an optical axis of the aberration control optical system 210, x and y are two axes perpendicular to the optical axis and orthogonal to each other, α, β, and n are coefficients, and |x|≦1, and |y|≦1.
The aberration control surface 213a of the aberration control optical system 210 can have a stepped periodical shape such that any of multiple focal lengths is provided in an arbitrary cross section including the optical axis.
As described above, in the aberration control optical system 210, a number of periods of the aberration control surface 213a having a periodical structure is controlled in accordance with a solid-state image pickup device such as the image pickup device 220. The number of periods depends on a pixel pitch and pixel shape (e.g., a square pixel or a honeycomb-shaped pixel) of the solid-state image pickup device. In this case, the periodical structure may be any of the cosine wave, sine wave, and rectangular wave, as shown in
Depth of field extension is performed by the periodical structure including both a plurality of independent focal lengths (e.g., two values of rectangular waves) and a focal length having a certain continuous width (sine wave, cosine wave).
Since the aberration control surface 213a has a rotationally asymmetric shape and has a periodical structure including an increased number of periods, the PSF can be made substantially circular. This realizes efficient depth of field extension.
In a case in which a plurality of focal lengths are concentrically provided, unless the pitch is infinitely decreased, weights of the focal lengths differ from when the first focal length is provided in the center portion and when the first focal length is provided in the peripheral portion.
In other words, the production sensitivity is substantially high, and weight is biased to the far side and the close side even by a minute error.
When multiple foci are realized by the radial shape, not by the concentric shape, the difficulty in production may increase, but the sensitivity to manufacturing variations decreases and productivity increases.
When the number of periods is increased, the PSF can be made substantially circular by utilizing the sampling effect of the pixels of the image pickup device 220. Since the PSF is circular, the image is naturally blurred in an out-of-focus state. Further, a size of a filter used for image restoration can be reduced by utilizing the symmetrical property of the circular PSF.
As shown in
The imaging element 220 (
Referring to
The AFE unit 230 may include a timing controller 231 and an analog/digital (A/D) converter 232. The timing controller 231 controls timing for driving the CCD in the image pickup device 220. The A/D converter 232 converts an analog signal input from the CCD into a digital signal, and can output the thus-obtained digital signal to the image processing module 240.
The image processing module 240 can receive the digital signal representing the picked-up image from the AFE unit 230, subject the signal to an image processing process such as edge enhancement process and the like, improve the contrast which is lowered by the aberration control optical system 210, and output the result to the signal processing module 250 (e.g., a digital signal processor (DSP)).
The camera signal processing module (or the digital signal processor (DSP)) 250 is operable to perform, without limitation, processes including color interpolation, white balancing, YCbCr conversion, compression, filing, etc., stores data in the memory 260, and displays images on the image monitoring module 270.
The control module 290 is operable to perform exposure control, receive operation inputs from the operation module 280 and the like, and determine the overall operation of the system 200 on the basis of the received operation inputs. Thus, the control module 290 can control the AFE unit 230, the image processing module 240, DSP 250, the aperture stop 214, and the like, to suitably perform aberration control of the system 200.
The image processing module 240 also performs an image processing process, for example but without limitation, including edge emphasis and the like such as MTF correction process, and the like. Then the image processing module 240 performs a process to improve contrast which has low value caused by the aberration control optical system 201. Accordingly, a final high-definition image produced by the image processing module 240 can be controlled.
According to an embodiment, in order to obtain the final MTF characteristic curve B from the optically obtained MTF characteristic curve A with respect to the special frequency as shown in
More specifically, in a predetermined spatial frequency range, the degree of edge emphasis is reduced at a low-frequency side and a high-frequency side and is increased in an intermediate frequency region. Accordingly, the desired MTF characteristic curve B can be virtually obtained.
The image pickup apparatus 200 (imaging device 200) according to the present embodiment includes the aberration control optical system 210 and the image pickup device 220 (imaging element 220) for obtaining the first image, and also includes the image processing module 240 for forming the final high-definition image from the first image. The aberration control optical system 210 is provided with an aberration control surface 213a or an optical element, such as, without limitation, a glass element and a plastic element, having a surface processed so as to control an aberration, so that the wavefront of light can be changed (modulated). The light with the modulated wavefront forms an image, i.e., the first image, on the imaging plane (light-receiving surface) of the image pickup device 220.
An MTF response of the present embodiment and that of a typical optical system are discussed below.
As shown in
However, if the noise increases when the image processing is performed, the image processing that may enhance the response of the MTF may not be suitably performed. In the present embodiment, the aberration control optical system 210 is referred to as the aberration control optical system 210 since it controls the aberration.
As described below, the OTF (MTF) value for the optical system including an aberration-controller is preferably about 0.1 or more at the Nyquist frequency shown in
As described above, if the aberration control surface 213a of the aberration control optical system 210 has a rotationally asymmetric periodic shape with two or more periods in the circumferential direction, a PSF of a light beam passing through the aberration control optical system 210 can become substantially circular.
The periodical shape of the aberration control surface 213a of the aberration control optical system 210 can be defined by a continuous function of a combination of trigonometric waves, and has different focal lengths in arbitrary cross sections including the optical axis.
Alternatively, the aberration control surface 213a of the aberration control optical system 210 can have a stepped periodical shape such that any of multiple focal lengths is provided in an arbitrary cross section including the optical axis.
According to an embodiment of the present invention, if the aberration control surface 213a has a rotationally asymmetric shape that has a periodicity in the circumferential direction (radial shape), an obtained PSF can be rotationally asymmetric, but be substantially circular. The sensitivity to production variations can be suppressed by the rotationally asymmetric shape, and the size of the filter that is inevitably large can be reduced by the periodicity.
In this case, even when the distance from the aberration control optical system 210 to the object differs, the PSF focused on the solid-state image pickup device such as the image pickup device 220 is in a multifocal state or a soft focus state, and almost the same state is obtained. Thus, the aberration control surface 213a can have a shape that allows image restoration to be performed with a single filter, regardless of an object distance.
Hence, even when the distance from the aberration control optical system to the object differs, the PSF focused on the solid-state image pickup device is in a multifocal state or a soft focus state, and almost the same state is obtained. Thus, image restoration can be performed with the single filter, regardless of the object distance.
In other words, for extending the depth of field in the imaging device 200, the size of the filter used for image restoration can be reduced while suppressing the sensitivity to variations in manufacturing.
By properly controlling coma aberration, depth of field extension can be performed without image restoration, and an image of an appropriate quality that is rarely affected by noise can be obtained.
In addition, it is possible to obtain a natural image without using an expensive and large optical lens that is difficult to produce and without driving the lens.
It is also possible to simplify the configuration of the aberration control optical system 210, to facilitate production, and to achieve cost reduction. Therefore, the imaging device 200 can be applied to a compact, light weight, and low cost commercial off-the-shelf device. As explained above, such electronic devices may be, without limitation, a digital still camera, a mobile phone camera, a Personal Digital Assistant (PDA) camera, a camera used for a vehicle, an image inspection apparatus, an industrial camera used for automatic control, and the like.
While at least one exemplary embodiment has been presented in the foregoing detailed description, the invention is not limited to the above-described embodiment or embodiments. Variations may be apparent to those skilled in the art. In carrying out the invention, various modifications, combinations, sub-combinations and alterations may occur in regard to the elements of the above-described embodiment insofar as they are within the technical scope of the invention or the equivalents thereof. The exemplary embodiment or exemplary embodiments are examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a template for implementing the exemplary embodiment or exemplary embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope of the invention as set forth in the appended claims and the legal equivalents thereof. Furthermore, although embodiments of the invention have been described with reference to the accompanying drawings, it is to be noted that changes and modifications may be apparent to those skilled in the art. Such changes and modifications are to be understood as being comprised within the scope of the invention as defined by the claims.
Terms and phrases used in this document, and variations hereof, unless otherwise expressly stated, should be construed as open ended as opposed to limiting. As examples of the foregoing: the term “including” should be read as mean “including, without limitation” or the like; the term “example” is used to provide exemplary instances of the item in discussion, not an exhaustive or limiting list thereof; and adjectives such as “conventional,” “traditional,” “normal,” “standard,” “known” and terms of similar meaning should not be construed as limiting the item described to a given time period or to an item available as of a given time, but instead should be read to encompass conventional, traditional, normal, or standard technologies that may be available or known now or at any time in the future. Likewise, a group of items linked with the conjunction “and” should not be read as requiring that each and every one of those items in the grouping be present, but rather should be read as “and/or” unless expressly stated otherwise. Similarly, a group of items linked with the conjunction “or” should not be read as requiring mutual exclusivity among that group, but rather should also be read as “and/or” unless expressly stated otherwise. Furthermore, although items, elements or components of the invention may be described or claimed in the singular, the plural is contemplated to be within the scope thereof unless limitation to the singular is explicitly stated. The presence of broadening words and phrases such as “one or more,” “at least,” “but not limited to” or other like phrases in some instances shall not be read to mean that the narrower case is intended or required in instances where such broadening phrases may be absent. The term “about” when referring to a numerical value or range is intended to encompass values resulting from experimental error that can occur when taking measurements.
Number | Date | Country | Kind |
---|---|---|---|
2008-251819 | Sep 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3739089 | Latall | Jun 1973 | A |
5664243 | Okada et al. | Sep 1997 | A |
5748371 | Cathey, Jr. et al. | May 1998 | A |
5774239 | Feldman et al. | Jun 1998 | A |
6021005 | Cathey, Jr. et al. | Feb 2000 | A |
6069738 | Cathey, Jr. et al. | May 2000 | A |
6073851 | Olmstead et al. | Jun 2000 | A |
6148528 | Jackson | Nov 2000 | A |
6233060 | Shu et al. | May 2001 | B1 |
6241656 | Suga | Jun 2001 | B1 |
6351332 | Okuyama et al. | Feb 2002 | B1 |
6449087 | Ogino | Sep 2002 | B2 |
6525302 | Dowski, Jr. et al. | Feb 2003 | B2 |
6606669 | Nakagiri | Aug 2003 | B1 |
6642504 | Cathey, Jr. | Nov 2003 | B2 |
6984206 | Kumei et al. | Jan 2006 | B2 |
7158660 | Gee et al. | Jan 2007 | B2 |
7400393 | Shibata et al. | Jul 2008 | B2 |
7583301 | Sakurai et al. | Sep 2009 | B2 |
7630584 | Nose et al. | Dec 2009 | B2 |
7719772 | Mann et al. | May 2010 | B2 |
20020118457 | Dowski, Jr. | Aug 2002 | A1 |
20030063384 | Dowski, Jr. | Apr 2003 | A1 |
20030076514 | Gallagher et al. | Apr 2003 | A1 |
20030122926 | Kumei et al. | Jul 2003 | A1 |
20030158503 | Matsumoto | Aug 2003 | A1 |
20040136605 | Seger et al. | Jul 2004 | A1 |
20040190762 | Dowski et al. | Sep 2004 | A1 |
20040257677 | Matsusaka | Dec 2004 | A1 |
20050128342 | Izukawa | Jun 2005 | A1 |
20060012385 | Tsao et al. | Jan 2006 | A1 |
20060238879 | Togino | Oct 2006 | A1 |
20070086674 | Guan | Apr 2007 | A1 |
20070268376 | Yoshikawa et al. | Nov 2007 | A1 |
20070291152 | Suekane et al. | Dec 2007 | A1 |
20080007797 | Hayashi et al. | Jan 2008 | A1 |
20080012955 | Johnson et al. | Jan 2008 | A1 |
20080043126 | Hayashi | Feb 2008 | A1 |
20080074507 | Ohara et al. | Mar 2008 | A1 |
20080081996 | Grenon et al. | Apr 2008 | A1 |
20080259275 | Aoki et al. | Oct 2008 | A1 |
20080278592 | Kuno et al. | Nov 2008 | A1 |
20100012866 | Fan et al. | Jan 2010 | A1 |
20110115950 | Wach | May 2011 | A1 |
Number | Date | Country |
---|---|---|
S63-229851 | Sep 1988 | JP |
H03-010380 | Jan 1991 | JP |
H03-175403 | Jul 1991 | JP |
H06-130267 | May 1994 | JP |
H08-128923 | May 1996 | JP |
H10-145667 | May 1998 | JP |
H11-261868 | Sep 1999 | JP |
2000-050146 | Feb 2000 | JP |
2000-098301 | Jul 2000 | JP |
2000-266979 | Sep 2000 | JP |
2000-275582 | Oct 2000 | JP |
2001-257930 | Sep 2001 | JP |
2001-346069 | Dec 2001 | JP |
2002-027047 | Jan 2002 | JP |
2002-127852 | May 2002 | JP |
2002-221657 | Sep 2002 | JP |
2003-185905 | Jul 2003 | JP |
2003-235794 | Aug 2003 | JP |
2003-244530 | Aug 2003 | JP |
2003-248171 | Sep 2003 | JP |
2003-262778 | Sep 2003 | JP |
2003-283878 | Oct 2003 | JP |
2004-037733 | Feb 2004 | JP |
2004-147188 | May 2004 | JP |
2004-153497 | May 2004 | JP |
2004-264577 | Sep 2004 | JP |
2004-328506 | Nov 2004 | JP |
2005-326684 | Nov 2005 | JP |
2006-139246 | Jan 2006 | JP |
2006-049949 | Feb 2006 | JP |
2006-094112 | Apr 2006 | JP |
2006-154767 | Jun 2006 | JP |
2006-308987 | Nov 2006 | JP |
2007-060647 | Mar 2007 | JP |
2007-300208 | Nov 2007 | JP |
2008-017157 | Jan 2008 | JP |
2008-035282 | Feb 2008 | JP |
2006022373 | Mar 2006 | WO |
2007013621 | Feb 2007 | WO |
2007074649 | Jul 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20100079658 A1 | Apr 2010 | US |