[Not Applicable]
A Sequence Listing is provided herewith as a text file, “UCLA-P219WO_ST25.txt” created on Nov. 12, 2020 and having a size of 165 KB. The contents of the text file are incorporated by reference herein in their entirety.
RAG1 Severe Combined Immunodeficiency (RAG1 SCID) is a primary immune deficiency caused by mutations in Recombination-Activating Gene 1 (RAG1). RAG1 and RAG2 are two subunits of the RAG complex which is active in immune system cells (lymphocytes) called B cells and T cells. These cells have proteins on their surface that recognize foreign invaders and help protect the body from infection. These proteins need to be diverse to be able to recognize a wide variety of substances. The genes from which these proteins are made contain segments known as variable (V), diversity (D), and joining (J) segments. During protein production within lymphocytes, these gene segments are rearranged in different combinations to increase variability of the resulting proteins. The RAG complex is involved in this process, which is known as V(D)J recombination.
During V(D)J recombination, the RAG complex attaches (binds) to a section of DNA called a recombination signal sequence (RSS), which is next to a V, D, or J segment. The RAG complex makes small cuts in the DNA between the segment and the RSS so the segment can be separated and moved to a different area in the gene. This process of DNA rearrangement within B cells and T cells is repeated multiple times in different areas so that the V, D, and J segments are arranged in various combinations. The variety of proteins produced throughout life following V(D)J recombination provides greater recognition of foreign invaders and allows the body to fight infection efficiently.
A defective RAG complex results in severe combined immunodeficiency (SCID) due to the complete absence of mature T and B cells (T-B-NK+ phenotype). Patients are born without a functional adaptive immune system and are therefore extremely susceptible to life-threatening infections. The estimated incidence of RAG1 SCID is ˜1:1,000,000 live births (˜15-20% of all cases of SCID).
SCID is commonly known as “bubble baby disease” because early interventions involved isolating newborn patient in a sterile environment to avoid exposure to pathogens. Newborn patients with SCID usually develop a fatal infection within the first year of life. A common standard of care is an allogeneic hematopoietic stem cell transplantation from an HLA matched donor. However, this is not a viable option for many patients due to the unavailability of a suitable matched donor and risks of immunological complications.
An alternative curative therapy is an autologous hematopoietic stem cell transplantation with ex vivo gene therapy. Preclinical attempts at developing a RAG1 lentiviral vector include EFS-coRAG1-WPRE which failed to rescue block in T-cell development in the thymus, SFFV-RAG1-WPRE which fails to rescue block in T-cell development in the thymus, and UCOE-coRAG1-WPRE which provided partial reconstitution of T and B cells, but led to the development of autoreactive T-cells and thus to the progression of Omenn-like symptoms (severe autoimmunity) (see, e.g., Pike-Overzet et al. (2011) Leukemia, 25: 1471-1483; van Til et al. (2014) J. Allergy Clin. Immunol. 133(4): 1116-1123).
Described herein is the development of novel lentiviral vector(s) (LVs) for the treatment of Recombination-Activating Gene 1 Severe Combined Immunodeficiency (RAG1 SCID). In particular lentiviral vectors described herein are regulated by endogenous elements of the RAG1 locus (or effective fragments of such elements) for high-level, lineage and temporal specific expression.
Accordingly, various embodiments contemplated herein may include, but need not be limited to, one or more of the following:
Embodiment 1: A recombinant lentiviral vector (LV) for the treatment of Recombination-Activating Gene 1 (RAG1) Severe Combined Immunodeficiency, said vector comprising:
Embodiment 2: The vector of embodiment 1, wherein the sequence of said effective fragment of the endogenous promoter of the RAG1 gene comprises or consists of the sequence of RAGpro (SEQ ID NO:2).
Embodiment 3: The vector of embodiment 2, wherein the sequence of said effective fragment of the endogenous promoter of the RAG1 gene consists of the sequence of RAGpro (SEQ ID NO:2).
Embodiment 4: The vector according to any one of embodiments 1-3, wherein said expression cassette comprises a RAG1 enhancer element 1 (SEQ ID NO: 1) or an effective fragment thereof.
Embodiment 5: The vector of embodiment 4, wherein the sequence of said RAG1 enhancer element consists the sequence of SEQ ID NO: 1 or an effective fragment thereof.
Embodiment 6: The vector according to any one of embodiments 1-5, wherein said expression cassette comprises a RAG1 enhancer element 3 (SEQ ID NO:3) or an effective fragment thereof.
Embodiment 7: The vector of embodiment 6, wherein the sequence of said RAG1 enhancer element 3 consists of the sequence of SEQ ID NO:3 or an effective fragment thereof.
Embodiment 8: The vector according to any one of embodiments 1-7, wherein said expression cassette comprises a RAG1 enhancer element 4 (SEQ ID NO:4) or an effective fragment thereof.
Embodiment 9: The vector of embodiment 8, wherein the sequence of said RAG1 enhancer element 4 consists of the sequence of SEQ ID NO:4 or an effective fragment thereof.
Embodiment 10: The vector according to any one of embodiments 1-9, wherein said expression cassette comprises a RAG1 enhancer element 5 (SEQ ID NO:5) or an effective fragment thereof.
Embodiment 11: The vector of embodiment 10, wherein the sequence of said RAG1 enhancer element 5 consists of the sequence of SEQ ID NO:5 or an effective fragment thereof.
Embodiment 12: The vector of embodiment 10, wherein the sequence of said RAG1 enhancer element 5 consists of the sequence of SEQ ID NO:31 or an effective fragment thereof.
Embodiment 13: The vector according to any one of embodiments 1-12, wherein said expression cassette comprises a RAG1 enhancer element 6 (SEQ ID NO:6) or an effective fragment thereof.
Embodiment 14: The vector of embodiment 13, wherein the sequence of said RAG1 enhancer element 6 consists of the sequence of SEQ ID NO:6 or an effective fragment thereof.
Embodiment 15: The vector according to any one of embodiments 1-14, wherein said expression cassette comprises a RAG1 enhancer element 7 (SEQ ID NO:7) or an effective fragment thereof.
Embodiment 16: The vector of embodiment 15, wherein the sequence of said RAG1 enhancer element 7 consists of the sequence of SEQ ID NO:7 or an effective fragment thereof.
Embodiment 17: The vector according to any one of embodiments 1-16, wherein said expression cassette comprises a RAG1 enhancer element 8 (SEQ ID NO:8) or an effective fragment thereof.
Embodiment 18: The vector of embodiment 17, wherein the sequence of said RAG1 enhancer element 8 consists of the sequence of SEQ ID NO:8 or an effective fragment thereof.
Embodiment 19: The vector according to any one of embodiments 1-18, wherein said expression cassette comprises a RAG1 enhancer element 9.1 (SEQ ID NO:9) or an effective fragment thereof.
Embodiment 20: The vector of embodiment 19, wherein the sequence of said RAG1 enhancer element 9.1 consists of the sequence of SEQ ID NO:9 or an effective fragment thereof.
Embodiment 21: The vector of embodiment 19, wherein the sequence of said RAG1 enhancer element 9.1 consists of enhancer element 9.1 core sequence of SEQ ID NO:34 or an effective fragment thereof.
Embodiment 22: The vector according to any one of embodiments 1-21, wherein said expression cassette comprises a RAG1 enhancer element 9.2 (SEQ ID NO:10) or an effective fragment thereof.
Embodiment 23: The vector of embodiment 22, wherein the sequence of said RAG1 enhancer element 9.2 consists of the sequence of SEQ ID NO:10 or an effective fragment thereof.
Embodiment 24: The vector according to any one of embodiments 1-23, wherein said expression cassette comprises a RAG1 enhancer element 10 (SEQ ID NO:11) or an effective fragment thereof.
Embodiment 25: The vector of embodiment 24, wherein the sequence of said RAG1 enhancer element 10 consists of the sequence of SEQ ID NO:11 or an effective fragment thereof.
Embodiment 26: The vector according to any one of embodiments 1-25, wherein said expression cassette comprises a RAG1 enhancer element 11 extra (SEQ ID NO:33) or an effective fragment thereof.
Embodiment 27: The vector according to any one of embodiments 1-25, wherein said expression cassette comprises a RAG1 enhancer element 11 (SEQ ID NO:12) or an effective fragment thereof.
Embodiment 28: The vector of embodiment 27, wherein the sequence of said RAG1 enhancer element 11 consists of the sequence of SEQ ID NO:12 or an effective fragment thereof.
Embodiment 29: The vector according to any one of embodiments 1-28, wherein said expression cassette comprises a RAG1 enhancer element 12 (SEQ ID NO:13) or an effective fragment thereof.
Embodiment 30: The vector of embodiment 29, wherein the sequence of said RAG1 enhancer element 12 consists of the sequence of SEQ ID NO:13 or an effective fragment thereof.
Embodiment 31: The vector according to any one of embodiments 1-30, wherein said expression cassette comprises a RAG1 enhancer element 13 (SEQ ID NO:14) or an effective fragment thereof.
Embodiment 32: The vector of embodiment 31, wherein the sequence of said RAG1 enhancer element 13 consists of the sequence of SEQ ID NO:14 or an effective fragment thereof.
Embodiment 33: The vector of embodiment 31, wherein the sequence of said RAG1 enhancer element 13 consists of the sequence of SEQ ID NO:36 or an effective fragment thereof.
Embodiment 34: The vector according to any one of embodiments 1-33, wherein said expression cassette comprises a RAG1 enhancer element 14 (SEQ ID NO:15) or an effective fragment thereof.
Embodiment 35: The vector of embodiment 34, wherein said expression cassette comprises or consists of an enlarged RAG1 enhancer element 14 core (SEQ ID NO:32) or an effective fragment thereof.
Embodiment 36: The vector of embodiment 34, wherein the sequence of said RAG1 enhancer element 14 consists of the sequence of SEQ ID NO:15 or an effective fragment thereof.
Embodiment 37: The vector according to any one of embodiments 1-36, wherein said expression cassette comprises a RAG1 enhancer element 16 (SEQ ID NO:16) or an effective fragment thereof.
Embodiment 38: The vector of embodiment 37, wherein the sequence of said RAG1 enhancer element 16 consists of the sequence of SEQ ID NO:16 or an effective fragment thereof.
Embodiment 39: The vector according to any one of embodiments 1-38, wherein said expression cassette comprises a RAG1 enhancer element 17 (SEQ ID NO:17) or an effective fragment thereof.
Embodiment 40: The vector of embodiment 39, wherein the sequence of said RAG1 enhancer element 17 consists of the sequence of SEQ ID NO:17 or an effective fragment thereof.
Embodiment 41: The vector according to any one of embodiments 1-40, wherein said expression cassette comprises a RAG1 enhancer element 18 (SEQ ID NO:18) or an effective fragment thereof.
Embodiment 42: The vector of embodiment 41, wherein the sequence of said RAG1 enhancer element 18 consists of the sequence of SEQ ID NO:18 or an effective fragment thereof.
Embodiment 43: The vector of embodiment 41, wherein the sequence of said RAG1 enhancer element 18 consists of the sequence of SEQ ID NO:35 or an effective fragment thereof.
Embodiment 44: The vector according to any one of embodiments 1-43, wherein said nucleic acid that encodes a RAG1 Protein is a RAG1 cDNA or a codon-optimized RAG1 gene or cDNA.
Embodiment 45: The vector of embodiment 44, wherein said nucleic acid that encodes a nucleic acid that encodes RAG1 protein is a RAG1 cDNA (SEQ ID NO:19).
Embodiment 46: The vector of embodiment 44, wherein said nucleic acid that encodes a nucleic acid that encodes RAG1 protein is a codon optimized RAG1.
Embodiment 47: The vector of embodiment 46, wherein the sequence of said nucleic acid that encodes RAG1 protein is a codon optimized RAG1 selected from the group consisting of jCAT codon optimized RAG1, GeneArt optimized RAG1, and IDT optimized RAG1.
Embodiment 48: The vector according to any one of embodiments 1-47, wherein said vector comprises a ψ region vector genome packaging signal.
Embodiment 49: The vector according to any one of embodiments 1-48, wherein said vector comprise a 5′ LTR comprising a CMV enhancer/promoter.
Embodiment 50: The vector according to any one of embodiments 1-49, wherein said vector comprises a Rev Responsive Element (RRE).
Embodiment 51: The vector according to any one of embodiments 1-50, wherein said vector comprises a central polypurine tract.
Embodiment 52: The vector according to any one of embodiments 1-51, wherein said vector comprises a post-translational regulatory element.
Embodiment 53: The vector of embodiment 52, wherein the posttranscriptional regulatory element is modified Woodchuck Post-transcriptional Regulatory Element (WPRE).
Embodiment 54: The vector according to any one of embodiments 1-53, wherein said vector is incapable of reconstituting a wild-type lentivirus through recombination.
Embodiment 55: The vector according to any one of embodiments 1-54, wherein said vector shows high expression in T-cells.
Embodiment 56: The vector according to any one of embodiments 1-55, wherein said vector shows high expression in B-cells.
Embodiment 57: The vector of embodiment 1, wherein said vector comprises the vector elements selected from the group consisting of: 1) E5 Core, E14 Core, E9.1 Core, E12 OG—RAG1pro-RAG-WPRE; 2) E5 Core, E14 Core, E9.1 Core, E12 OG, E11 extra B-cell enhancer—RAG1pro-RAG-WPRE; 3) E5 Core, E14 Core, E9.1 OG large, E12 OG—RAG1pro-RAG-WPRE; 4) E5 Core, E14 Core, E9.1 OG large, E12 OG, E11 extra B-cell enhancer—RAG1pro-RAG-WPRE; 5) E5 Core, E14 Core, E9.1 Core, E12 OG+18 right, 11 whole, 13 right—RAG1pro-RAG-WPRE; 6) E5 Core, E14 Core, E9.1 Core, E12 OG+18 whole, 11 whole—RAG1pro-RAG-WPRE; 7) E5 Core, E14 Core, E9.1 Core, E12 OG+18 whole—RAG1pro-RAG-WPRE; 8) E5 Core, E14 Core, E9.1 Core, E12 OG, E11 extra B-cell enhancer+18 right, 11 whole, 13 right—RAG1pro-RAG-WPRE; 9) E5 Core, E14 Core, E9.1 Core, E12 OG, E11 extra B-cell enhancer+18 whole, 11 whole—RAG1pro-RAG-WPRE; and 10) E5 Core, E14 Core, E9.1 Core, E12 OG, E11 extra B-cell enhancer+18 whole—RAG1pro-RAG-WPRE.
Embodiment 58: The vector of embodiment 57, wherein said vector comprises the vector elements E5 Core, E14 Core, E9.1 Core, E12 OG—RAG1pro-RAG-WPRE;
Embodiment 59: The vector of embodiment 58, wherein said vector comprises the nucleotide sequence of SEQ ID NO:37.
Embodiment 60: The vector of embodiment 57, wherein said vector comprises the vector elements E5 Core, E14 Core, E9.1 Core, E12 OG, E11 extra B-cell enhancer—RAG1pro-RAG-WPRE.
Embodiment 61: The vector of embodiment 58, wherein said vector comprises the nucleotide sequence of SEQ ID NO:38.
Embodiment 62: The vector of embodiment 57, wherein said vector comprises the vector elements E5 Core, E14 Core, E9.1 OG large, E12 OG—RAG1pro-RAG-WPRE.
Embodiment 63: The vector of embodiment 58, wherein said vector comprises the nucleotide sequence of SEQ ID NO:39.
Embodiment 64: The vector of embodiment 57, wherein said vector comprises the vector elements E5 Core, E14 Core, E9.1 OG large, E12 OG, E11 extra B-cell enhancer—RAG1pro-RAG-WPRE.
Embodiment 65: The vector of embodiment 58, wherein said vector comprises the nucleotide sequence of SEQ ID NO:40.
Embodiment 66: The vector of embodiment 57, wherein said vector comprises the vector elements E5 Core, E14 Core, E9.1 Core, E12 OG+18 right, 11 whole, 13 right—RAG1pro-RAG-WPRE.
Embodiment 67: The vector of embodiment 58, wherein said vector comprises the nucleotide sequence of SEQ ID NO:41.
Embodiment 68: The vector of embodiment 57, wherein said vector comprises the vector elements E5 Core, E14 Core, E9.1 Core, E12 OG+18 whole, 11 whole—RAG1pro-RAG-WPRE.
Embodiment 69: The vector of embodiment 58, wherein said vector comprises the nucleotide sequence of SEQ ID NO:42.
Embodiment 70: The vector of embodiment 57, wherein said vector comprises the vector elements E5 Core, E14 Core, E9.1 Core, E12 OG+18 whole—RAG1pro-RAG-WPRE.
Embodiment 71: The vector of embodiment 58, wherein said vector comprises the nucleotide sequence of SEQ ID NO:43.
Embodiment 72: The vector of embodiment 57, wherein said vector comprises the vector elements E5 Core, E14 Core, E9.1 Core, E12 OG, E11 extra B-cell enhancer+18 right, 11 whole, 13 right—RAG1pro-RAG-WPRE.
Embodiment 73: The vector of embodiment 58, wherein said vector comprises the nucleotide sequence of SEQ ID NO:44.
Embodiment 74: The vector of embodiment 57, wherein said vector comprises the vector elements E5 Core, E14 Core, E9.1 Core, E12 OG, E11 extra B-cell enhancer+18 whole, 11 whole—RAG1pro-RAG-WPRE.
Embodiment 75: The vector of embodiment 58, wherein said vector comprises the nucleotide sequence of SEQ ID NO:45.
Embodiment 76: The vector of embodiment 57, wherein said vector comprises the vector elements E5 Core, E14 Core, E9.1 Core, E12 OG, E11 extra B-cell enhancer+18 whole—RAG1pro-RAG-WPRE.
Embodiment 77: The vector of embodiment 58, wherein said vector comprises the nucleotide sequence of SEQ ID NO:46.
Embodiment 78: A host cell transduced with a vector according to any one of embodiments 1-77.
Embodiment 79: The host cell of embodiment 78, wherein the cell is a stem cell.
Embodiment 80: The host cell of embodiment 79, wherein said cell is a stem cell derived from bone marrow, and/or from umbilical cord blood, and/or from peripheral blood.
Embodiment 81: The host cell of embodiment 78, wherein the cell is a human hematopoietic progenitor cell.
Embodiment 82: The host cell of embodiment 81, wherein the human hematopoietic progenitor cell is a CD34+ cell.
Embodiment 83: A method of treating Recombination-Activating Gene 1 (RAG1) Severe Combined Immunodeficiency (RAG1 SCID), in a subject, said method comprising:
Embodiment 84: The method of embodiment 83, wherein the cell is a stem cell.
Embodiment 85: The method of embodiment 83, wherein said cell is a stem cell derived from bone marrow.
Embodiment 86: The method of embodiment 83, wherein the cell is a human hematopoietic stem and progenitor cell.
Embodiment 87: The method of embodiment 86, wherein the human hematopoietic progenitor cell is a CD34+ cell.
Embodiment 88: A recombinant nucleic acid comprising one or more of the following: an effective fragment of the endogenous promoter of the RAG1 gene that comprises or consists of the sequence of RAGpro (SEQ ID NO:2); and/or
Embodiment 89: The nucleic acid of embodiment 88, wherein said nucleic acid comprises a sequence consisting of an effective fragment of the endogenous promoter of the RAG1 gene (SEQ ID NO:2).
Embodiment 90: The nucleic acid according to any one of embodiments 88-89, wherein said nucleic acid comprises a sequence consisting of a RAG1 enhancer element 1 (SEQ ID NO: 1) or an effective fragment thereof.
Embodiment 91: The nucleic acid according to any one of embodiments 88-90, wherein said nucleic acid comprises a sequence consisting of a RAG1 enhancer element 3 (SEQ ID NO:3) or an effective fragment thereof.
Embodiment 92: The nucleic acid according to any one of embodiments 88-91, wherein said nucleic acid comprises a sequence consisting of a RAG1 enhancer element 4 (SEQ ID NO:4) or an effective fragment thereof.
Embodiment 93: The nucleic acid according to any one of embodiments 88-92, wherein said nucleic acid comprises a an enlarged RAG1 enhancer element 5 core (SEQ ID NO:31) or an effective fragment thereof.
Embodiment 94: The nucleic acid according to any one of embodiments 88-92, wherein said nucleic acid comprises a sequence consisting of a RAG1 enhancer element 5 (SEQ ID NO:5) or an effective fragment thereof.
Embodiment 95: The nucleic acid according to any one of embodiments 88-94, wherein said nucleic acid comprises a sequence consisting of a RAG1 enhancer element 6 (SEQ ID NO:6) or an effective fragment thereof.
Embodiment 96: The nucleic acid according to any one of embodiments 88-95, wherein said nucleic acid comprises a sequence consisting of a RAG1 enhancer element 7 (SEQ ID NO:78) or an effective fragment thereof.
Embodiment 97: The nucleic acid according to any one of embodiments 88-96, wherein said nucleic acid comprises a sequence consisting of a RAG1 enhancer element 8 (SEQ ID NO:8) or an effective fragment thereof.
Embodiment 98: The nucleic acid according to any one of embodiments 88-97, wherein said nucleic acid comprises a sequence consisting of a RAG1 enhancer element 9.1 (SEQ ID NO:9) or an effective fragment thereof.
Embodiment 99: The nucleic acid according to any one of embodiments 88-98, wherein said nucleic acid comprises a sequence consisting of a RAG1 enhancer element 9.2 (SEQ ID NO:10) or an effective fragment thereof.
Embodiment 100: The nucleic acid according to any one of embodiments 88-99, wherein said nucleic acid comprises a sequence consisting of a RAG1 enhancer element 10 (SEQ ID NO:11) or an effective fragment thereof.
Embodiment 101: The nucleic acid according to any one of embodiments 88-100, wherein said nucleic acid comprises a sequence consisting of a RAG1 enhancer element 11 (SEQ ID NO:12) or an effective fragment thereof.
Embodiment 102: The nucleic acid according to any one of embodiments 88-101, wherein said nucleic acid comprises a sequence consisting of a RAG1 enhancer element 12 (SEQ ID NO:13) or an effective fragment thereof.
Embodiment 103: The nucleic acid according to any one of embodiments 88-102, wherein said nucleic acid comprises a sequence consisting of a RAG1 enhancer element 13 (SEQ ID NO:14) or an effective fragment thereof.
Embodiment 104: The nucleic acid according to any one of embodiments 88-103, wherein said nucleic acid comprises a sequence consisting of an enlarged RAG1 enhancer element 14 core (SEQ ID NO:32) or an effective fragment thereof.
Embodiment 105: The nucleic acid according to any one of embodiments 88-103, wherein said nucleic acid comprises a sequence consisting of a RAG1 enhancer element 14 (SEQ ID NO:15) or an effective fragment thereof.
Embodiment 106: The nucleic acid according to any one of embodiments 88-105, wherein said nucleic acid comprises a sequence consisting of a RAG1 enhancer element 16 (SEQ ID NO:16) or an effective fragment thereof.
Embodiment 107: The nucleic acid according to any one of embodiments 88-106, wherein said nucleic acid comprises a sequence consisting of a RAG1 enhancer element 17 (SEQ ID NO:17) or an effective fragment thereof.
Embodiment 108: The nucleic acid according to any one of embodiments 88-107, wherein said nucleic acid comprises a sequence consisting of a RAG1 enhancer element 18 (SEQ ID NO:18) or an effective fragment thereof.
Embodiment 109: The nucleic acid according to any one of embodiments 88-108, wherein said nucleic acid comprises an expression cassette.
Embodiment 110: The nucleic acid of embodiment 109, wherein said expression cassette comprises a nucleic acid that encodes a RAG1 protein.
Embodiment 111: The nucleic acid of embodiment 110, wherein said nucleic acid that encodes a RAG1 protein comprises a RAG1 cDNA.
Embodiment 112: The nucleic acid of embodiment 110, wherein said nucleic acid that encodes a RAG1 protein comprise a codon-optimized RAG1 cDNA.
Embodiment 113: The nucleic acid according to any one of embodiments 110-112, wherein said nucleic acid that encodes a RAG1 protein is operably linked to an endogenous RAG1 promoter or an effective fragment thereof.
Embodiment 114: The nucleic acid according to any one of embodiments 110-113, wherein said nucleic acid comprises a lentiviral vector according to any one of embodiments 1-77.
Embodiment 115: The nucleic acid according to any one of embodiments 88-114, wherein said nucleic acid does not comprise the endogenous RAG1 gene.
A “promoter” refers to a regulatory sequence in a nucleic acid required to initiate transcription of a gene (e.g., a gene operably coupled to the promoter).
An “enhancer” refers to a regulatory DNA sequence that, when bound by specific proteins called transcription factors, enhance the transcription of an associated gene.
An “effective fragment” when used with respect to a promoter (e.g., an effective fragment of a RAG1 promoter) refers to a fragment of the full-length promoter that is sufficient to initiate transcription of a gene operably linked to that promoter (e.g., RAG1).
An “effective fragment” when used with respect to an enhancer (e.g., an effective fragment of a RAG1 enhancer) refers to a fragment of the full-length enhancer that is sufficient to provide regulate expression of an operably linked gene when bound by a transcription factor. In certain embodiments the regulation is comparable with respect to expression level and/or lineage offered by the full-length enhancer.
The term “operably linked” refers to a nucleic acid sequence placed into a functional relationship with another nucleic acid sequence. For example, a promoter is operably linked to a gene when that promoter is placed in a location that permits that promoter to initiate transcription of that gene. An enhancer is operably linked to a gene when that enhancer, when bound by an appropriate transcription factor, is able to regulate (e.g., to upregulate) expression of that gene.
“Recombinant” is used consistently with its usage in the art to refer to a nucleic acid sequence that comprises portions that do not naturally occur together as part of a single sequence or that have been rearranged relative to a naturally occurring sequence. A recombinant nucleic acid is created by a process that involves the hand of man and/or is generated from a nucleic acid that was created by hand of man (e.g., by one or more cycles of replication, amplification, transcription, etc.). A recombinant virus is one that comprises a recombinant nucleic acid. A recombinant cell is one that comprises a recombinant nucleic acid.
As used herein, the term “recombinant lentiviral vector” or “recombinant LV) refers to an artificially created polynucleotide vector assembled from an LV and a plurality of additional segments as a result of human intervention and manipulation.
By “an effective amount” is meant the amount of a required agent or composition comprising the agent to ameliorate or eliminate symptoms of a disease relative to an untreated patient. The effective amount of composition(s) used to practice the methods described herein for therapeutic treatment of a disease varies depending upon the manner of administration, the age, body weight, and general health of the subject. Ultimately, the attending physician or veterinarian will decide the appropriate amount and dosage regimen. Such amount is referred to as an “effective” amount.
In various embodiments, lentiviral vectors are provided for the treatment (or prophylaxis) of Recombination-Activating Gene 1 severe combined immunodeficiency (RAG1 SCID) are provided. In certain embodiments the vectors are optimized to reduce vector size, increase expression level and titer. Additionally, in various embodiments the vectors recapitulate the expression pattern of the native RAG1 gene, e.g., as described herein.
In particular, a bioinformatic analysis (using publicly available databases: Project Encode, Ensembl, FANTOM, VISTA Enhancer Browser, GeneHancer) was utilized to elucidate the endogenous regulatory elements of the native RAG1 gene. Eighteen putative enhancer elements were identified located within a 400,000 base pair window. It is believed that a subset of the 18 putative enhancer elements are each responsible for RAG1 expression at specific timepoints throughout T and B cell development and that various combinations of these elements can be incorporated into an expression cassette in, for example, a lentiviral vector, to provide vectors that can recapitulate the expression pattern of the native RAG1 gene at therapeutically effective levels.
In order to identify the critical enhancer elements that regulate the RAG1 gene, each putative enhancer element was cloned upstream of the endogenous RAG1 promoter to drive expression of a reporter (mCitrine) (see, e.g.,
In various embodiments an expression cassette comprising various combinations of the identified regulatory elements (e.g., enhancers) and/or vectors comprising such expression cassettes are provided. Thus, in certain embodiments, a recombinant lentiviral vector (LV) for the treatment of Recombination-Activating Gene 1 (RAG1) Severe Combined Immunodeficiency is provided where the vector comprises an expression cassette comprising: 1) a nucleic acid encoding an effective fragment of the endogenous promoter of the RAG1 gene; and 2) a nucleic acid that encodes the RAG1 protein operably linked to the effective fragment of the endogenous promoter of the RAG1 gene.
In certain embodiments the expression cassette comprises an endogenous RAG1 promoter or an effective fragment thereof, and/or RAG1 Enhancer 1 or an effective fragment thereof, and/or RAG1 enhancer 2 or an effective fragment thereof, and/or RAG1 enhancer 3 or an effective fragment thereof, and/or RAG1 enhancer 4 or an effective fragment thereof, and/or RAG1 enhancer 5 or an effective fragment thereof, and/or RAG1 enhancer 6 or an effective fragment thereof, and/or RAG1 enhancer 7 or an effective fragment thereof, and/or RAG1 enhancer 8 or an effective fragment thereof, and/or RAG1 enhancer 9.1 or an effective fragment thereof, and/or RAG1 enhancer 9.2 or an effective fragment thereof, and/or RAG1 enhancer 10 or an effective fragment thereof, and/or RAG1 enhancer 11 or an effective fragment thereof, and/or RAG1 enhancer 12 or an effective fragment thereof, and/or RAG1 enhancer 13 or an effective fragment thereof, and/or RAG1 enhancer 14 or an effective fragment thereof, and/or RAG1 enhancer 16 or an effective fragment thereof, and/or RAG1 enhancer 17 or an effective fragment thereof, and/or RAG1 enhancer 18 or an effective fragment thereof (see, e.g., Table 1).
In certain embodiments the sequence of the effective fragment of the endogenous promoter of the RAG1 gene comprises or consists of the sequence of RAGpro (SEQ ID NO:2). In certain embodiments the sequence of the effective fragment of the endogenous promoter of the RAG1 gene consists of the sequence of RAGpro (SEQ ID NO:2).
In certain embodiments the expression cassette comprises a RAG1 enhancer element 1 (SEQ ID NO: 1) or an effective fragment thereof. In certain embodiments the RAG1 enhancer element consists the sequence of SEQ ID NO: 1 or an effective fragment thereof.
In certain embodiments the expression cassette comprises a RAG1 enhancer element 3 (SEQ ID NO:3) or an effective fragment thereof. In certain embodiments the sequence of the RAG1 enhancer element 3 consists of the sequence of SEQ ID NO:3 or an effective fragment thereof.
In certain embodiments the expression cassette comprises a RAG1 enhancer element 4 (SEQ ID NO:4) or an effective fragment thereof. In certain embodiments the sequence of the RAG1 enhancer element 4 consists of the sequence of SEQ ID NO:4 or an effective fragment thereof.
In certain embodiments the expression cassette comprises a RAG1 enhancer element 5 (SEQ ID NO:5) or an effective fragment thereof. In certain embodiments the sequence of the RAG1 enhancer element 5 consists of the sequence of SEQ ID NO:5 or an effective fragment thereof.
In certain embodiments the expression cassette comprises a RAG1 enhancer element 6 (SEQ ID NO:6) or an effective fragment thereof. In certain embodiments the sequence of the RAG1 enhancer element 6 consists of the sequence of SEQ ID NO:6 or an effective fragment thereof.
In certain embodiments the expression cassette comprises a RAG1 enhancer element 7 (SEQ ID NO:7) or an effective fragment thereof. In certain embodiments the sequence of the RAG1 enhancer element 7 consists of the sequence of SEQ ID NO:7 or an effective fragment thereof.
In certain embodiments the expression cassette comprises a RAG1 enhancer element 8 (SEQ ID NO: 8) or an effective fragment thereof. In certain embodiments the sequence of the RAG1 enhancer element 8 consists of the sequence of SEQ ID NO:8 or an effective fragment thereof.
In certain embodiments the expression cassette comprises a RAG1 enhancer element 9.1 (SEQ ID NO:9) or an effective fragment thereof. In certain embodiments the sequence of the RAG1 enhancer element 9.1 consists of the sequence of SEQ ID NO:9 or an effective fragment thereof.
In certain embodiments the expression cassette comprises a RAG1 enhancer element 9.2 (SEQ ID NO:10) or an effective fragment thereof. In certain embodiments the sequence of the RAG1 enhancer element 9.2 consists of the sequence of SEQ ID NO:10 or an effective fragment thereof.
In certain embodiments the expression cassette comprises a RAG1 enhancer element 10 (SEQ ID NO:11) or an effective fragment thereof. In certain embodiments the sequence of the RAG1 enhancer element 10 consists of the sequence of SEQ ID NO:11 or an effective fragment thereof.
In certain embodiments the expression cassette comprises a RAG1 enhancer element 11 (SEQ ID NO:12) or an effective fragment thereof. In certain embodiments the sequence of the RAG1 enhancer element 11 consists of the sequence of SEQ ID NO:12 or an effective fragment thereof.
In certain embodiments the expression cassette comprises a RAG1 enhancer element 12 (SEQ ID NO:13) or an effective fragment thereof. In certain embodiments the sequence of the RAG1 enhancer element 12 consists of the sequence of SEQ ID NO:13 or an effective fragment thereof.
In certain embodiments the expression cassette comprises a RAG1 enhancer element 13 (SEQ ID NO:14) or an effective fragment thereof. In certain embodiments the sequence of the RAG1 enhancer element 13 consists of the sequence of SEQ ID NO:14 or an effective fragment thereof.
In certain embodiments the expression cassette comprises a RAG1 enhancer element 14 (SEQ ID NO:15) or an effective fragment thereof. In certain embodiments the sequence of the RAG1 enhancer element 14 consists of the sequence of SEQ ID NO:15 or an effective fragment thereof.
In certain embodiments the expression cassette comprises a RAG1 enhancer element 16 (SEQ ID NO:16) or an effective fragment thereof. In certain embodiments the sequence of the RAG1 enhancer element 16 consists of the sequence of SEQ ID NO:16 or an effective fragment thereof.
In certain embodiments the expression cassette comprises a RAG1 enhancer element 17 (SEQ ID NO:17) or an effective fragment thereof. In certain embodiments the sequence of the RAG1 enhancer element 17 consists of the sequence of SEQ ID NO:17 or an effective fragment thereof.
In certain embodiments the expression cassette comprises a RAG1 enhancer element 18 (SEQ ID NO:18) or an effective fragment thereof. In certain embodiments the sequence of the RAG1 enhancer element 18 consists of the sequence of SEQ ID NO:18 or an effective fragment thereof.
In certain embodiments the nucleic acid that encodes RAG1 Protein is a RAG1 cDNA or a codon-optimized RAG1 gene or cDNA. In certain embodiments the nucleic acid that encodes RAG1 protein is a RAG1 cDNA (SEQ ID NO:19 in Table 1). In certain embodiments the nucleic acid that encodes a RAG1 protein is a codon optimized RAG1. In certain embodiments the sequence of the nucleic acid that encodes RAG1 protein is a codon optimized RAG1 selected from the group consisting of jCAT codon optimized RAG1, GeneArt optimized RAG1, and IDT optimized RAG1.
It will also be recognized that the expression cassettes described herein with respect to lentiviral vectors need not be limited to this use, and can be incorporated in essentially any other construct (e.g., a CRISPR construct) where expression of a RAG1 protein is desired. Thus, in certain embodiments, nucleic acid constructs comprising any of the expression cassette components described herein are contemplated.
ATGGCAGCCTCTTTCCCACCCACCTTGGGACTCAGTTCT
GCCCCAGATGAAATTCAGCACCCACATATTAAATTTTCA
GAATGGAAATTTAAGCTGTTCCGGGTGAGATCCTTTGAA
AAGACACCTGAAGAAGCTCAAAAGGAAAAGAAGGATTC
CTTTGAGGGGAAACCCTCTCTGGAGCAATCTCCAGCAGT
CCTGGACAAGGCTGATGGTCAGAAGCCAGTCCCAACTC
AGCCATTGTTAAAAGCCCACCCTAAGTTTTCAAAGAAAT
TTCACGACAACGAGAAAGCAAGAGGCAAAGCGATCCAT
CAAGCCAACCTTCGACATCTCTGCCGCATCTGTGGGAAT
TCTTTTAGAGCTGATGAGCACAACAGGAGATATCCAGTC
CATGGTCCTGTGGATGGTAAAACCCTAGGCCTTTTACGA
AAGAAGGAAAAGAGAGCTACTTCCTGGCCGGACCTCAT
TGCCAAGGTTTTCCGGATCGATGTGAAGGCAGATGTTGA
CTCGATCCACCCCACTGAGTTCTGCCATAACTGCTGGAG
CATCATGCACAGGAAGTTTAGCAGTGCCCCATGTGAGGT
TTACTTCCCGAGGAACGTGACCATGGAGTGGCACCCCC
ACACACCATCCTGTGACATCTGCAACACTGCCCGTCGGG
GACTCAAGAGGAAGAGTCTTCAGCCAAACTTGCAGCTCA
GCAAAAAACTCAAAACTGTGCTTGACCAAGCAAGACAAG
CCCGTCAGCACAAGAGAAGAGCTCAGGCAAGGATCAGC
AGCAAGGATGTCATGAAGAAGATCGCCAACTGCAGTAA
GATACATCTTAGTACCAAGCTCCTTGCAGTGGACTTCCC
AGAGCACTTTGTGAAATCCATCTCCTGCCAGATCTGTGA
ACACATTCTGGCTGACCCTGTGGAGACCAACTGTAAGCA
TGTCTTTTGCCGGGTCTGCATTCTCAGATGCCTCAAAGT
CATGGGCAGCTATTGTCCCTCTTGCCGATATCCATGCTT
CCCTACTGACCTGGAGAGTCCAGTGAAGTCCTTTCTGAG
CGTCTTGAATTCCCTGATGGTGAAATGTCCAGCAAAAGA
GTGCAATGAGGAGGTCAGTTTGGAAAAATATAATCACCA
CATCTCAAGTCACAAGGAATCAAAAGAGATTTTTGTGCA
CATTAATAAAGGGGGCCGGCCCCGCCAACATCTTCTGTC
GCTGACTCGGAGAGCTCAGAAGCACCGGCTGAGGGAGC
TCAAGCTGCAAGTCAAAGCCTTTGCTGACAAAGAAGAAG
GTGGAGATGTGAAGTCCGTGTGCATGACCTTGTTCCTGC
TGGCTCTGAGGGCGAGGAATGAGCACAGGCAAGCTGAT
GAGCTGGAGGCCATCATGCAGGGAAAGGGCTCTGGCCT
GCAGCCAGCTGTTTGCTTGGCCATCCGTGTCAACACCTT
CCTCAGCTGCAGTCAGTACCACAAGATGTACAGGACTGT
GAAAGCCatcacagggagacagatttttcagcctttgcatGCCCTTCGGAAT
GCTGAGAAGGTACTTCTGCCAGGCTACCACCACTTTGAG
TGGCAGCCACCTCTGAAGAATGTGTCTTCCAGCACTGAT
GTTGGCATTATTGATGGGCTGTCTGGACTATCATCCTCT
GTGGATGATTACCCAGTGGACACCATTGCAAAGAGGTTC
CGCTATGATTCAGCTTTGGTGTCTGCTTTGATGGACATG
GAAGAAGACATCTTGGAAGGCATGAGATCCCAAGACCT
TGATGATTACCTGAATGGCCCCTTCACTGTGGTGGTGAA
GGAGTCTTGTGATGGAATGGGAGACGTGAGTGAGAAGC
ATGGGAGTGGGCCTGTAGTTCCAGAAAAGGCAGTCCGT
TTTTCATTCACAATCATGAAAATTACTATTGCCCACAGCT
CTCAGAATGTGAAAGTATTTGAAGAAGCCAAACCTAACT
CTGAACTGTGTTGCAAGCCATTGTGCCTTATGCTGGCAG
ATGAGTCTGACCACGAGACGCTGACTGCCATCCTGAGTC
CTCTCATTGCTGAGAGGGAGGCCATGAAGAGCAGTGAA
TTAATGCTTGAGCTGGGAGGCATTCTCCGGACTTTCAAG
TTCATCTTCAGGGGCACCGGCTATGATGAAAAACTTGTG
CGGGAAGTGGAAGGCCTCGAGGCTTCTGGCTCAGTCTA
CATTTGTACTCTTTGTGATGCCACCCGTCTGGAAGCCTC
TCAAAATCTTGTCTTCCACTCTATAACCAGAAGCCATGC
TGAGAACCTGGAACGTTATGAGGTCTGGCGTTCCAACCC
TTACCATGAGTCTGTGGAAGAACTGCGGGATCGGGTGA
AAGGGGTCTCAGCTAAACCTTTCATTGAGACAGTCCCTT
CCATAGATGCACTCCACTGTGACATTGGCAATGCAGCTG
AGTTCTACAAGATCTTCCAGCTAGAGATAGGGGAAGTGT
ATAAGAATCCCAATGCTTCCAAAGAGGAAAGGAAAAGG
TGGCAGGCCACACTGGACAAGCATCTCCGGAAGAAGAT
GAACCTCAAACCAATCATGAGGATGAATGGCAACTTTGC
CAGGAAGCTCATGACCAAAGAGACTGTGGATGCAGTTT
GTGAGTTAATTCCTTCCGAGGAGAGGCACGAGGCTCTG
AGGGAGCTGATGGATCTTTACCTGAAGATGAAACCAGTA
TGGCGATCATCATGCCCTGCTAAAGAGTGCCCAGAATCC
CTCTGCCAGTACAGTTTCAATTCACAGCGTTTTGCTGAG
CTCCTTTCTACGAAGTTCAAGTATAGGTATGAGGGAAAA
ATCACCAATTATTTTCACAAAACCCTGGCCCATGTTCCT
GAAATTATTGAGAGGGATGGCTCCATTGGGGCATGGGC
AAGTGAGGGAAATGAGTCTGGTAACAAACTGTTTAGGC
GCTTCCGGAAAATGAATGCCAGGCAGTCCAAATGCTATG
AGATGGAAGATGTCCTGAAACACCACTGGTTGTACACCT
CCAAATACCTCCAGAAGTTTATGAATGCTCATAATGCAT
TAAAAACCTCTGGGTTTACCATGAACCCTCAGGCAAGCT
TAGGGGACCCATTAGGCATAGAGGACTCTCTGGAAAGC
CAAGATTCAATGGAATTTTAA
ATGGCCGCCAGCTTCCCCCCCACCCTGGGCCTGAGCAG
CGCCCCCGACGAGATCCAGCACCCCCACATCAAGTTCA
GCGAGTGGAAGTTCAAGCTGTTCCGCGTGCGCAGCTTC
GAGAAGACCCCCGAGGAGGCCCAGAAGGAGAAGAAGGA
CAGCTTCGAGGGCAAGCCCAGCCTGGAGCAGAGCCCCG
CCGTGCTGGACAAGGCCGACGGCCAGAAGCCCGTGCCC
ACCCAGCCCCTGCTGAAGGCCCACCCCAAGTTCAGCAA
GAAGTTCCACGACAACGAGAAGGCCCGCGGCAAGGCCA
TCCACCAGGCCAACCTGCGCCACCTGTGCCGCATCTGC
GGCAACAGCTTCCGCGCCGACGAGCACAACCGCCGCTA
CCCCGTGCACGGCCCCGTGGACGGCAAGACCCTGGGCC
TGCTGCGCAAGAAGGAGAAGCGCGCCACCAGCTGGCCC
GACCTGATCGCCAAGGTGTTCCGCATCGACGTGAAGGC
CGACGTGGACAGCATCCACCCCACCGAGTTCTGCCACA
ACTGCTGGAGCATCATGCACCGCAAGTTCAGCAGCGCC
CCCTGCGAGGTGTACTTCCCCCGCAACGTGACCATGGA
GTGGCACCCCCACACCCCCAGCTGCGACATCTGCAACA
CCGCCCGCCGCGGCCTGAAGCGCAAGAGCCTGCAGCCC
AACCTGCAGCTGAGCAAGAAGCTGAAGACCGTGCTGGA
CCAGGCCCGCCAGGCCCGCCAGCACAAGCGCCGCGCCC
AGGCCCGCATCAGCAGCAAGGACGTGATGAAGAAGATC
GCCAACTGCAGCAAGATCCACCTGAGCACCAAGCTGCT
GGCCGTGGACTTCCCCGAGCACTTCGTGAAGAGCATCA
GCTGCCAGATCTGCGAGCACATCCTGGCCGACCCCGTG
GAGACCAACTGCAAGCACGTGTTCTGCCGCGTGTGCAT
CCTGCGCTGCCTGAAGGTGATGGGCAGCTACTGCCCCA
GCTGCCGCTACCCCTGCTTCCCCACCGACCTGGAGAGC
CCCGTGAAGAGCTTCCTGAGCGTGCTGAACAGCCTGAT
GGTGAAGTGCCCCGCCAAGGAGTGCAACGAGGAGGTGA
GCCTGGAGAAGTACAACCACCACATCAGCAGCCACAAG
GAGAGCAAGGAGATCTTCGTGCACATCAACAAGGGCGG
CCGCCCCCGCCAGCACCTGCTGAGCCTGACCCGCCGCG
CCCAGAAGCACCGCCTGCGCGAGCTGAAGCTGCAGGTG
AAGGCCTTCGCCGACAAGGAGGAGGGCGGCGACGTGAA
GAGCGTGTGCATGACCCTGTTCCTGCTGGCCCTGCGCG
CCCGCAACGAGCACCGCCAGGCCGACGAGCTGGAGGCC
ATCATGCAGGGCAAGGGCAGCGGCCTGCAGCCCGCCGT
GTGCCTGGCCATCCGCGTGAACACCTTCCTGAGCTGCA
GCCAGTACCACAAGATGTACCGCACCGTGAAGGCCATC
ACCGGCCGCCAGATCTTCCAGCCCCTGCACGCCCTGCG
CAACGCCGAGAAGGTGCTGCTGCCCGGCTACCACCACT
TCGAGTGGCAGCCCCCCCTGAAGAACGTGAGCAGCAGC
ACCGACGTGGGCATCATCGACGGCCTGAGCGGCCTGAG
CAGCAGCGTGGACGACTACCCCGTGGACACCATCGCCA
AGCGCTTCCGCTACGACAGCGCCCTGGTGAGCGCCCTG
ATGGACATGGAGGAGGACATCCTGGAGGGCATGCGCAG
CCAGGACCTGGACGACTACCTGAACGGCCCCTTCACCG
TGGTGGTGAAGGAGAGCTGCGACGGCATGGGCGACGTG
AGCGAGAAGCACGGCAGCGGCCCCGTGGTGCCCGAGAA
GGCCGTGCGCTTCAGCTTCACCATCATGAAGATCACCAT
CGCCCACAGCAGCCAGAACGTGAAGGTGTTCGAGGAGG
CCAAGCCCAACAGCGAGCTGTGCTGCAAGCCCCTGTGC
CTGATGCTGGCCGACGAGAGCGACCACGAGACCCTGAC
CGCCATCCTGAGCCCCCTGATCGCCGAGCGCGAGGCCA
TGAAGAGCAGCGAGCTGATGCTGGAGCTGGGCGGCATC
CTGCGCACCTTCAAGTTCATCTTCCGCGGCACCGGCTAC
GACGAGAAGCTGGTGCGCGAGGTGGAGGGCCTGGAGG
CCAGCGGCAGCGTGTACATCTGCACCCTGTGCGACGCC
ACCCGCCTGGAGGCCAGCCAGAACCTGGTGTTCCACAG
CATCACCCGCAGCCACGCCGAGAACCTGGAGCGCTACG
AGGTGTGGCGCAGCAACCCCTACCACGAGAGCGTGGAG
GAGCTGCGCGACCGCGTGAAGGGCGTGAGCGCCAAGCC
CTTCATCGAGACCGTGCCCAGCATCGACGCCCTGCACTG
CGACATCGGCAACGCCGCCGAGTTCTACAAGATCTTCCA
GCTGGAGATCGGCGAGGTGTACAAGAACCCCAACGCCA
GCAAGGAGGAGCGCAAGCGCTGGCAGGCCACCCTGGAC
AAGCACCTGCGCAAGAAGATGAACCTGAAGCCCATCAT
GCGCATGAACGGCAACTTCGCCCGCAAGCTGATGACCA
AGGAGACCGTGGACGCCGTGTGCGAGCTGATCCCCAGC
GAGGAGCGCCACGAGGCCCTGCGCGAGCTGATGGACCT
GTACCTGAAGATGAAGCCCGTGTGGCGCAGCAGCTGCC
CCGCCAAGGAGTGCCCCGAGAGCCTGTGCCAGTACAGC
TTCAACAGCCAGCGCTTCGCCGAGCTGCTGAGCACCAA
GTTCAAGTACCGCTACGAGGGCAAGATCACCAACTACTT
CCACAAGACCCTGGCCCACGTGCCCGAGATCATCGAGC
GCGACGGCAGCATCGGCGCCTGGGCCAGCGAGGGCAAC
GAGAGCGGCAACAAGCTGTTCCGCCGCTTCCGCAAGAT
GAACGCCCGCCAGAGCAAGTGCTACGAGATGGAGGACG
TGCTGAAGCACCACTGGCTGTACACCAGCAAGTACCTGC
AGAAGTTCATGAACGCCCACAACGCCCTGAAGACCAGC
GGCTTCACCATGAACCCCCAGGCCAGCCTGGGCGACCC
CCTGGGCATCGAGGACAGCCTGGAGAGCCAGGACAGCA
TGGAGTTCTAA
AGAAAAGAGGGATTGGGGCCCTCTCCCAACAGACATGA
GTATTTAGGAGTCCCCAGTTCCGGTTTCCACATGACATG
ATATGATGGTCTGTTGTTTTCCTC
AGGGACCTAGAGGCA
GATGTAGACAAATAGCAGGTGAGGAGGAAGGGTGGTGC
TGAGCTGTAAACAACAGCTGCGGGCTGTAAACAATGGA
GCTATATTAAGAAAGTCCTGCATCTGCAGCATTCGGTTC
AATCCTGCCACCCACTGGGCGTACTCCTGAATTGACTTT
CCATTGTCAGCTGATCAGTGACAGATGTGAAATGACTCG
TTACACACACAGGTCACATTGGGAGGATTCTTAGACGTC
ATA
TTCTTTGGTGCTTCACAAAGTCTTACTGTGGCACAT
GAAATGATTTCAGATGGTGCACAAGATGATTTCACATG
TAAATTTCCATGAGGGTGCAAAGAGAGGCTTTTCCCAAT
GAGAGAAAAATATAGAAAGCAGCTGTCCCTCTTACCAAT
TTCAGAGCAGGAAAGGAATTTCAGTAGAGCATAAAAACA
GCTTTCTCTCATAAAAGAAAACACAACAAGAAAAAT
AAT
CCTTGCTGTGTAGCCTTTTGCAGTTATTTTCTGTCATGT
CTGAAGAATGAATTTAAAATCTGCTGTAGAAAAATACCA
GTTAGATAGAGACCAGAGGGCTTAACATTGTTTTGATAC
CCTTGCATCTGGCAGATTGCCTGTCAGAGGAAGTTGGAA
ACGAACTGACCAGCTTTATGCTTCCAGGTGGCACTGAAG
CCACATTTTCAGTGCCGTTGTTATCAGTCATTTAATTCCC
TACTGAATATTGAGTGGTGTTTTTAGTTCACAGGCCATT
TGCAGTGCCTT
TCTGTTTCCTTTTTAACGTTAGCCACATT
AAGAAAAAAA
TCTAGGCAAGTGTCTCTCTCTCTCTCCCCCTCTTTTTCTT
TTAGAAAAATACTTCGTGATAAAAACACAAAAGTATGTG
AATGGTAATTGAAAATGCATTGCTTCCTTTTAGAAACCC
ACTAGGATTTGCATAAACCACTTGGCTGTCTGATAAGTC
ATTATCTGTTCTGTCAGTCCCTGGGGACTTTTAATATTA
GGTTTATATTTTTATAGAAAAGGCAAGTTCTAAATTTGA
AGATGGGTATTGTTAAACTCTTCAATAATGACAGTTTGT
GAAACTGCATGTTCCAAAAGTCCTTTAAAAAGTCAATAA
GGC
GTGGGCTTTGCCTACAGCACCTGCTTCTGCTTTCCGCAT
TTACTGATCCACTAAGTGTAAGTGTGACATATAGAGGTC
TGTGTTGGTTGTTGTTTTGTGTTCAAACAGCTGAACATC
TGGCCTCTCATGTGCAGGTGCACAGAACTCAGGAGAAG
GGGTTTTAATTTAAGATAAAAAAAATAAGGATATGTGCT
AGTTGCAGATGAGGGTTTGGGTGCTGGACTTAAGATGC
TTCTGTGTTCAAAAACAAGGAGTCCTCAATTTGCAAGGT
TCATAAAGAGTTTCACACAGATGGCACCCAAAGTGCTTA
TTTCTCATTGTGCTGAAATTAAACTTGAATATGCTATATA
TCAAATAAATAGAAGTAAATAGCCTTTCTTTATACTTTCT
AGAAGTTGAGCTCAATGTTCTTTCGGAGAGAGCAGGCTC
ATCTCCATTATGTAGCGCCAATGACAAATACCTGTATAT
GTCTGTATTTCCTTGGTCTGTCTTGCTCACCTGTTAAGA
CACCTTGCTGCACAACAGATGGCACATGCTTATCTTGTG
GCAGTGAAGAGTTGACATCAAAGGCCAAGAAAACCTTG
AAACTCATCCTTTTCAGCCCACAAGAGCAGCTTCTCTCT
ACCACAGACGATGAAAGCTGGAGATAACAGGGGCATTC
CCACCGCTGCACTCTCTCTTGTGGCCAGCTGACAGTTAA
CACAGGTGGGCGTGAGGTGCTGCCTACATTTTGAAGGT
TGTCTATTGATGGGGAACACCACCTCTCTGAGCTCAGGC
CTCTGCTTTGGCCCGTGGAGCTGCTGCTTCTGAGAAGTA
ACCAGGTGGTGAATACCTGCCTGCTTTTCAGAAAATCCG
AGGTGGCTGTCAA
CTTCTGTCATTTTATTGTTTTCTGGTTGTTTTGCATTTCT
CTTCCTCGTTTCTTTATCTCTTACTGTTTATCTTTGTGTG
GTTTGCTTGGTGACAAATTTTAGTTACTTTCTCTTTCGCA
TCTGTGTATCTGCTCTACTAGTGGGTTCTATACTTTTGTT
TGTTCTCCTGATGGTAGTTATTGCCCTTTGGCTTTCAGA
TATAGGGCTCC
TGGCTTGATTTCTGCCACTTGACTTTTTTTGAATTCCTTT
ATCACTCTTTTACTCTTTTAGTGATCATTGACGTAGGTTC
CTGTACTTGCTGTTGTCAGAAGAAGCAAGTTTCAGTTTT
GGAATGTACCCTGCACGCTTAGTTCTTCTTTGACTATTG
TAAGCCATTCTTCTTTGTCTCCTTTCTGGCTCCCTGCCCC
CACCTTTCTGCTCCTTTTTTCTTCTATTCTCTAAAGACCT
TTTCTTTTCATTTACTGCATTAATGCAGGAAGCAAGGCA
CAGTGGTTAGGAGGATAGGTTCTAGAGTCAGAAGGCAG
TGTTCAGATCCCCACTCTGCTACTTAACCATCTGTAT
Cttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagccca
tatatggAGTTCCGCGTTACATAACTTACGGTAAATGGCCCG
CCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTC
AATAATGACGTATGTTCCCATAGTAACGCCAATAGGGAC
TTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAAC
TGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAG
TACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGC
CTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCC
TACTTGGCAGTACATCTACGTATTAGTCATCGCTATTAC
CATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTG
GATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACC
CCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATC
AACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCAT
TGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTC
TATATAAGCAGAGCTCGTTTAGTGAACCGGGGTCTCTCT
GGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAA
CTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCT
TGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGAC
TCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTG
TGGAAAATCTCTAGCagtggcgcccgaacagggacttgaaagcgaaaggga
aaccagaggagctctctcgacgcaggactcggcttgctgaagcgcgcacggcaagaggcga
ggggcggcgactggtgagtacgccaaaaattttgactagcggaggctagaaggagagagat
gggtgcgagagcgtcagtattaagcgggggagaattagatcgcgatgggaaaaaattcggt
taaggccagggggaaagaaaaaatataaattaaaacatatagtatgggcaagcagggagc
tagaacgattcgcagttaatcctggcctgttagaaacatcagaaggctgtagacaaatactgg
gacagctacaaccatcccttcagacaggatcagaagaacttagatcattatataatacagta
gcaaccctctattgtgtgcatcaaaggatagagataaaagacaccaaggaagctttagacaa
gatagaggaagagcaaaacaaaagtaagaccaccgcacagcaagcggccgctgatcttca
gacctggaggaggagatatgagggacaattggagaagtgaattatataaatataaagtagt
aaaaattgaaccattaggagtagcacccaccaaggcaaagagaagagtggtgcagagaga
aaaaagagcagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcacta
tgggcgcagcgtcaatgacgctgacggtacaggccagacaattattgtctggtatagtgcag
cagcagaacaatttgctgagggctattgaggcgcaacagcatctgttgcaactcacagtctgg
ggcatcaagcagctccaggcaagaatcctggctgtggaaagatacctaaaggatcaacagc
tcctggggatttggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagt
tggagtaataaatctctggaacagatttggaatcacacgacctggatggagtgggacagaga
aattaacaattacacaagcttaatacactccttaattgaagaatcgcaaaaccagcaagaaa
agaatgaacaagaattattggaattagataaatgggcaagtttgtggaattggtttaacataa
caaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaat
agtttttgctgtactttctatagtgaatagagttaggcagggatattcaccattatcgtttcagac
ccacctcccaaccccgaggggacccgacaggcccgaaggaatagaagaagaaggtggag
agagagacagagacagatccattcgattagtgaacggatctcgacggtatcggttaactttta
aaagaaaaggggggattggggggtacagtgcaggggaaagaatagtagacataatagca
acagacatacaaactaaagaattacaaaaacaaattacaaaaattcaaaattttatcgatca
cgagactagccAGAAAAGAGGGATTGGGGCCCTCTCCCAACA
GACATGAGTATTTAGGAGTCCCCAGTTCCGGTTTCCACA
TGACATGATATGATGGTCTGTTGTTTTCCTCAGGGACCT
AGAGGCAGATGTAGACAAATAGCAGGTGAGGAGGAAGG
GTGGTGCTGAGCTGTAAACAACAGCTGCGGGCTGTAAA
CAATGGAGCTATATTAAGAAAGTCCTGCATCTGCAGCAT
TCGGTTCAATCCTGCCACCCACTGGGCGTACTCCTGAAT
TGACTTTCCATTGTCAGCTGATCAGTGACAGATGTGAAA
TGACTCGTTACACACACAGGTCACATTGGGAGGATTCTT
AGACGTCATATTCTTTGGTGCTTCACAAAGTCTTACTGT
GGCACATGAAATGATTTCAGATGGTGCACAAGATGATTT
CACATGTAAATTTCCATGAGGGTGCAAAGAGAGGCTTTT
CCCAATCTGAAGAATGAATTTAAAATCTGCTGTAGAAAA
ATACCAGAGAGAAAAATATAGAAAGCAGCTGTCCCTCTT
ACCAATTTCAGAGCAGGAAAGGAATTTCAGTAGAGCATA
AAAACAGCTTTCTCTCATAAAAGAAAACACAACAAGAAA
AATAATCCTTGCTGTGTAGCCTTTTGCAGTTATTTTCTGT
CATGTGTTAGATAGAGACCAGAGGGCTTAACATTGTTTT
GATACCCTTGCATCTGGCAGATTGCCTGTCAGAGGAAGT
TGGAAACGAACTGACCAGCTTTATGCTTCCAGGTGGCAC
TGAAGCCACATTTTCAGTGCCGTTGTTATCAGTCATTTA
ATTCCCTACTGAATATTGAGTGGTGTTTTTAGTTCACAG
GCCATTTGCAGTGCCTTTCTGTTTCCTTTTTAACGTTAGC
CACATTAAGAAAAAAAGTGGGCTTTGCCTACAGCACCTG
CTTCTGCTTTCCGCATTTACTGATCCACTAAGTGTAAGT
GTGACATATAGAGGTCTGTGTTGGTTGTTGTTTTGTGTT
CAAACAGCTGAACATCTGGCCTCTCATGTGCAGGTGCAC
AGAACTCAGGAGAAGGGGTTTTAATTTAAGATAAAAAAA
ATAAGGATATGTGCTAGTTGCAGATGAGGGTTTGGGTG
CTGGACTTAAGATGCTTCTGTGTTCAAAAACAAGGAGTC
CTCAATTTGCAAGGTTCATAAAGAGTTTCACACAGATGG
CACCCAAAGTGCTTATTTCTCATTGTGCTGAAATTAAAC
TTGAATATGCTATATATCAAATAAATAGAAGTAAATAGC
CTTTCTTTATACTTTCTAGAAGTTGAGCTCAATGTTCTTT
CGGAGAGAGCAGGCTCATCTCCATTATGTAGCGCCAAT
GACAAATACCTGTATATGTCTGTATTTCCTTGGTCTGTC
TTGCTCACCTGTTAAGACACCTTGCTGCACAACAGATGG
CACATGCTTATCTTGTGGCAGTGAAGAGTTGACATCAAA
GGCCAAGAAAACCTTGAAACTCATCCTTTTCAGCCCACA
AGAGCAGCTTCTCTCTACCACAGACGATGAAAGCTGGA
GATAACAGGGGCATTCCCACCGCTGCACTCTCTCTTGTG
GCCAGCTGACAGTTAACACAGGTGGGCGTGAGGTGCTG
CCTACATTTTGAAGGTTGTCTATTGATGGGGAACACCAC
CTCTCTGAGCTCAGGCCTCTGCTTTGGCCCGTGGAGCTG
CTGCTTCTGAGAAGTAACCAGGTGGTGAATACCTGCCTG
CTTTTCAGAAAATCCGAGGTGGCTGTCAATTGACAATTA
TTTATTCATTGTAAAATAATCACAGGAACAGCAGCAGTG
TAGGTTTCCCTACCTAGAGGGTGGTATGCAGTGATTCTC
AGGCGCTGGTTGGAAGGCACAGCTGAGGGACACAAACT
GCCAGGAAGTAATGTGGTAACTAGCCATGAGCTTGTGG
TACTAATGGTGGCACGGGAAACAAGGTCTCTGCTTGACT
TTTATTTTCACTCCATAACAAACTCACCAGATCAGGAGC
CTAAGGGTGGGTGGGGAGGGAGAAGAGAGAAAAAAGCA
AAGGGAAAGTTCAAAGTGACACTCGCTGGGGCTGAAAA
CCACACTCCCCTGCAGATGAGGTCCTTGGCTctcgagCTAA
AGAGCCAGGTGGCAGCTGGAGCTGGGGTCTCCTGGCCC
ATGATTGGCTGCCATCATTTGTGGTTAGCCCTCCATGGT
GGGGGAGGCTGGGAAGGACAGTGGAAGCTGATAAACAG
CTCAGCAGCATGTTCTGAGAAACAAGAGGGCAAGGAGA
GAGCAGAGAACACACTTTGCCTTCTCTTTGGTATTGAGT
AATATCAACCAAATTGCAGACATCTCAACACTTTGGCCA
GGCAGCCTGCTGAGCAAGGTACCTCAGCCAGCATGgtgag
caagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgta
aacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctga
ccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccacct
tcggctacggcctgatgtgcttcgcccgctaccccgaccacatgaagcagcacgacttcttca
agtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaac
tacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctga
agggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaa
cagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaag
atccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacaccc
ccatcggcgacggccccgtgctgctgcccgacaaccactacctgagctaccagtccgccctg
agcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccg
ggatcactctcggcatggacgagctgtacaagtgactgcaggaattcgagcatcttaccgcc
atttattcccatatttgttctgtttttcttgatttgggtatacatttaaatgttaataaaacaaaat
ggtggggcaatcatttacatttttagggatatgtaattactagttcaggtgtattgccacaagaca
aacatgttaagaaactttcccgttatttacgctctgttcctgttaatcaacctctggattacaaaa
tttgtgaaagattgactgatattcttaactatgttgctccttttacgctgtgtggatatgctgcttt
aatgcctctgtatcatgctattgcttcccgtacggctttcgttttctcctccttgtataaatcctgg
ttgctgtctctttatgaggagttgtggcccgttgtccgtcaacgtggcgtggtgtgctctgtgtttg
ctgacgcaacccccactggctggggcattgccaccacctgtcaactcctttctgggactttcgc
tttccccctcccgatcgccacggcagaactcatcgccgcctgccttgcccgctgctggacagg
ggctaggttgctgggcactgataattccgtggtgttgtcggggaagggcctgctgccggctct
gcggcctcttccgcgtcttcgccttcgccctcagacgagtcggatctccctttgggccgcctccc
cgcctggaattcgagctcggtacctttaagaccaatgacttacaaggcagctgtagatcttag
ccactttttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagat
ctgctttttgcttgtactgggtctctctggttagaccagatctgagcctgggagctctctggctaa
ctagggaacctactgcttaagcctcaataaagcttgccttgagtgcttCAAGTAGTGT
GTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCC
TCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCagtagta
gttcatgtcatcttattattcagtatttataacttgcaaagaaatgaatatcagagagtgagag
gaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaat
aaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatcatgtct
ggctctagctatcccgcccctaactccgcccatcccgcccctaactccgcccagttccgcccat
tctccgccccatggctgactaattttttttatttatgcagaggccgaggccgcctcggcctctga
gctattccagaagtagtgaggaggcttttttggaggcctagggacgtacccaattcgccctat
agtgagtcgtattacgcgcgctcactggccgtcgttttacaacgtcgtgactgggaaaaccct
ggcgttacccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaa
gaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatgggacgcgc
cctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacactt
gccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttc
cccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcga
ccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggttttt
cgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacact
caaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaa
aatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgcttacaatttagg
tggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatat
gtatccgctcatgagacaataaccctgataaatgcttcaataatagcacctagatcaagagac
aggatgaggatcgtttcgcatgattgaacaagatggattgcacgcaggttctccggccgcttg
ggtggagaggctattcggctatgactgggcacaacagacaatcggctgctctgatgccgccg
tgttccggctgtcagcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccct
gaatgaactgcaagacgaggcagcgcggctatcgtggctggccacgacgggcgttccttgc
gcagctgtgctcgacgttgtcactgaagcgggaagggactggctgctattgggcgaagtgcc
ggggcaggatctcctgtcatctcaccttgctcctgccgagaaagtatccatcatggctgatgca
atgcggcggctgcatacgcttgatccggctacctgcccattcgaccaccaagcgaaacatcg
catcgagcgagcacgtactcggatggaagccggtcttgtcgatcaggatgatctggacgaag
agcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgagcatgcccgacgg
cgaggatctcgtcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaaatggccg
cttttctggattcatcgactgtggccggctgggtgtggcggaccgctatcaggacatagcgttg
gctacccgtgatattgctgaagagcttggcggcgaatgggctgaccgcttcctcgtgctttacg
gtatcgccgctcccgattcgcagcgcatcgccttctatcgccttcttgacgagttcttctgaatta
ttaacgcttacaatttcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgcat
caggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattca
aatatgtatccgctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagacc
ccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaa
acaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttc
cgaaggtaactggcttcagcagagcgcagataccaaatactgttcttctagtgtagccgtagt
taggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttacc
agtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttacc
ggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcga
acgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccg
aagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacg
agggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgac
ttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaac
gcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatccc
ctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacg
accgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcct
ctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcg
ggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttacac
tttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaaca
gctatgaccatgattacgccaagcgcgcaattaaccctcactaaagggaacaaaagctgga
gctgcaagcttggccattgcatacgttgtatccatatcataatatgtacatttatattggctcatg
tccaacattaccgccat
Cttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagccca
tatatggAGTTCCGCGTTACATAACTTACGGTAAATGGCCCG
CCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTC
AATAATGACGTATGTTCCCATAGTAACGCCAATAGGGAC
TTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAAC
TGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAG
TACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGC
CTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCC
TACTTGGCAGTACATCTACGTATTAGTCATCGCTATTAC
CATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTG
GATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACC
CCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATC
AACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCAT
TGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTC
TATATAAGCAGAGCTCGTTTAGTGAACCGGGGTCTCTCT
GGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAA
CTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCT
TGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGAC
TCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTG
TGGAAAATCTCTAGCagtggcgcccgaacagggacttgaaagcgaaaggga
aaccagaggagctctctcgacgcaggactcggcttgctgaagcgcgcacggcaagaggcga
ggggcggcgactggtgagtacgccaaaaattttgactagcggaggctagaaggagagagat
gggtgcgagagcgtcagtattaagcgggggagaattagatcgcgatgggaaaaaattcggt
taaggccagggggaaagaaaaaatataaattaaaacatatagtatgggcaagcagggagc
tagaacgattcgcagttaatcctggcctgttagaaacatcagaaggctgtagacaaatactgg
gacagctacaaccatcccttcagacaggatcagaagaacttagatcattatataatacagta
gcaaccctctattgtgtgcatcaaaggatagagataaaagacaccaaggaagctttagacaa
gatagaggaagagcaaaacaaaagtaagaccaccgcacagcaagcggccgctgatcttca
gacctggaggaggagatatgagggacaattggagaagtgaattatataaatataaagtagt
aaaaattgaaccattaggagtagcacccaccaaggcaaagagaagagtggtgcagagaga
aaaaagagcagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcacta
tgggcgcagcgtcaatgacgctgacggtacaggccagacaattattgtctggtatagtgcag
cagcagaacaatttgctgagggctattgaggcgcaacagcatctgttgcaactcacagtctgg
ggcatcaagcagctccaggcaagaatcctggctgtggaaagatacctaaaggatcaacagc
tcctggggatttggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagt
tggagtaataaatctctggaacagatttggaatcacacgacctggatggagtgggacagaga
aattaacaattacacaagcttaatacactccttaattgaagaatcgcaaaaccagcaagaaa
agaatgaacaagaattattggaattagataaatgggcaagtttgtggaattggtttaacataa
caaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaat
agtttttgctgtactttctatagtgaatagagttaggcagggatattcaccattatcgtttcagac
ccacctcccaaccccgaggggacccgacaggcccgaaggaatagaagaagaaggtggag
agagagacagagacagatccattcgattagtgaacggatctcgacggtatcggttaactttta
aaagaaaaggggggattggggggtacagtgcaggggaaagaatagtagacataatagca
acagacatacaaactaaagaattacaaaaacaaattacaaaaattcaaaattttatcgatca
cgagactagccAGAAAAGAGGGATTGGGGCCCTCTCCCAACA
GACATGAGTATTTAGGAGTCCCCAGTTCCGGTTTCCACA
TGACATGATATGATGGTCTGTTGTTTTCCTCAGGGACCT
AGAGGCAGATGTAGACAAATAGCAGGTGAGGAGGAAGG
GTGGTGCTGAGCTGTAAACAACAGCTGCGGGCTGTAAA
CAATGGAGCTATATTAAGAAAGTCCTGCATCTGCAGCAT
TCGGTTCAATCCTGCCACCCACTGGGCGTACTCCTGAAT
TGACTTTCCATTGTCAGCTGATCAGTGACAGATGTGAAA
TGACTCGTTACACACACAGGTCACATTGGGAGGATTCTT
AGACGTCATATTCTTTGGTGCTTCACAAAGTCTTACTGT
GGCACATGAAATGATTTCAGATGGTGCACAAGATGATTT
CACATGTAAATTTCCATGAGGGTGCAAAGAGAGGCTTTT
CCCAATCTGAAGAATGAATTTAAAATCTGCTGTAGAAAA
ATACCAGAGAGAAAAATATAGAAAGCAGCTGTCCCTCTT
ACCAATTTCAGAGCAGGAAAGGAATTTCAGTAGAGCATA
AAAACAGCTTTCTCTCATAAAAGAAAACACAACAAGAAA
AATAATCCTTGCTGTGTAGCCTTTTGCAGTTATTTTCTGT
CATGTGTTAGATAGAGACCAGAGGGCTTAACATTGTTTT
GATACCCTTGCATCTGGCAGATTGCCTGTCAGAGGAAGT
TGGAAACGAACTGACCAGCTTTATGCTTCCAGGTGGCAC
TGAAGCCACATTTTCAGTGCCGTTGTTATCAGTCATTTA
ATTCCCTACTGAATATTGAGTGGTGTTTTTAGTTCACAG
GCCATTTGCAGTGCCTTTCTGTTTCCTTTTTAACGTTAGC
CACATTAAGAAAAAAAGTGGGCTTTGCCTACAGCACCTG
CTTCTGCTTTCCGCATTTACTGATCCACTAAGTGTAAGT
GTGACATATAGAGGTCTGTGTTGGTTGTTGTTTTGTGTT
CAAACAGCTGAACATCTGGCCTCTCATGTGCAGGTGCAC
AGAACTCAGGAGAAGGGGTTTTAATTTAAGATAAAAAAA
ATAAGGATATGTGCTAGTTGCAGATGAGGGTTTGGGTG
CTGGACTTAAGATGCTTCTGTGTTCAAAAACAAGGAGTC
CTCAATTTGCAAGGTTCATAAAGAGTTTCACACAGATGG
CACCCAAAGTGCTTATTTCTCATTGTGCTGAAATTAAAC
TTGAATATGCTATATATCAAATAAATAGAAGTAAATAGC
CTTTCTTTATACTTTCTAGAAGTTGAGCTCAATGTTCTTT
CGGAGAGAGCAGGCTCATCTCCATTATGTAGCGCCAAT
GACAAATACCTGTATATGTCTGTATTTCCTTGGTCTGTC
TTGCTCACCTGTTAAGACACCTTGCTGCACAACAGATGG
CACATGCTTATCTTGTGGCAGTGAAGAGTTGACATCAAA
GGCCAAGAAAACCTTGAAACTCATCCTTTTCAGCCCACA
AGAGCAGCTTCTCTCTACCACAGACGATGAAAGCTGGA
GATAACAGGGGCATTCCCACCGCTGCACTCTCTCTTGTG
GCCAGCTGACAGTTAACACAGGTGGGCGTGAGGTGCTG
CCTACATTTTGAAGGTTGTCTATTGATGGGGAACACCAC
CTCTCTGAGCTCAGGCCTCTGCTTTGGCCCGTGGAGCTG
CTGCTTCTGAGAAGTAACCAGGTGGTGAATACCTGCCTG
CTTTTCAGAAAATCCGAGGTGGCTGTCAATTGACAATTA
TTTATTCATTGTAAAATAATCACAGGAACAGCAGCAGTG
TAGGTTTCCCTACCTAGAGGGTGGTATGCAGTGATTCTC
AGGCGCTGGTTGGAAGGCACAGCTGAGGGACACAAACT
GCCAGGAAGTAATGTGGTAACTAGCCATGAGCTTGTGG
TACTAATGGTGGCACGGGAAACAAGGTCTCTGCTTGACT
TTTATTTTCACTCCATAACAAACTCACCAGATCAGGAGC
CTAAGGGTGGGTGGGGAGGGAGAAGAGAGAAAAAAGCA
AAGGGAAAGTTCAAAGTGACACTCGCTGGGGCTGAAAA
CCACACTCCCCTGCAGATGAGGTCCTTGGCTcTCTAGGC
AAGTGTCTCTCTCTCTCTCCCCCTCTTTTTCTTTTAGAAA
AATACTTCGTGATAAAAACACAAAAGTATGTGAATGGTA
ATTGAAAATGCATTGCTTCCTTTTAGAAACCCACTAGGA
TTTGCATAAACCACTTGGCTGTCTGATAAGTCATTATCT
GTTCTGTCAGTCCCTGGGGACTTTTAATATTAGGTTTAT
ATTTTTATAGAAAAGGCAAGTTCTAAATTTGAAGATGGG
TATTGTTAAACTCTTCAATAATGACAGTTTGTGAAACTG
CATGTTCCAAAAGTCCTTTAAAAAGTCAATAAGGCtcgagC
TAAAGAGCCAGGTGGCAGCTGGAGCTGGGGTCTCCTGG
CCCATGATTGGCTGCCATCATTTGTGGTTAGCCCTCCAT
GGTGGGGGAGGCTGGGAAGGACAGTGGAAGCTGATAAA
CAGCTCAGCAGCATGTTCTGAGAAACAAGAGGGCAAGG
AGAGAGCAGAGAACACACTTTGCCTTCTCTTTGGTATTG
AGTAATATCAACCAAATTGCAGACATCTCAACACTTTGG
CCAGGCAGCCTGCTGAGCAAGGTACCTCAGCCAGCATGg
tgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcga
cgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaag
ctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgacc
accttcggctacggcctgatgtgcttcgcccgctaccccgaccacatgaagcagcacgacttc
ttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacgg
caactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgag
ctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaact
acaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaactt
caagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaa
cacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagctaccagtccg
ccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgcc
gccgggatcactctcggcatggacgagctgtacaagtgactgcaggaattcgagcatcttac
cgccatttattcccatatttgttctgtttttcttgatttgggtatacatttaaatgttaataaaaca
aaatggtggggcaatcatttacatttttagggatatgtaattactagttcaggtgtattgccacaa
gacaaacatgttaagaaactttcccgttatttacgctctgttcctgttaatcaacctctggattac
aaaatttgtgaaagattgactgatattcttaactatgttgctccttttacgctgtgtggatatgct
gctttaatgcctctgtatcatgctattgcttcccgtacggctttcgttttctcctccttgtataaat
cctggttgctgtctctttatgaggagttgtggcccgttgtccgtcaacgtggcgtggtgtgctctgt
gtttgctgacgcaacccccactggctggggcattgccaccacctgtcaactcctttctgggact
ttcgctttccccctcccgatcgccacggcagaactcatcgccgcctgccttgcccgctgctgga
caggggctaggttgctgggcactgataattccgtggtgttgtcggggaagggcctgctgccgg
ctctgcggcctcttccgcgtcttcgccttcgccctcagacgagtcggatctccctttgggccgcc
tccccgcctggaattcgagctcggtacctttaagaccaatgacttacaaggcagctgtagatct
tagccactttttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaa
gatctgctttttgcttgtactgggtctctctggttagaccagatctgagcctgggagctctctggc
taactagggaacctactgcttaagcctcaataaagcttgccttgagtgcttCAAGTAGT
GTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATC
CCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCagt
agtagttcatgtcatcttattattcagtatttataacttgcaaagaaatgaatatcagagagtga
gaggaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcaca
aataaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatcatg
tctggctctagctatcccgcccctaactccgcccatcccgcccctaactccgcccagttccgcc
cattctccgccccatggctgactaattttttttatttatgcagaggccgaggccgcctcggcctct
gagctattccagaagtagtgaggaggcttttttggaggcctagggacgtacccaattcgccct
atagtgagtcgtattacgcgcgctcactggccgtcgttttacaacgtcgtgactgggaaaacc
ctggcgttacccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcga
agaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatgggacgcg
ccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacactt
gccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttc
cccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcga
ccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggttttt
cgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacact
caaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaa
aatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgcttacaatttagg
tggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatat
gtatccgctcatgagacaataaccctgataaatgcttcaataatagcacctagatcaagagac
aggatgaggatcgtttcgcatgattgaacaagatggattgcacgcaggttctccggccgcttg
ggtggagaggctattcggctatgactgggcacaacagacaatcggctgctctgatgccgccg
tgttccggctgtcagcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccct
gaatgaactgcaagacgaggcagcgcggctatcgtggctggccacgacgggcgttccttgc
gcagctgtgctcgacgttgtcactgaagcgggaagggactggctgctattgggcgaagtgcc
ggggcaggatctcctgtcatctcaccttgctcctgccgagaaagtatccatcatggctgatgca
atgcggcggctgcatacgcttgatccggctacctgcccattcgaccaccaagcgaaacatcg
catcgagcgagcacgtactcggatggaagccggtcttgtcgatcaggatgatctggacgaag
agcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgagcatgcccgacgg
cgaggatctcgtcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaaatggccg
cttttctggattcatcgactgtggccggctgggtgtggcggaccgctatcaggacatagcgttg
gctacccgtgatattgctgaagagcttggcggcgaatgggctgaccgcttcctcgtgctttacg
gtatcgccgctcccgattcgcagcgcatcgccttctatcgccttcttgacgagttcttctgaatta
ttaacgcttacaatttcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgcat
caggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattca
aatatgtatccgctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagacc
ccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaa
acaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttc
cgaaggtaactggcttcagcagagcgcagataccaaatactgttcttctagtgtagccgtagt
taggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttacc
agtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttacc
ggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcga
acgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccg
aagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacg
agggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgac
ttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaac
gcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatccc
ctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacg
accgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcct
ctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcg
ggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttacac
tttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaaca
gctatgaccatgattacgccaagcgcgcaattaaccctcactaaagggaacaaaagctgga
gctgcaagcttggccattgcatacgttgtatccatatcataatatgtacatttatattggctcatg
tccaacattaccgccat
Cttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagccca
tatatggAGTTCCGCGTTACATAACTTACGGTAAATGGCCCG
CCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTC
AATAATGACGTATGTTCCCATAGTAACGCCAATAGGGAC
TTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAAC
TGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAG
TACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGC
CTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCC
TACTTGGCAGTACATCTACGTATTAGTCATCGCTATTAC
CATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTG
GATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACC
CCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATC
AACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCAT
TGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTC
TATATAAGCAGAGCTCGTTTAGTGAACCGGGGTCTCTCT
GGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAA
CTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCT
TGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGAC
TCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTG
TGGAAAATCTCTAGCagtggcgcccgaacagggacttgaaagcgaaaggga
aaccagaggagctctctcgacgcaggactcggcttgctgaagcgcgcacggcaagaggcga
ggggcggcgactggtgagtacgccaaaaattttgactagcggaggctagaaggagagagat
gggtgcgagagcgtcagtattaagcgggggagaattagatcgcgatgggaaaaaattcggt
taaggccagggggaaagaaaaaatataaattaaaacatatagtatgggcaagcagggagc
tagaacgattcgcagttaatcctggcctgttagaaacatcagaaggctgtagacaaatactgg
gacagctacaaccatcccttcagacaggatcagaagaacttagatcattatataatacagta
gcaaccctctattgtgtgcatcaaaggatagagataaaagacaccaaggaagctttagacaa
gatagaggaagagcaaaacaaaagtaagaccaccgcacagcaagcggccgctgatcttca
gacctggaggaggagatatgagggacaattggagaagtgaattatataaatataaagtagt
aaaaattgaaccattaggagtagcacccaccaaggcaaagagaagagtggtgcagagaga
aaaaagagcagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcacta
tgggcgcagcgtcaatgacgctgacggtacaggccagacaattattgtctggtatagtgcag
cagcagaacaatttgctgagggctattgaggcgcaacagcatctgttgcaactcacagtctgg
ggcatcaagcagctccaggcaagaatcctggctgtggaaagatacctaaaggatcaacagc
tcctggggatttggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagt
tggagtaataaatctctggaacagatttggaatcacacgacctggatggagtgggacagaga
aattaacaattacacaagcttaatacactccttaattgaagaatcgcaaaaccagcaagaaa
agaatgaacaagaattattggaattagataaatgggcaagtttgtggaattggtttaacataa
caaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaat
agtttttgctgtactttctatagtgaatagagttaggcagggatattcaccattatcgtttcagac
ccacctcccaaccccgaggggacccgacaggcccgaaggaatagaagaagaaggtggag
agagagacagagacagatccattcgattagtgaacggatctcgacggtatcggttaactttta
aaagaaaaggggggattggggggtacagtgcaggggaaagaatagtagacataatagca
acagacatacaaactaaagaattacaaaaacaaattacaaaaattcaaaattttatcgatca
cgagactagccAGAAAAGAGGGATTGGGGCCCTCTCCCAACA
GACATGAGTATTTAGGAGTCCCCAGTTCCGGTTTCCACA
TGACATGATATGATGGTCTGTTGTTTTCCTCAGGGACCT
AGAGGCAGATGTAGACAAATAGCAGGTGAGGAGGAAGG
GTGGTGCTGAGCTGTAAACAACAGCTGCGGGCTGTAAA
CAATGGAGCTATATTAAGAAAGTCCTGCATCTGCAGCAT
TCGGTTCAATCCTGCCACCCACTGGGCGTACTCCTGAAT
TGACTTTCCATTGTCAGCTGATCAGTGACAGATGTGAAA
TGACTCGTTACACACACAGGTCACATTGGGAGGATTCTT
AGACGTCATATTCTTTGGTGCTTCACAAAGTCTTACTGT
GGCACATGAAATGATTTCAGATGGTGCACAAGATGATTT
CACATGTAAATTTCCATGAGGGTGCAAAGAGAGGCTTTT
CCCAATCTGAAGAATGAATTTAAAATCTGCTGTAGAAAA
ATACCAGAGAGAAAAATATAGAAAGCAGCTGTCCCTCTT
ACCAATTTCAGAGCAGGAAAGGAATTTCAGTAGAGCATA
AAAACAGCTTTCTCTCATAAAAGAAAACACAACAAGAAA
AATAATCCTTGCTGTGTAGCCTTTTGCAGTTATTTTCTGT
CATGTGTTAGATAGAGACCAGAGGGCTTAACATTGTTTT
GATACCCTTGCATCTGGCAGATTGCCTGTCAGAGGAAGT
TGGAAACGAACTGACCAGCTTTATGCTTCCAGGTGGCAC
TGAAGCCACATTTTCAGTGCCGTTGTTATCAGTCATTTA
ATTCCCTACTGAATATTGAGTGGTGTTTTTAGTTCACAG
GCCATTTGCAGTGCCTTTCTGTTTCCTTTTTAACGTTAGC
CACATTAAGAAAAAAAGTGGGCTTTGCCTACAGCACCTG
CTTCTGCTTTCCGCATTTACTGATCCACTAAGTGTAAGT
GTGACATATAGAGGTCTGTGTTGGTTGTTGTTTTGTGTT
CAAACAGCTGAACATCTGGCCTCTCATGTGCAGGTGCAC
AGAACTCAGGAGAAGGGGTTTTAATTTAAGATAAAAAAA
ATAAGGATATGTGCTAGTTGCAGATGAGGGTTTGGGTG
CTGGACTTAAGATGCTTCTGTGTTCAAAAACAAGGATAT
ATGAGTCCCTTATATGTCAGGGACAATGTACAGTGCTGG
TCATAATATTCATTTTCTGAAAATGTCTTCACTGACATAA
TGGCTTCTGATTTGTCATCCTGAACAAGTCTATTATATTT
TATTTAGTTATTGTCCTCAATTTGCAAGGTTCATAAAGA
GTTTCACACAGATGGCACCCAAAGTGCTTATTTCTCATT
GTGCTGAAATTAAACTTGAATATGCTATATATCAAATAA
ATAATCCATTCCATGCCATTAAAAGAGTTTAGAATGAGA
GATGAAATAAATTTTGCAAAAAGTGTGCCCACATGTTCA
TTTTCTCCAAATAGCATAGTCATTACATTTAAAAACAATC
ATTGGTCAAAATAGAAAGTATTAAGAAAATACTAAGTAT
CAATTGAGGTCTACCACATGTTCAGCAACAACTTAGGTG
AGATGTGGGAGTAGGAAAAAGGAATACTTTATAACATCA
CAGAGAGGCAGATTTTGGCACAGGGAAGAGAAGTCAAT
GCAATACCTCAAGGAACCCAGTGGTGATCTAAGAAAACA
CTAGTTTGACCCATTGCCTCAATTAAGTATTTACCTTTCA
TAGCTAAGAAGAGAAGTAAATAGCCTTTCTTTATACTTT
CTAGAAGTTGAGCTCAATGTTCTTTCGGAGAGAGCAGGC
TCATCTCCATTATGTAGCGCCAATGACAAATACCTGTAT
ATGTCTGTATTTCCTTGGTCTGTCTTGCTCACCTGTTAA
GACACCTTGCTGCACAACAGATGGCACATGCTTATCTTG
TGGCAGTGAAGAGTTGACATCAAAGGCCAAGAAAACCT
TGAAACTCATCCTTTTCAGCCCACAAGAGCAGCTTCTCT
CTACCACAGACGATGAAAGCTGGAGATAACAGGGGCAT
TCCCACCGCTGCACTCTCTCTTGTGGCCAGCTGACAGTT
AACACAGGTGGGCGTGAGGTGCTGCCTACATTTTGAAG
GTTGTCTATTGATGGGGAACACCACCTCTCTGAGCTCAG
GCCTCTGCTTTGGCCCGTGGAGCTGCTGCTTCTGAGAAG
TAACCAGGTGGTGAATACCTGCCTGCTTTTCAGAAAATC
CGAGGTGGCTGTCAAAACACCCACTATCATTCAAAGGCT
GTCAGGCAAGGTGGCCGTTTGAGGGGCCACTTTAGTTC
TTGGTTTTTTTCAGAAGTCGAATTGGATTGCCAAACAGC
TTGCTCAACTGCCTCTTCCCATAAGCTAGATGGGAGGAA
GGCTGGGTCTGTGTAACTTGGGGTGCGCACAACTAAAG
TGCATAAAAAGAGAAGGATTGACAATTATTTATTCATTG
TAAAATAATCACAGGAACAGCAGCAGTGTAGGTTTCCCT
ACCTAGAGGGTGGTATGCAGTGATTCTCAGGCGCTGGT
TGGAAGGCACAGCTGAGGGACACAAACTGCCAGGAAGT
AATGTGGTAACTAGCCATGAGCTTGTGGTACTAATGGTG
GCACGGGAAACAAGGTCTCTGCTTGACTTTTATTTTCAC
TCCATAACAAACTCACCAGATCAGGAGCCTAAGGGTGG
GTGGGGAGGGAGAAGAGAGAAAAAAGCAAAGGGAAAGT
TCAAAGTGACACTCGCTGGGGCTGAAAACCACACTCCCC
TGCAGATGAGGTCCTTGGCTctcgagCTAAAGAGCCAGGTG
GCAGCTGGAGCTGGGGTCTCCTGGCCCATGATTGGCTG
CCATCATTTGTGGTTAGCCCTCCATGGTGGGGGAGGCT
GGGAAGGACAGTGGAAGCTGATAAACAGCTCAGCAGCA
TGTTCTGAGAAACAAGAGGGCAAGGAGAGAGCAGAGAA
CACACTTTGCCTTCTCTTTGGTATTGAGTAATATCAACC
AAATTGCAGACATCTCAACACTTTGGCCAGGCAGCCTGC
TGAGCAAGGTACCTCAGCCAGCATGgtgagcaagggcgaggagctg
ttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttcag
cgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgca
ccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccttcggctacggcctgatgt
gcttcgcccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaa
ggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccg
aggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaa
ggaggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctat
atcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcg
aggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggcc
ccgtgctgctgcccgacaaccactacctgagctaccagtccgccctgagcaaagaccccaac
gagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcat
ggacgagctgtacaagtgactgcaggaattcgagcatcttaccgccatttattcccatatttgtt
ctgtttttcttgatttgggtatacatttaaatgttaataaaacaaaatggtggggcaatcatttac
atttttagggatatgtaattactagttcaggtgtattgccacaagacaaacatgttaagaaact
ttcccgttatttacgctctgttcctgttaatcaacctctggattacaaaatttgtgaaagattgac
tgatattcttaactatgttgctccttttacgctgtgtggatatgctgctttaatgcctctgtatcat
gctattgcttcccgtacggctttcgttttctcctccttgtataaatcctggttgctgtctctttatg
aggagttgtggcccgttgtccgtcaacgtggcgtggtgtgctctgtgtttgctgacgcaaccccca
ctggctggggcattgccaccacctgtcaactcctttctgggactttcgctttccccctcccgatc
gccacggcagaactcatcgccgcctgccttgcccgctgctggacaggggctaggttgctggg
cactgataattccgtggtgttgtcggggaagggcctgctgccggctctgcggcctcttccgcgt
cttcgccttcgccctcagacgagtcggatctccctttgggccgcctccccgcctggaattcgag
ctcggtacctttaagaccaatgacttacaaggcagctgtagatcttagccactttttaaaagaa
aaggggggactggaagggctaattcactcccaacgaagacaagatctgctttttgcttgtact
gggtctctctggttagaccagatctgagcctgggagctctctggctaactagggaacctactg
cttaagcctcaataaagcttgccttgagtgcttCAAGTAGTGTGTGCCCGTC
TGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCT
TTTAGTCAGTGTGGAAAATCTCTAGCagtagtagttcatgtcatcttat
tattcagtatttataacttgcaaagaaatgaatatcagagagtgagaggaacttgtttattgca
gcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcac
tgcattctagttgtggtttgtccaaactcatcaatgtatcttatcatgtctggctctagctatcccg
cccctaactccgcccatcccgcccctaactccgcccagttccgcccattctccgccccatggct
gactaattttttttatttatgcagaggccgaggccgcctcggcctctgagctattccagaagtag
tgaggaggcttttttggaggcctagggacgtacccaattcgccctatagtgagtcgtattacgc
gcgctcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaat
cgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcccgcaccgatcg
cccttcccaacagttgcgcagcctgaatggcgaatgggacgcgccctgtagcggcgcattaa
gcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgccc
gctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatc
gggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgatta
gggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggag
tccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtcta
ttcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaaca
aaaatttaacgcgaattttaacaaaatattaacgcttacaatttaggtggcacttttcggggaa
atgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagac
aataaccctgataaatgcttcaataatagcacctagatcaagagacaggatgaggatcgtttc
gcatgattgaacaagatggattgcacgcaggttctccggccgcttgggtggagaggctattcg
gctatgactgggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtcagcgc
aggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaagacg
aggcagcgcggctatcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttg
tcactgaagcgggaagggactggctgctattgggcgaagtgccggggcaggatctcctgtca
tctcaccttgctcctgccgagaaagtatccatcatggctgatgcaatgcggcggctgcatacg
cttgatccggctacctgcccattcgaccaccaagcgaaacatcgcatcgagcgagcacgtac
tcggatggaagccggtcttgtcgatcaggatgatctggacgaagagcatcaggggctcgcgc
cagccgaactgttcgccaggctcaaggcgagcatgcccgacggcgaggatctcgtcgtgacc
catggcgatgcctgcttgccgaatatcatggtggaaaatggccgcttttctggattcatcgact
gtggccggctgggtgtggcggaccgctatcaggacatagcgttggctacccgtgatattgctg
aagagcttggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattc
gcagcgcatcgccttctatcgccttcttgacgagttcttctgaattattaacgcttacaatttcct
gatgcggtattttctccttacgcatctgtgcggtatttcacaccgcatcaggtggcacttttcgg
ggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatg
accaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaa
ggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgct
accagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttc
agcagagcgcagataccaaatactgttcttctagtgtagccgtagttaggccaccacttcaag
aactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtg
gcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcgg
tcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaac
tgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcgg
acaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggg
gaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgt
gatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttc
ctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataacc
gtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgag
tcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggc
cgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaac
gcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgcttccggctcg
tatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccatgatta
cgccaagcgcgcaattaaccctcactaaagggaacaaaagctggagctgcaagcttggcca
ttgcatacgttgtatccatatcataatatgtacatttatattggctcatgtccaacattaccgcca
t
Cttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagccca
tatatggAGTTCCGCGTTACATAACTTACGGTAAATGGCCCG
CCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTC
AATAATGACGTATGTTCCCATAGTAACGCCAATAGGGAC
TTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAAC
TGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAG
TACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGC
CTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCC
TACTTGGCAGTACATCTACGTATTAGTCATCGCTATTAC
CATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTG
GATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACC
CCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATC
AACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCAT
TGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTC
TATATAAGCAGAGCTCGTTTAGTGAACCGGGGTCTCTCT
GGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAA
CTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCT
TGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGAC
TCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTG
TGGAAAATCTCTAGCagtggcgcccgaacagggacttgaaagcgaaaggga
aaccagaggagctctctcgacgcaggactcggcttgctgaagcgcgcacggcaagaggcga
ggggcggcgactggtgagtacgccaaaaattttgactagcggaggctagaaggagagagat
gggtgcgagagcgtcagtattaagcgggggagaattagatcgcgatgggaaaaaattcggt
taaggccagggggaaagaaaaaatataaattaaaacatatagtatgggcaagcagggagc
tagaacgattcgcagttaatcctggcctgttagaaacatcagaaggctgtagacaaatactgg
gacagctacaaccatcccttcagacaggatcagaagaacttagatcattatataatacagta
gcaaccctctattgtgtgcatcaaaggatagagataaaagacaccaaggaagctttagacaa
gatagaggaagagcaaaacaaaagtaagaccaccgcacagcaagcggccgctgatcttca
gacctggaggaggagatatgagggacaattggagaagtgaattatataaatataaagtagt
aaaaattgaaccattaggagtagcacccaccaaggcaaagagaagagtggtgcagagaga
aaaaagagcagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcacta
tgggcgcagcgtcaatgacgctgacggtacaggccagacaattattgtctggtatagtgcag
cagcagaacaatttgctgagggctattgaggcgcaacagcatctgttgcaactcacagtctgg
ggcatcaagcagctccaggcaagaatcctggctgtggaaagatacctaaaggatcaacagc
tcctggggatttggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagt
tggagtaataaatctctggaacagatttggaatcacacgacctggatggagtgggacagaga
aattaacaattacacaagcttaatacactccttaattgaagaatcgcaaaaccagcaagaaa
agaatgaacaagaattattggaattagataaatgggcaagtttgtggaattggtttaacataa
caaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaat
agtttttgctgtactttctatagtgaatagagttaggcagggatattcaccattatcgtttcagac
ccacctcccaaccccgaggggacccgacaggcccgaaggaatagaagaagaaggtggag
agagagacagagacagatccattcgattagtgaacggatctcgacggtatcggttaactttta
aaagaaaaggggggattggggggtacagtgcaggggaaagaatagtagacataatagca
acagacatacaaactaaagaattacaaaaacaaattacaaaaattcaaaattttatcgatca
cgagactagccAGAAAAGAGGGATTGGGGCCCTCTCCCAACA
GACATGAGTATTTAGGAGTCCCCAGTTCCGGTTTCCACA
TGACATGATATGATGGTCTGTTGTTTTCCTCAGGGACCT
AGAGGCAGATGTAGACAAATAGCAGGTGAGGAGGAAGG
GTGGTGCTGAGCTGTAAACAACAGCTGCGGGCTGTAAA
CAATGGAGCTATATTAAGAAAGTCCTGCATCTGCAGCAT
TCGGTTCAATCCTGCCACCCACTGGGCGTACTCCTGAAT
TGACTTTCCATTGTCAGCTGATCAGTGACAGATGTGAAA
TGACTCGTTACACACACAGGTCACATTGGGAGGATTCTT
AGACGTCATATTCTTTGGTGCTTCACAAAGTCTTACTGT
GGCACATGAAATGATTTCAGATGGTGCACAAGATGATTT
CACATGTAAATTTCCATGAGGGTGCAAAGAGAGGCTTTT
CCCAATCTGAAGAATGAATTTAAAATCTGCTGTAGAAAA
ATACCAGAGAGAAAAATATAGAAAGCAGCTGTCCCTCTT
ACCAATTTCAGAGCAGGAAAGGAATTTCAGTAGAGCATA
AAAACAGCTTTCTCTCATAAAAGAAAACACAACAAGAAA
AATAATCCTTGCTGTGTAGCCTTTTGCAGTTATTTTCTGT
CATGTGTTAGATAGAGACCAGAGGGCTTAACATTGTTTT
GATACCCTTGCATCTGGCAGATTGCCTGTCAGAGGAAGT
TGGAAACGAACTGACCAGCTTTATGCTTCCAGGTGGCAC
TGAAGCCACATTTTCAGTGCCGTTGTTATCAGTCATTTA
ATTCCCTACTGAATATTGAGTGGTGTTTTTAGTTCACAG
GCCATTTGCAGTGCCTTTCTGTTTCCTTTTTAACGTTAGC
CACATTAAGAAAAAAAGTGGGCTTTGCCTACAGCACCTG
CTTCTGCTTTCCGCATTTACTGATCCACTAAGTGTAAGT
GTGACATATAGAGGTCTGTGTTGGTTGTTGTTTTGTGTT
CAAACAGCTGAACATCTGGCCTCTCATGTGCAGGTGCAC
AGAACTCAGGAGAAGGGGTTTTAATTTAAGATAAAAAAA
ATAAGGATATGTGCTAGTTGCAGATGAGGGTTTGGGTG
CTGGACTTAAGATGCTTCTGTGTTCAAAAACAAGGATAT
ATGAGTCCCTTATATGTCAGGGACAATGTACAGTGCTGG
TCATAATATTCATTTTCTGAAAATGTCTTCACTGACATAA
TGGCTTCTGATTTGTCATCCTGAACAAGTCTATTATATTT
TATTTAGTTATTGTCCTCAATTTGCAAGGTTCATAAAGA
GTTTCACACAGATGGCACCCAAAGTGCTTATTTCTCATT
GTGCTGAAATTAAACTTGAATATGCTATATATCAAATAA
ATAATCCATTCCATGCCATTAAAAGAGTTTAGAATGAGA
GATGAAATAAATTTTGCAAAAAGTGTGCCCACATGTTCA
TTTTCTCCAAATAGCATAGTCATTACATTTAAAAACAATC
ATTGGTCAAAATAGAAAGTATTAAGAAAATACTAAGTAT
CAATTGAGGTCTACCACATGTTCAGCAACAACTTAGGTG
AGATGTGGGAGTAGGAAAAAGGAATACTTTATAACATCA
CAGAGAGGCAGATTTTGGCACAGGGAAGAGAAGTCAAT
GCAATACCTCAAGGAACCCAGTGGTGATCTAAGAAAACA
CTAGTTTGACCCATTGCCTCAATTAAGTATTTACCTTTCA
TAGCTAAGAAGAGAAGTAAATAGCCTTTCTTTATACTTT
CTAGAAGTTGAGCTCAATGTTCTTTCGGAGAGAGCAGGC
TCATCTCCATTATGTAGCGCCAATGACAAATACCTGTAT
ATGTCTGTATTTCCTTGGTCTGTCTTGCTCACCTGTTAA
GACACCTTGCTGCACAACAGATGGCACATGCTTATCTTG
TGGCAGTGAAGAGTTGACATCAAAGGCCAAGAAAACCT
TGAAACTCATCCTTTTCAGCCCACAAGAGCAGCTTCTCT
CTACCACAGACGATGAAAGCTGGAGATAACAGGGGCAT
TCCCACCGCTGCACTCTCTCTTGTGGCCAGCTGACAGTT
AACACAGGTGGGCGTGAGGTGCTGCCTACATTTTGAAG
GTTGTCTATTGATGGGGAACACCACCTCTCTGAGCTCAG
GCCTCTGCTTTGGCCCGTGGAGCTGCTGCTTCTGAGAAG
TAACCAGGTGGTGAATACCTGCCTGCTTTTCAGAAAATC
CGAGGTGGCTGTCAAAACACCCACTATCATTCAAAGGCT
GTCAGGCAAGGTGGCCGTTTGAGGGGCCACTTTAGTTC
TTGGTTTTTTTCAGAAGTCGAATTGGATTGCCAAACAGC
TTGCTCAACTGCCTCTTCCCATAAGCTAGATGGGAGGAA
GGCTGGGTCTGTGTAACTTGGGGTGCGCACAACTAAAG
TGCATAAAAAGAGAAGGATTGACAATTATTTATTCATTG
TAAAATAATCACAGGAACAGCAGCAGTGTAGGTTTCCCT
ACCTAGAGGGTGGTATGCAGTGATTCTCAGGCGCTGGT
TGGAAGGCACAGCTGAGGGACACAAACTGCCAGGAAGT
AATGTGGTAACTAGCCATGAGCTTGTGGTACTAATGGTG
GCACGGGAAACAAGGTCTCTGCTTGACTTTTATTTTCAC
TCCATAACAAACTCACCAGATCAGGAGCCTAAGGGTGG
GTGGGGAGGGAGAAGAGAGAAAAAAGCAAAGGGAAAGT
TCAAAGTGACACTCGCTGGGGCTGAAAACCACACTCCCC
TGCAGATGAGGTCCTTGGCTcTCTAGGCAAGTGTCTCTC
TCTCTCTCCCCCTCTTTTTCTTTTAGAAAAATACTTCGTG
ATAAAAACACAAAAGTATGTGAATGGTAATTGAAAATGC
ATTGCTTCCTTTTAGAAACCCACTAGGATTTGCATAAAC
CACTTGGCTGTCTGATAAGTCATTATCTGTTCTGTCAGT
CCCTGGGGACTTTTAATATTAGGTTTATATTTTTATAGAA
AAGGCAAGTTCTAAATTTGAAGATGGGTATTGTTAAACT
CTTCAATAATGACAGTTTGTGAAACTGCATGTTCCAAAA
GTCCTTTAAAAAGTCAATAAGGCtcgagCTAAAGAGCCAG
GTGGCAGCTGGAGCTGGGGTCTCCTGGCCCATGATTGG
CTGCCATCATTTGTGGTTAGCCCTCCATGGTGGGGGAG
GCTGGGAAGGACAGTGGAAGCTGATAAACAGCTCAGCA
GCATGTTCTGAGAAACAAGAGGGCAAGGAGAGAGCAGA
GAACACACTTTGCCTTCTCTTTGGTATTGAGTAATATCA
ACCAAATTGCAGACATCTCAACACTTTGGCCAGGCAGCC
TGCTGAGCAAGGTACCTCAGCCAGCATGgtgagcaagggcgagg
agctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaag
ttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcat
ctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccttcggctacggcct
gatgtgcttcgcccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcc
cgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgc
gccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgact
tcaaggaggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacg
tctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaa
catcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgac
ggccccgtgctgctgcccgacaaccactacctgagctaccagtccgccctgagcaaagaccc
caacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcg
gcatggacgagctgtacaagtgactgcaggaattcgagcatcttaccgccatttattcccatat
ttgttctgtttttcttgatttgggtatacatttaaatgttaataaaacaaaatggtggggcaatca
tttacatttttagggatatgtaattactagttcaggtgtattgccacaagacaaacatgttaaga
aactttcccgttatttacgctctgttcctgttaatcaacctctggattacaaaatttgtgaaagat
tgactgatattcttaactatgttgctccttttacgctgtgtggatatgctgctttaatgcctctgta
tcatgctattgcttcccgtacggctttcgttttctcctccttgtataaatcctggttgctgtctctt
tatgaggagttgtggcccgttgtccgtcaacgtggcgtggtgtgctctgtgtttgctgacgcaaccc
ccactggctggggcattgccaccacctgtcaactcctttctgggactttcgctttccccctcccg
atcgccacggcagaactcatcgccgcctgccttgcccgctgctggacaggggctaggttgctg
ggcactgataattccgtggtgttgtcggggaagggcctgctgccggctctgcggcctcttccgc
gtcttcgccttcgccctcagacgagtcggatctccctttgggccgcctccccgcctggaattcg
agctcggtacctttaagaccaatgacttacaaggcagctgtagatcttagccactttttaaaag
aaaaggggggactggaagggctaattcactcccaacgaagacaagatctgctttttgcttgta
ctgggtctctctggttagaccagatctgagcctgggagctctctggctaactagggaacctact
gcttaagcctcaataaagcttgccttgagtgcttCAAGTAGTGTGTGCCCGT
CTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCC
TTTTAGTCAGTGTGGAAAATCTCTAGCagtagtagttcatgtcatctt
attattcagtatttataacttgcaaagaaatgaatatcagagagtgagaggaacttgtttattg
cagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttc
actgcattctagttgtggtttgtccaaactcatcaatgtatcttatcatgtctggctctagctatcc
cgcccctaactccgcccatcccgcccctaactccgcccagttccgcccattctccgccccatgg
ctgactaattttttttatttatgcagaggccgaggccgcctcggcctctgagctattccagaagt
agtgaggaggcttttttggaggcctagggacgtacccaattcgccctatagtgagtcgtattac
gcgcgctcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaactt
aatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcccgcaccga
tcgcccttcccaacagttgcgcagcctgaatggcgaatgggacgcgccctgtagcggcgcatt
aagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgc
ccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaa
tcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgatt
agggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttgga
gtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtct
attcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaac
aaaaatttaacgcgaattttaacaaaatattaacgcttacaatttaggtggcacttttcgggga
aatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgaga
caataaccctgataaatgcttcaataatagcacctagatcaagagacaggatgaggatcgttt
cgcatgattgaacaagatggattgcacgcaggttctccggccgcttgggtggagaggctattc
ggctatgactgggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtcagcg
caggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaagac
gaggcagcgcggctatcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgtt
gtcactgaagcgggaagggactggctgctattgggcgaagtgccggggcaggatctcctgtc
atctcaccttgctcctgccgagaaagtatccatcatggctgatgcaatgcggcggctgcatac
gcttgatccggctacctgcccattcgaccaccaagcgaaacatcgcatcgagcgagcacgta
ctcggatggaagccggtcttgtcgatcaggatgatctggacgaagagcatcaggggctcgcg
ccagccgaactgttcgccaggctcaaggcgagcatgcccgacggcgaggatctcgtcgtgac
ccatggcgatgcctgcttgccgaatatcatggtggaaaatggccgcttttctggattcatcgac
tgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctacccgtgatattgct
gaagagcttggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgatt
cgcagcgcatcgccttctatcgccttcttgacgagttcttctgaattattaacgcttacaatttcc
tgatgcggtattttctccttacgcatctgtgcggtatttcacaccgcatcaggtggcacttttcgg
ggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatg
accaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaa
ggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgct
accagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttc
agcagagcgcagataccaaatactgttcttctagtgtagccgtagttaggccaccacttcaag
aactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtg
gcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcgg
tcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaac
tgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcgg
acaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggg
gaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgt
gatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttc
ctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataacc
gtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgag
tcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggc
cgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaac
gcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgcttccggctcg
tatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccatgatta
cgccaagcgcgcaattaaccctcactaaagggaacaaaagctggagctgcaagcttggcca
ttgcatacgttgtatccatatcataatatgtacatttatattggctcatgtccaacattaccgcca
t
Cttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagccca
tatatggAGTTCCGCGTTACATAACTTACGGTAAATGGCCCG
CCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTC
AATAATGACGTATGTTCCCATAGTAACGCCAATAGGGAC
TTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAAC
TGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAG
TACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGC
CTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCC
TACTTGGCAGTACATCTACGTATTAGTCATCGCTATTAC
CATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTG
GATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACC
CCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATC
AACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCAT
TGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTC
TATATAAGCAGAGCTCGTTTAGTGAACCGGGGTCTCTCT
GGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAA
CTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCT
TGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGAC
TCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTG
TGGAAAATCTCTAGCagtggcgcccgaacagggacttgaaagcgaaaggga
aaccagaggagctctctcgacgcaggactcggcttgctgaagcgcgcacggcaagaggcga
ggggcggcgactggtgagtacgccaaaaattttgactagcggaggctagaaggagagagat
gggtgcgagagcgtcagtattaagcgggggagaattagatcgcgatgggaaaaaattcggt
taaggccagggggaaagaaaaaatataaattaaaacatatagtatgggcaagcagggagc
tagaacgattcgcagttaatcctggcctgttagaaacatcagaaggctgtagacaaatactgg
gacagctacaaccatcccttcagacaggatcagaagaacttagatcattatataatacagta
gcaaccctctattgtgtgcatcaaaggatagagataaaagacaccaaggaagctttagacaa
gatagaggaagagcaaaacaaaagtaagaccaccgcacagcaagcggccgctgatcttca
gacctggaggaggagatatgagggacaattggagaagtgaattatataaatataaagtagt
aaaaattgaaccattaggagtagcacccaccaaggcaaagagaagagtggtgcagagaga
aaaaagagcagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcacta
tgggcgcagcgtcaatgacgctgacggtacaggccagacaattattgtctggtatagtgcag
cagcagaacaatttgctgagggctattgaggcgcaacagcatctgttgcaactcacagtctgg
ggcatcaagcagctccaggcaagaatcctggctgtggaaagatacctaaaggatcaacagc
tcctggggatttggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagt
tggagtaataaatctctggaacagatttggaatcacacgacctggatggagtgggacagaga
aattaacaattacacaagcttaatacactccttaattgaagaatcgcaaaaccagcaagaaa
agaatgaacaagaattattggaattagataaatgggcaagtttgtggaattggtttaacataa
caaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaat
agtttttgctgtactttctatagtgaatagagttaggcagggatattcaccattatcgtttcagac
ccacctcccaaccccgaggggacccgacaggcccgaaggaatagaagaagaaggtggag
agagagacagagacagatccattcgattagtgaacggatctcgacggtatcggttaactttta
aaagaaaaggggggattggggggtacagtgcaggggaaagaatagtagacataatagca
acagacatacaaactaaagaattacaaaaacaaattacaaaaattcaaaattttatcgatca
cgagactagccAGAAAAGAGGGATTGGGGCCCTCTCCCAACA
GACATGAGTATTTAGGAGTCCCCAGTTCCGGTTTCCACA
TGACATGATATGATGGTCTGTTGTTTTCCTCAGGGACCT
AGAGGCAGATGTAGACAAATAGCAGGTGAGGAGGAAGG
GTGGTGCTGAGCTGTAAACAACAGCTGCGGGCTGTAAA
CAATGGAGCTATATTAAGAAAGTCCTGCATCTGCAGCAT
TCGGTTCAATCCTGCCACCCACTGGGCGTACTCCTGAAT
TGACTTTCCATTGTCAGCTGATCAGTGACAGATGTGAAA
TGACTCGTTACACACACAGGTCACATTGGGAGGATTCTT
AGACGTCATATTCTTTGGTGCTTCACAAAGTCTTACTGT
GGCACATGAAATGATTTCAGATGGTGCACAAGATGATTT
CACATGTAAATTTCCATGAGGGTGCAAAGAGAGGCTTTT
CCCAATCTGAAGAATGAATTTAAAATCTGCTGTAGAAAA
ATACCAGAGAGAAAAATATAGAAAGCAGCTGTCCCTCTT
ACCAATTTCAGAGCAGGAAAGGAATTTCAGTAGAGCATA
AAAACAGCTTTCTCTCATAAAAGAAAACACAACAAGAAA
AATAATCCTTGCTGTGTAGCCTTTTGCAGTTATTTTCTGT
CATGTGTTAGATAGAGACCAGAGGGCTTAACATTGTTTT
GATACCCTTGCATCTGGCAGATTGCCTGTCAGAGGAAGT
TGGAAACGAACTGACCAGCTTTATGCTTCCAGGTGGCAC
TGAAGCCACATTTTCAGTGCCGTTGTTATCAGTCATTTA
ATTCCCTACTGAATATTGAGTGGTGTTTTTAGTTCACAG
GCCATTTGCAGTGCCTTTCTGTTTCCTTTTTAACGTTAGC
CACATTAAGAAAAAAAGTGGGCTTTGCCTACAGCACCTG
CTTCTGCTTTCCGCATTTACTGATCCACTAAGTGTAAGT
GTGACATATAGAGGTCTGTGTTGGTTGTTGTTTTGTGTT
CAAACAGCTGAACATCTGGCCTCTCATGTGCAGGTGCAC
AGAACTCAGGAGAAGGGGTTTTAATTTAAGATAAAAAAA
ATAAGGATATGTGCTAGTTGCAGATGAGGGTTTGGGTG
CTGGACTTAAGATGCTTCTGTGTTCAAAAACAAGGAGTC
CTCAATTTGCAAGGTTCATAAAGAGTTTCACACAGATGG
CACCCAAAGTGCTTATTTCTCATTGTGCTGAAATTAAAC
TTGAATATGCTATATATCAAATAAATAGAAGTAAATAGC
CTTTCTTTATACTTTCTAGAAGTTGAGCTCAATGTTCTTT
CGGAGAGAGCAGGCTCATCTCCATTATGTAGCGCCAAT
GACAAATACCTGTATATGTCTGTATTTCCTTGGTCTGTC
TTGCTCACCTGTTAAGACACCTTGCTGCACAACAGATGG
CACATGCTTATCTTGTGGCAGTGAAGAGTTGACATCAAA
GGCCAAGAAAACCTTGAAACTCATCCTTTTCAGCCCACA
AGAGCAGCTTCTCTCTACCACAGACGATGAAAGCTGGA
GATAACAGGGGCATTCCCACCGCTGCACTCTCTCTTGTG
GCCAGCTGACAGTTAACACAGGTGGGCGTGAGGTGCTG
CCTACATTTTGAAGGTTGTCTATTGATGGGGAACACCAC
CTCTCTGAGCTCAGGCCTCTGCTTTGGCCCGTGGAGCTG
CTGCTTCTGAGAAGTAACCAGGTGGTGAATACCTGCCTG
CTTTTCAGAAAATCCGAGGTGGCTGTCAATTGACAATTA
TTTATTCATTGTAAAATAATCACAGGAACAGCAGCAGTG
TAGGTTTCCCTACCTAGAGGGTGGTATGCAGTGATTCTC
AGGCGCTGGTTGGAAGGCACAGCTGAGGGACACAAACT
GCCAGGAAGTAATGTGGTAACTAGCCATGAGCTTGTGG
TACTAATGGTGGCACGGGAAACAAGGTCTCTGCTTGACT
TTTATTTTCACTCCATAACAAACTCACCAGATCAGGAGC
CTAAGGGTGGGTGGGGAGGGAGAAGAGAGAAAAAAGCA
AAGGGAAAGTTCAAAGTGACACTCGCTGGGGCTGAAAA
CCACACTCCCCTGCAGATGAGGTCCTTGGCTctcgagCTTC
TGTCATTTTATTGTTTTCTGGTTGTTTTGCATTTCTCTTC
CTCGTTTCTTTATCTCTTACTGTTTATCTTTGTGTGGTTT
GCTTGGTGACAAATTTTAGTTACTTTCTCTTTCGCATCTG
TGTATCTGCTCTACTAGTGGGTTCTATACTTTTGTTTGTT
CTCCTGATGGTAGTTATTGCCCTTTGGCTTTCAGATATA
GGGCTCCTTTTTTAGGTCTACTACTCTTGTGTCTGAAAG
TTGCATTTTGTTTGAGTAAGTTCATTAAGCAGGGACCTG
AAAGTAAACATCAAAGGTGTGCTGAATCAGTGGTGACAA
TTTCATGTATCATATTTCATAATAATGTTCTTTCAGAGAG
CACATAACATTAACTAGCATGGAGCAGTGCATGCTCCCT
GTATTTCCTTCTGGGGGCCATGATTGTGAAAGTGTTGCT
TGTGATTTACCAGCAGATATTTATACACATTTACTTATCA
CAAGACGTTTTGAGTCTTTCATGTGGAGCTCAAAGCCTT
AAAACATAAAAACCAATGGCTTGATTTCTGCCACTTGAC
TTTTTTTGAATTCCTTTATCACTCTTTTACTCTTTTAGTG
ATCATTGACGTAGGTTCCTGTACTTGCTGTTGTCAGAAG
AAGCAAGTTTCAGTTTTGGAATGTACCCTGCACGCTTAG
TTCTTCTTTGACTATTGTAAGCCATTCTTCTTTGTCTCCT
TTCTGGCTCCCTGCCCCCACCTTTCTGCTCCTTTTTTCTT
CTATTCTCTAAAGACCTTTTCTTTTCATTTACTGCATTAA
TGCAGGAAGCAAGGCACAGTGGTTAGGAGGATAGGTTC
TAGAGTCAGAAGGCAGTGTTCAGATCCCCACTCTGCTAC
TTAACCATCTGTATgCTAAAGAGCCAGGTGGCAGCTGGA
GCTGGGGTCTCCTGGCCCATGATTGGCTGCCATCATTTG
TGGTTAGCCCTCCATGGTGGGGGAGGCTGGGAAGGACA
GTGGAAGCTGATAAACAGCTCAGCAGCATGTTCTGAGA
AACAAGAGGGCAAGGAGAGAGCAGAGAACACACTTTGC
CTTCTCTTTGGTATTGAGTAATATCAACCAAATTGCAGA
CATCTCAACACTTTGGCCAGGCAGCCTGCTGAGCAAGGT
ACCTCAGCCAGCATGgtgagcaagggcgaggagctgttcaccggggtggtgc
ccatcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccggcgaggg
cgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgc
ccgtgccctggcccaccctcgtgaccaccttcggctacggcctgatgtgcttcgcccgctaccc
cgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagc
gcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgaggg
cgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatc
ctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggccgacaagc
agaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgtgc
agctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccga
caaccactacctgagctaccagtccgccctgagcaaagaccccaacgagaagcgcgatcac
atggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaag
tgactgcaggaattcgagcatcttaccgccatttattcccatatttgttctgtttttcttgatttgg
gtatacatttaaatgttaataaaacaaaatggtggggcaatcatttacatttttagggatatgt
aattactagttcaggtgtattgccacaagacaaacatgttaagaaactttcccgttatttacgct
ctgttcctgttaatcaacctctggattacaaaatttgtgaaagattgactgatattcttaactatg
ttgctccttttacgctgtgtggatatgctgctttaatgcctctgtatcatgctattgcttcccgtac
ggctttcgttttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtggcccgtt
gtccgtcaacgtggcgtggtgtgctctgtgtttgctgacgcaacccccactggctggggcattgc
caccacctgtcaactcctttctgggactttcgctttccccctcccgatcgccacggcagaactca
tcgccgcctgccttgcccgctgctggacaggggctaggttgctgggcactgataattccgtggt
gttgtcggggaagggcctgctgccggctctgcggcctcttccgcgtcttcgccttcgccctcag
acgagtcggatctccctttgggccgcctccccgcctggaattcgagctcggtacctttaagacc
aatgacttacaaggcagctgtagatcttagccactttttaaaagaaaaggggggactggaag
ggctaattcactcccaacgaagacaagatctgctttttgcttgtactgggtctctctggttagac
cagatctgagcctgggagctctctggctaactagggaacctactgcttaagcctcaataaagc
ttgccttgagtgcttCAAGTAGTGTGTGCCCGTCTGTTGTGTGAC
TCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTG
TGGAAAATCTCTAGCagtagtagttcatgtcatcttattattcagtatttataactt
gcaaagaaatgaatatcagagagtgagaggaacttgtttattgcagcttataatggttacaaa
taaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtggttt
gtccaaactcatcaatgtatcttatcatgtctggctctagctatcccgcccctaactccgcccat
cccgcccctaactccgcccagttccgcccattctccgccccatggctgactaattttttttatttat
gcagaggccgaggccgcctcggcctctgagctattccagaagtagtgaggaggcttttttgga
ggcctagggacgtacccaattcgccctatagtgagtcgtattacgcgcgctcactggccgtcg
ttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatcc
ccctttcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcg
cagcctgaatggcgaatgggacgcgccctgtagcggcgcattaagcgcggcgggtgtggtg
gttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttccc
ttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggtt
ccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagt
gggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtgg
actcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgatttataagggat
tttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaatttta
acaaaatattaacgcttacaatttaggtggcacttttcggggaaatgtgcgcggaacccctatt
tgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgctt
caataatagcacctagatcaagagacaggatgaggatcgtttcgcatgattgaacaagatgg
attgcacgcaggttctccggccgcttgggtggagaggctattcggctatgactgggcacaaca
gacaatcggctgctctgatgccgccgtgttccggctgtcagcgcaggggcgcccggttcttttt
gtcaagaccgacctgtccggtgccctgaatgaactgcaagacgaggcagcgcggctatcgtg
gctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcgggaaggg
actggctgctattgggcgaagtgccggggcaggatctcctgtcatctcaccttgctcctgccga
gaaagtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacctgccc
attcgaccaccaagcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttg
tcgatcaggatgatctggacgaagagcatcaggggctcgcgccagccgaactgttcgccag
gctcaaggcgagcatgcccgacggcgaggatctcgtcgtgacccatggcgatgcctgcttgc
cgaatatcatggtggaaaatggccgcttttctggattcatcgactgtggccggctgggtgtggc
ggaccgctatcaggacatagcgttggctacccgtgatattgctgaagagcttggcggcgaat
gggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgccttctat
cgccttcttgacgagttcttctgaattattaacgcttacaatttcctgatgcggtattttctcctta
cgcatctgtgcggtatttcacaccgcatcaggtggcacttttcggggaaatgtgcgcggaacc
cctatttgtttatttttctaaatacattcaaatatgtatccgctcatgaccaaaatcccttaacgtg
agttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttt
tttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgc
cggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagatacca
aatactgttcttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgccta
catacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttacc
gggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggtt
cgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtga
gctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcgg
cagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttat
agtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcg
gagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttg
ctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgag
ctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcgg
aagagcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctgg
cacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtgagttagct
cactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtga
gcggataacaatttcacacaggaaacagctatgaccatgattacgccaagcgcgcaattaac
cctcactaaagggaacaaaagctggagctgcaagcttggccattgcatacgttgtatccatat
cataatatgtacatttatattggctcatgtccaacattaccgccat
Cttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagccca
tatatggAGTTCCGCGTTACATAACTTACGGTAAATGGCCCG
CCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTC
AATAATGACGTATGTTCCCATAGTAACGCCAATAGGGAC
TTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAAC
TGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAG
TACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGC
CTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCC
TACTTGGCAGTACATCTACGTATTAGTCATCGCTATTAC
CATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTG
GATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACC
CCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATC
AACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCAT
TGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTC
TATATAAGCAGAGCTCGTTTAGTGAACCGGGGTCTCTCT
GGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAA
CTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCT
TGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGAC
TCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTG
TGGAAAATCTCTAGCagtggcgcccgaacagggacttgaaagcgaaaggga
aaccagaggagctctctcgacgcaggactcggcttgctgaagcgcgcacggcaagaggcga
ggggcggcgactggtgagtacgccaaaaattttgactagcggaggctagaaggagagagat
gggtgcgagagcgtcagtattaagcgggggagaattagatcgcgatgggaaaaaattcggt
taaggccagggggaaagaaaaaatataaattaaaacatatagtatgggcaagcagggagc
tagaacgattcgcagttaatcctggcctgttagaaacatcagaaggctgtagacaaatactgg
gacagctacaaccatcccttcagacaggatcagaagaacttagatcattatataatacagta
gcaaccctctattgtgtgcatcaaaggatagagataaaagacaccaaggaagctttagacaa
gatagaggaagagcaaaacaaaagtaagaccaccgcacagcaagcggccgctgatcttca
gacctggaggaggagatatgagggacaattggagaagtgaattatataaatataaagtagt
aaaaattgaaccattaggagtagcacccaccaaggcaaagagaagagtggtgcagagaga
aaaaagagcagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcacta
tgggcgcagcgtcaatgacgctgacggtacaggccagacaattattgtctggtatagtgcag
cagcagaacaatttgctgagggctattgaggcgcaacagcatctgttgcaactcacagtctgg
ggcatcaagcagctccaggcaagaatcctggctgtggaaagatacctaaaggatcaacagc
tcctggggatttggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagt
tggagtaataaatctctggaacagatttggaatcacacgacctggatggagtgggacagaga
aattaacaattacacaagcttaatacactccttaattgaagaatcgcaaaaccagcaagaaa
agaatgaacaagaattattggaattagataaatgggcaagtttgtggaattggtttaacataa
caaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaat
agtttttgctgtactttctatagtgaatagagttaggcagggatattcaccattatcgtttcagac
ccacctcccaaccccgaggggacccgacaggcccgaaggaatagaagaagaaggtggag
agagagacagagacagatccattcgattagtgaacggatctcgacggtatcggttaactttta
aaagaaaaggggggattggggggtacagtgcaggggaaagaatagtagacataatagca
acagacatacaaactaaagaattacaaaaacaaattacaaaaattcaaaattttatcgatca
cgagactagccAGAAAAGAGGGATTGGGGCCCTCTCCCAACA
GACATGAGTATTTAGGAGTCCCCAGTTCCGGTTTCCACA
TGACATGATATGATGGTCTGTTGTTTTCCTCAGGGACCT
AGAGGCAGATGTAGACAAATAGCAGGTGAGGAGGAAGG
GTGGTGCTGAGCTGTAAACAACAGCTGCGGGCTGTAAA
CAATGGAGCTATATTAAGAAAGTCCTGCATCTGCAGCAT
TCGGTTCAATCCTGCCACCCACTGGGCGTACTCCTGAAT
TGACTTTCCATTGTCAGCTGATCAGTGACAGATGTGAAA
TGACTCGTTACACACACAGGTCACATTGGGAGGATTCTT
AGACGTCATATTCTTTGGTGCTTCACAAAGTCTTACTGT
GGCACATGAAATGATTTCAGATGGTGCACAAGATGATTT
CACATGTAAATTTCCATGAGGGTGCAAAGAGAGGCTTTT
CCCAATCTGAAGAATGAATTTAAAATCTGCTGTAGAAAA
ATACCAGAGAGAAAAATATAGAAAGCAGCTGTCCCTCTT
ACCAATTTCAGAGCAGGAAAGGAATTTCAGTAGAGCATA
AAAACAGCTTTCTCTCATAAAAGAAAACACAACAAGAAA
AATAATCCTTGCTGTGTAGCCTTTTGCAGTTATTTTCTGT
CATGTGTTAGATAGAGACCAGAGGGCTTAACATTGTTTT
GATACCCTTGCATCTGGCAGATTGCCTGTCAGAGGAAGT
TGGAAACGAACTGACCAGCTTTATGCTTCCAGGTGGCAC
TGAAGCCACATTTTCAGTGCCGTTGTTATCAGTCATTTA
ATTCCCTACTGAATATTGAGTGGTGTTTTTAGTTCACAG
GCCATTTGCAGTGCCTTTCTGTTTCCTTTTTAACGTTAGC
CACATTAAGAAAAAAAGTGGGCTTTGCCTACAGCACCTG
CTTCTGCTTTCCGCATTTACTGATCCACTAAGTGTAAGT
GTGACATATAGAGGTCTGTGTTGGTTGTTGTTTTGTGTT
CAAACAGCTGAACATCTGGCCTCTCATGTGCAGGTGCAC
AGAACTCAGGAGAAGGGGTTTTAATTTAAGATAAAAAAA
ATAAGGATATGTGCTAGTTGCAGATGAGGGTTTGGGTG
CTGGACTTAAGATGCTTCTGTGTTCAAAAACAAGGAGTC
CTCAATTTGCAAGGTTCATAAAGAGTTTCACACAGATGG
CACCCAAAGTGCTTATTTCTCATTGTGCTGAAATTAAAC
TTGAATATGCTATATATCAAATAAATAGAAGTAAATAGC
CTTTCTTTATACTTTCTAGAAGTTGAGCTCAATGTTCTTT
CGGAGAGAGCAGGCTCATCTCCATTATGTAGCGCCAAT
GACAAATACCTGTATATGTCTGTATTTCCTTGGTCTGTC
TTGCTCACCTGTTAAGACACCTTGCTGCACAACAGATGG
CACATGCTTATCTTGTGGCAGTGAAGAGTTGACATCAAA
GGCCAAGAAAACCTTGAAACTCATCCTTTTCAGCCCACA
AGAGCAGCTTCTCTCTACCACAGACGATGAAAGCTGGA
GATAACAGGGGCATTCCCACCGCTGCACTCTCTCTTGTG
GCCAGCTGACAGTTAACACAGGTGGGCGTGAGGTGCTG
CCTACATTTTGAAGGTTGTCTATTGATGGGGAACACCAC
CTCTCTGAGCTCAGGCCTCTGCTTTGGCCCGTGGAGCTG
CTGCTTCTGAGAAGTAACCAGGTGGTGAATACCTGCCTG
CTTTTCAGAAAATCCGAGGTGGCTGTCAATTGACAATTA
TTTATTCATTGTAAAATAATCACAGGAACAGCAGCAGTG
TAGGTTTCCCTACCTAGAGGGTGGTATGCAGTGATTCTC
AGGCGCTGGTTGGAAGGCACAGCTGAGGGACACAAACT
GCCAGGAAGTAATGTGGTAACTAGCCATGAGCTTGTGG
TACTAATGGTGGCACGGGAAACAAGGTCTCTGCTTGACT
TTTATTTTCACTCCATAACAAACTCACCAGATCAGGAGC
CTAAGGGTGGGTGGGGAGGGAGAAGAGAGAAAAAAGCA
AAGGGAAAGTTCAAAGTGACACTCGCTGGGGCTGAAAA
CCACACTCCCCTGCAGATGAGGTCCTTGGCTctcgagAAAA
GTCTATTTTATCTAATATAAGCGTAGTTACTCCTGCTTAC
TTTTGGTTTCCATTTGCATGGAGTATCTTTTTCCATCCTT
TCACTTTTCATCTATGTGTGTCTTTGTAGTTGAAGTGAG
TTTCTTGTAGATAGCACATGGTTATGTCCTGTTTGTTTTT
GTCCATTCCTTCTGTCATTTTATTGTTTTCTGGTTGTTTT
GCATTTCTCTTCCTCGTTTCTTTATCTCTTACTGTTTATC
TTTGTGTGGTTTGCTTGGTGACAAATTTTAGTTACTTTCT
CTTTCGCATCTGTGTATCTGCTCTACTAGTGGGTTCTAT
ACTTTTGTTTGTTCTCCTGATGGTAGTTATTGCCCTTTGG
CTTTCAGATATAGGGCTCCTTTTTTAGGTCTACTACTCTT
GTGTCTGAAAGTTGCATTTTGTTTGAGTAAGTTCATTAA
GCAGGGACCTGAAAGTAAACATCAAAGGTGTGCTGAAT
CAGTGGTGACAATTTCATGTATCATATTTCATAATAATG
TTCTTTCAGAGAGCACATAACATTAACTAGCATGGAGCA
GTGCATGCTCCCTGTATTTCCTTCTGGGGGCCATGATTG
TGAAAGTGTTGCTTGTGATTTACCAGCAGATATTTATAC
ACATTTACTTATCACAAGACGTTTTGAGTCTTTCATGTG
GAGCTCAAAGCCTTAAAACATAAAAACCAAgCTAAAGAG
CCAGGTGGCAGCTGGAGCTGGGGTCTCCTGGCCCATGA
TTGGCTGCCATCATTTGTGGTTAGCCCTCCATGGTGGGG
GAGGCTGGGAAGGACAGTGGAAGCTGATAAACAGCTCA
GCAGCATGTTCTGAGAAACAAGAGGGCAAGGAGAGAGC
AGAGAACACACTTTGCCTTCTCTTTGGTATTGAGTAATA
TCAACCAAATTGCAGACATCTCAACACTTTGGCCAGGCA
GCCTGCTGAGCAAGGTACCTCAGCCAGCATGgtgagcaaggg
cgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggcc
acaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaa
gttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccttcggcta
cggcctgatgtgcttcgcccgctaccccgaccacatgaagcagcacgacttcttcaagtccgc
catgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaag
acccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggca
tcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaacagcca
caacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgc
cacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcg
gcgacggccccgtgctgctgcccgacaaccactacctgagctaccagtccgccctgagcaaa
gaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcac
tctcggcatggacgagctgtacaagtgactgcaggaattcgagcatcttaccgccatttattcc
catatttgttctgtttttcttgatttgggtatacatttaaatgttaataaaacaaaatggtggggc
aatcatttacatttttagggatatgtaattactagttcaggtgtattgccacaagacaaacatgt
taagaaactttcccgttatttacgctctgttcctgttaatcaacctctggattacaaaatttgtga
aagattgactgatattcttaactatgttgctccttttacgctgtgtggatatgctgctttaatgcct
ctgtatcatgctattgcttcccgtacggctttcgttttctcctccttgtataaatcctggttgctgt
ctctttatgaggagttgtggcccgttgtccgtcaacgtggcgtggtgtgctctgtgtttgctgacg
caacccccactggctggggcattgccaccacctgtcaactcctttctgggactttcgctttcccc
ctcccgatcgccacggcagaactcatcgccgcctgccttgcccgctgctggacaggggctag
gttgctgggcactgataattccgtggtgttgtcggggaagggcctgctgccggctctgcggcct
cttccgcgtcttcgccttcgccctcagacgagtcggatctccctttgggccgcctccccgcctgg
aattcgagctcggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttttt
aaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagatctgcttttt
gcttgtactgggtctctctggttagaccagatctgagcctgggagctctctggctaactaggga
acctactgcttaagcctcaataaagcttgccttgagtgcttCAAGTAGTGTGTGC
CCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAG
ACCCTTTTAGTCAGTGTGGAAAATCTCTAGCagtagtagttcatg
tcatcttattattcagtatttataacttgcaaagaaatgaatatcagagagtgagaggaacttg
tttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcat
ttttttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatcatgtctggctcta
gctatcccgcccctaactccgcccatcccgcccctaactccgcccagttccgcccattctccgcc
ccatggctgactaattttttttatttatgcagaggccgaggccgcctcggcctctgagctattcc
agaagtagtgaggaggcttttttggaggcctagggacgtacccaattcgccctatagtgagtc
gtattacgcgcgctcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacc
caacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcccgc
accgatcgcccttcccaacagttgcgcagcctgaatggcgaatgggacgcgccctgtagcgg
cgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccc
tagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagc
tctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaa
cttgattagggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgac
gttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatct
cggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctga
tttaacaaaaatttaacgcgaattttaacaaaatattaacgcttacaatttaggtggcacttttc
ggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctc
atgagacaataaccctgataaatgcttcaataatagcacctagatcaagagacaggatgag
gatcgtttcgcatgattgaacaagatggattgcacgcaggttctccggccgcttgggtggaga
ggctattcggctatgactgggcacaacagacaatcggctgctctgatgccgccgtgttccggc
tgtcagcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatgaact
gcaagacgaggcagcgcggctatcgtggctggccacgacgggcgttccttgcgcagctgtgc
tcgacgttgtcactgaagcgggaagggactggctgctattgggcgaagtgccggggcaggat
ctcctgtcatctcaccttgctcctgccgagaaagtatccatcatggctgatgcaatgcggcggc
tgcatacgcttgatccggctacctgcccattcgaccaccaagcgaaacatcgcatcgagcga
gcacgtactcggatggaagccggtcttgtcgatcaggatgatctggacgaagagcatcaggg
gctcgcgccagccgaactgttcgccaggctcaaggcgagcatgcccgacggcgaggatctc
gtcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaaatggccgcttttctggat
tcatcgactgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctacccgtg
atattgctgaagagcttggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgc
tcccgattcgcagcgcatcgccttctatcgccttcttgacgagttcttctgaattattaacgctta
caatttcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgcatcaggtggca
cttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatc
cgctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaa
agatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaa
ccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaa
ctggcttcagcagagcgcagataccaaatactgttcttctagtgtagccgtagttaggccacc
acttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgct
gccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggc
gcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctac
accgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaa
aggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttc
cagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcg
atttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggccttttt
acggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtg
gataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgc
agcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcg
cgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtga
gcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgcttc
cggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatgacc
atgattacgccaagcgcgcaattaaccctcactaaagggaacaaaagctggagctgcaagc
ttggccattgcatacgttgtatccatatcataatatgtacatttatattggctcatgtccaacatt
accgccat
Cttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagccca
tatatggAGTTCCGCGTTACATAACTTACGGTAAATGGCCCG
CCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTC
AATAATGACGTATGTTCCCATAGTAACGCCAATAGGGAC
TTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAAC
TGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAG
TACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGC
CTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCC
TACTTGGCAGTACATCTACGTATTAGTCATCGCTATTAC
CATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTG
GATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACC
CCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATC
AACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCAT
TGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTC
TATATAAGCAGAGCTCGTTTAGTGAACCGGGGTCTCTCT
GGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAA
CTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCT
TGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGAC
TCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTG
TGGAAAATCTCTAGCagtggcgcccgaacagggacttgaaagcgaaaggga
aaccagaggagctctctcgacgcaggactcggcttgctgaagcgcgcacggcaagaggcga
ggggcggcgactggtgagtacgccaaaaattttgactagcggaggctagaaggagagagat
gggtgcgagagcgtcagtattaagcgggggagaattagatcgcgatgggaaaaaattcggt
taaggccagggggaaagaaaaaatataaattaaaacatatagtatgggcaagcagggagc
tagaacgattcgcagttaatcctggcctgttagaaacatcagaaggctgtagacaaatactgg
gacagctacaaccatcccttcagacaggatcagaagaacttagatcattatataatacagta
gcaaccctctattgtgtgcatcaaaggatagagataaaagacaccaaggaagctttagacaa
gatagaggaagagcaaaacaaaagtaagaccaccgcacagcaagcggccgctgatcttca
gacctggaggaggagatatgagggacaattggagaagtgaattatataaatataaagtagt
aaaaattgaaccattaggagtagcacccaccaaggcaaagagaagagtggtgcagagaga
aaaaagagcagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcacta
tgggcgcagcgtcaatgacgctgacggtacaggccagacaattattgtctggtatagtgcag
cagcagaacaatttgctgagggctattgaggcgcaacagcatctgttgcaactcacagtctgg
ggcatcaagcagctccaggcaagaatcctggctgtggaaagatacctaaaggatcaacagc
tcctggggatttggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagt
tggagtaataaatctctggaacagatttggaatcacacgacctggatggagtgggacagaga
aattaacaattacacaagcttaatacactccttaattgaagaatcgcaaaaccagcaagaaa
agaatgaacaagaattattggaattagataaatgggcaagtttgtggaattggtttaacataa
caaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaat
agtttttgctgtactttctatagtgaatagagttaggcagggatattcaccattatcgtttcagac
ccacctcccaaccccgaggggacccgacaggcccgaaggaatagaagaagaaggtggag
agagagacagagacagatccattcgattagtgaacggatctcgacggtatcggttaactttta
aaagaaaaggggggattggggggtacagtgcaggggaaagaatagtagacataatagca
acagacatacaaactaaagaattacaaaaacaaattacaaaaattcaaaattttatcgatca
cgagactagccAGAAAAGAGGGATTGGGGCCCTCTCCCAACA
GACATGAGTATTTAGGAGTCCCCAGTTCCGGTTTCCACA
TGACATGATATGATGGTCTGTTGTTTTCCTCAGGGACCT
AGAGGCAGATGTAGACAAATAGCAGGTGAGGAGGAAGG
GTGGTGCTGAGCTGTAAACAACAGCTGCGGGCTGTAAA
CAATGGAGCTATATTAAGAAAGTCCTGCATCTGCAGCAT
TCGGTTCAATCCTGCCACCCACTGGGCGTACTCCTGAAT
TGACTTTCCATTGTCAGCTGATCAGTGACAGATGTGAAA
TGACTCGTTACACACACAGGTCACATTGGGAGGATTCTT
AGACGTCATATTCTTTGGTGCTTCACAAAGTCTTACTGT
GGCACATGAAATGATTTCAGATGGTGCACAAGATGATTT
CACATGTAAATTTCCATGAGGGTGCAAAGAGAGGCTTTT
CCCAATCTGAAGAATGAATTTAAAATCTGCTGTAGAAAA
ATACCAGAGAGAAAAATATAGAAAGCAGCTGTCCCTCTT
ACCAATTTCAGAGCAGGAAAGGAATTTCAGTAGAGCATA
AAAACAGCTTTCTCTCATAAAAGAAAACACAACAAGAAA
AATAATCCTTGCTGTGTAGCCTTTTGCAGTTATTTTCTGT
CATGTGTTAGATAGAGACCAGAGGGCTTAACATTGTTTT
GATACCCTTGCATCTGGCAGATTGCCTGTCAGAGGAAGT
TGGAAACGAACTGACCAGCTTTATGCTTCCAGGTGGCAC
TGAAGCCACATTTTCAGTGCCGTTGTTATCAGTCATTTA
ATTCCCTACTGAATATTGAGTGGTGTTTTTAGTTCACAG
GCCATTTGCAGTGCCTTTCTGTTTCCTTTTTAACGTTAGC
CACATTAAGAAAAAAAGTGGGCTTTGCCTACAGCACCTG
CTTCTGCTTTCCGCATTTACTGATCCACTAAGTGTAAGT
GTGACATATAGAGGTCTGTGTTGGTTGTTGTTTTGTGTT
CAAACAGCTGAACATCTGGCCTCTCATGTGCAGGTGCAC
AGAACTCAGGAGAAGGGGTTTTAATTTAAGATAAAAAAA
ATAAGGATATGTGCTAGTTGCAGATGAGGGTTTGGGTG
CTGGACTTAAGATGCTTCTGTGTTCAAAAACAAGGAGTC
CTCAATTTGCAAGGTTCATAAAGAGTTTCACACAGATGG
CACCCAAAGTGCTTATTTCTCATTGTGCTGAAATTAAAC
TTGAATATGCTATATATCAAATAAATAGAAGTAAATAGC
CTTTCTTTATACTTTCTAGAAGTTGAGCTCAATGTTCTTT
CGGAGAGAGCAGGCTCATCTCCATTATGTAGCGCCAAT
GACAAATACCTGTATATGTCTGTATTTCCTTGGTCTGTC
TTGCTCACCTGTTAAGACACCTTGCTGCACAACAGATGG
CACATGCTTATCTTGTGGCAGTGAAGAGTTGACATCAAA
GGCCAAGAAAACCTTGAAACTCATCCTTTTCAGCCCACA
AGAGCAGCTTCTCTCTACCACAGACGATGAAAGCTGGA
GATAACAGGGGCATTCCCACCGCTGCACTCTCTCTTGTG
GCCAGCTGACAGTTAACACAGGTGGGCGTGAGGTGCTG
CCTACATTTTGAAGGTTGTCTATTGATGGGGAACACCAC
CTCTCTGAGCTCAGGCCTCTGCTTTGGCCCGTGGAGCTG
CTGCTTCTGAGAAGTAACCAGGTGGTGAATACCTGCCTG
CTTTTCAGAAAATCCGAGGTGGCTGTCAATTGACAATTA
TTTATTCATTGTAAAATAATCACAGGAACAGCAGCAGTG
TAGGTTTCCCTACCTAGAGGGTGGTATGCAGTGATTCTC
AGGCGCTGGTTGGAAGGCACAGCTGAGGGACACAAACT
GCCAGGAAGTAATGTGGTAACTAGCCATGAGCTTGTGG
TACTAATGGTGGCACGGGAAACAAGGTCTCTGCTTGACT
TTTATTTTCACTCCATAACAAACTCACCAGATCAGGAGC
CTAAGGGTGGGTGGGGAGGGAGAAGAGAGAAAAAAGCA
AAGGGAAAGTTCAAAGTGACACTCGCTGGGGCTGAAAA
CCACACTCCCCTGCAGATGAGGTCCTTGGCTctcgagAAAA
GTCTATTTTATCTAATATAAGCGTAGTTACTCCTGCTTAC
TTTTGGTTTCCATTTGCATGGAGTATCTTTTTCCATCCTT
TCACTTTTCATCTATGTGTGTCTTTGTAGTTGAAGTGAG
TTTCTTGTAGATAGCACATGGTTATGTCCTGTTTGTTTTT
GTCCATTCCTTCTGTCATTTTATTGTTTTCTGGTTGTTTT
GCATTTCTCTTCCTCGTTTCTTTATCTCTTACTGTTTATC
TTTGTGTGGTTTGCTTGGTGACAAATTTTAGTTACTTTCT
CTTTCGCATCTGTGTATCTGCTCTACTAGTGGGTTCTAT
ACTTTTGTTTGTTCTCCTGATGGTAGTTATTGCCCTTTGG
CTTTCAGATATAGGGCTCCgCTAAAGAGCCAGGTGGCAG
CTGGAGCTGGGGTCTCCTGGCCCATGATTGGCTGCCAT
CATTTGTGGTTAGCCCTCCATGGTGGGGGAGGCTGGGA
AGGACAGTGGAAGCTGATAAACAGCTCAGCAGCATGTT
CTGAGAAACAAGAGGGCAAGGAGAGAGCAGAGAACACA
CTTTGCCTTCTCTTTGGTATTGAGTAATATCAACCAAATT
GCAGACATCTCAACACTTTGGCCAGGCAGCCTGCTGAG
CAAGGTACCTCAGCCAGCATGgtgagcaagggcgaggagctgttcaccg
gggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtcc
ggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccg
gcaagctgcccgtgccctggcccaccctcgtgaccaccttcggctacggcctgatgtgcttcgc
ccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacg
tccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaa
gttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggac
ggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggc
cgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacgg
cagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctg
ctgcccgacaaccactacctgagctaccagtccgccctgagcaaagaccccaacgagaagc
gcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgag
ctgtacaagtgactgcaggaattcgagcatcttaccgccatttattcccatatttgttctgtttttc
ttgatttgggtatacatttaaatgttaataaaacaaaatggtggggcaatcatttacatttttag
ggatatgtaattactagttcaggtgtattgccacaagacaaacatgttaagaaactttcccgtt
atttacgctctgttcctgttaatcaacctctggattacaaaatttgtgaaagattgactgatattc
ttaactatgttgctccttttacgctgtgtggatatgctgctttaatgcctctgtatcatgctattgc
ttcccgtacggctttcgttttctcctccttgtataaatcctggttgctgtctctttatgaggagttg
tggcccgttgtccgtcaacgtggcgtggtgtgctctgtgtttgctgacgcaacccccactggctgg
ggcattgccaccacctgtcaactcctttctgggactttcgctttccccctcccgatcgccacggc
agaactcatcgccgcctgccttgcccgctgctggacaggggctaggttgctgggcactgataa
ttccgtggtgttgtcggggaagggcctgctgccggctctgcggcctcttccgcgtcttcgccttc
gccctcagacgagtcggatctccctttgggccgcctccccgcctggaattcgagctcggtacct
ttaagaccaatgacttacaaggcagctgtagatcttagccactttttaaaagaaaagggggg
actggaagggctaattcactcccaacgaagacaagatctgctttttgcttgtactgggtctctct
ggttagaccagatctgagcctgggagctctctggctaactagggaacctactgcttaagcctc
aataaagcttgccttgagtgcttCAAGTAGTGTGTGCCCGTCTGTTGT
GTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGT
CAGTGTGGAAAATCTCTAGCagtagtagttcatgtcatcttattattcagtat
ttataacttgcaaagaaatgaatatcagagagtgagaggaacttgtttattgcagcttataatg
gttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagt
tgtggtttgtccaaactcatcaatgtatcttatcatgtctggctctagctatcccgcccctaactc
cgcccatcccgcccctaactccgcccagttccgcccattctccgccccatggctgactaattttt
tttatttatgcagaggccgaggccgcctcggcctctgagctattccagaagtagtgaggaggc
ttttttggaggcctagggacgtacccaattcgccctatagtgagtcgtattacgcgcgctcact
ggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgca
gcacatccccctttcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttccca
acagttgcgcagcctgaatggcgaatgggacgcgccctgtagcggcgcattaagcgcggcg
ggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttc
gctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctc
cctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatg
gttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttc
tttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgat
ttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaa
cgcgaattttaacaaaatattaacgcttacaatttaggtggcacttttcggggaaatgtgcgcg
gaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccct
gataaatgcttcaataatagcacctagatcaagagacaggatgaggatcgtttcgcatgattg
aacaagatggattgcacgcaggttctccggccgcttgggtggagaggctattcggctatgact
gggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtcagcgcaggggcgc
ccggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaagacgaggcagcg
cggctatcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaa
gcgggaagggactggctgctattgggcgaagtgccggggcaggatctcctgtcatctcacctt
gctcctgccgagaaagtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccg
gctacctgcccattcgaccaccaagcgaaacatcgcatcgagcgagcacgtactcggatgga
agccggtcttgtcgatcaggatgatctggacgaagagcatcaggggctcgcgccagccgaa
ctgttcgccaggctcaaggcgagcatgcccgacggcgaggatctcgtcgtgacccatggcga
tgcctgcttgccgaatatcatggtggaaaatggccgcttttctggattcatcgactgtggccgg
ctgggtgtggcggaccgctatcaggacatagcgttggctacccgtgatattgctgaagagctt
ggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgc
atcgccttctatcgccttcttgacgagttcttctgaattattaacgcttacaatttcctgatgcggt
attttctccttacgcatctgtgcggtatttcacaccgcatcaggtggcacttttcggggaaatgt
gcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgaccaaaat
cccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttct
tgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcgg
tggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagc
gcagataccaaatactgttcttctagtgtagccgtagttaggccaccacttcaagaactctgta
gcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagt
cgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctga
acggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacc
tacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatcc
ggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcct
ggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtc
aggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttg
ctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcc
tttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcg
aggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaa
tgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgt
gagttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtg
gaattgtgagcggataacaatttcacacaggaaacagctatgaccatgattacgccaagcgc
gcaattaaccctcactaaagggaacaaaagctggagctgcaagcttggccattgcatacgtt
gtatccatatcataatatgtacatttatattggctcatgtccaacattaccgccat
Cttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagccca
tatatggAGTTCCGCGTTACATAACTTACGGTAAATGGCCCG
CCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTC
AATAATGACGTATGTTCCCATAGTAACGCCAATAGGGAC
TTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAAC
TGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAG
TACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGC
CTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCC
TACTTGGCAGTACATCTACGTATTAGTCATCGCTATTAC
CATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTG
GATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACC
CCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATC
AACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCAT
TGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTC
TATATAAGCAGAGCTCGTTTAGTGAACCGGGGTCTCTCT
GGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAA
CTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCT
TGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGAC
TCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTG
TGGAAAATCTCTAGCagtggcgcccgaacagggacttgaaagcgaaaggga
aaccagaggagctctctcgacgcaggactcggcttgctgaagcgcgcacggcaagaggcga
ggggcggcgactggtgagtacgccaaaaattttgactagcggaggctagaaggagagagat
gggtgcgagagcgtcagtattaagcgggggagaattagatcgcgatgggaaaaaattcggt
taaggccagggggaaagaaaaaatataaattaaaacatatagtatgggcaagcagggagc
tagaacgattcgcagttaatcctggcctgttagaaacatcagaaggctgtagacaaatactgg
gacagctacaaccatcccttcagacaggatcagaagaacttagatcattatataatacagta
gcaaccctctattgtgtgcatcaaaggatagagataaaagacaccaaggaagctttagacaa
gatagaggaagagcaaaacaaaagtaagaccaccgcacagcaagcggccgctgatcttca
gacctggaggaggagatatgagggacaattggagaagtgaattatataaatataaagtagt
aaaaattgaaccattaggagtagcacccaccaaggcaaagagaagagtggtgcagagaga
aaaaagagcagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcacta
tgggcgcagcgtcaatgacgctgacggtacaggccagacaattattgtctggtatagtgcag
cagcagaacaatttgctgagggctattgaggcgcaacagcatctgttgcaactcacagtctgg
ggcatcaagcagctccaggcaagaatcctggctgtggaaagatacctaaaggatcaacagc
tcctggggatttggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagt
tggagtaataaatctctggaacagatttggaatcacacgacctggatggagtgggacagaga
aattaacaattacacaagcttaatacactccttaattgaagaatcgcaaaaccagcaagaaa
agaatgaacaagaattattggaattagataaatgggcaagtttgtggaattggtttaacataa
caaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaat
agtttttgctgtactttctatagtgaatagagttaggcagggatattcaccattatcgtttcagac
ccacctcccaaccccgaggggacccgacaggcccgaaggaatagaagaagaaggtggag
agagagacagagacagatccattcgattagtgaacggatctcgacggtatcggttaactttta
aaagaaaaggggggattggggggtacagtgcaggggaaagaatagtagacataatagca
acagacatacaaactaaagaattacaaaaacaaattacaaaaattcaaaattttatcgatca
cgagactagccAGAAAAGAGGGATTGGGGCCCTCTCCCAACA
GACATGAGTATTTAGGAGTCCCCAGTTCCGGTTTCCACA
TGACATGATATGATGGTCTGTTGTTTTCCTCAGGGACCT
AGAGGCAGATGTAGACAAATAGCAGGTGAGGAGGAAGG
GTGGTGCTGAGCTGTAAACAACAGCTGCGGGCTGTAAA
CAATGGAGCTATATTAAGAAAGTCCTGCATCTGCAGCAT
TCGGTTCAATCCTGCCACCCACTGGGCGTACTCCTGAAT
TGACTTTCCATTGTCAGCTGATCAGTGACAGATGTGAAA
TGACTCGTTACACACACAGGTCACATTGGGAGGATTCTT
AGACGTCATATTCTTTGGTGCTTCACAAAGTCTTACTGT
GGCACATGAAATGATTTCAGATGGTGCACAAGATGATTT
CACATGTAAATTTCCATGAGGGTGCAAAGAGAGGCTTTT
CCCAATCTGAAGAATGAATTTAAAATCTGCTGTAGAAAA
ATACCAGAGAGAAAAATATAGAAAGCAGCTGTCCCTCTT
ACCAATTTCAGAGCAGGAAAGGAATTTCAGTAGAGCATA
AAAACAGCTTTCTCTCATAAAAGAAAACACAACAAGAAA
AATAATCCTTGCTGTGTAGCCTTTTGCAGTTATTTTCTGT
CATGTGTTAGATAGAGACCAGAGGGCTTAACATTGTTTT
GATACCCTTGCATCTGGCAGATTGCCTGTCAGAGGAAGT
TGGAAACGAACTGACCAGCTTTATGCTTCCAGGTGGCAC
TGAAGCCACATTTTCAGTGCCGTTGTTATCAGTCATTTA
ATTCCCTACTGAATATTGAGTGGTGTTTTTAGTTCACAG
GCCATTTGCAGTGCCTTTCTGTTTCCTTTTTAACGTTAGC
CACATTAAGAAAAAAAGTGGGCTTTGCCTACAGCACCTG
CTTCTGCTTTCCGCATTTACTGATCCACTAAGTGTAAGT
GTGACATATAGAGGTCTGTGTTGGTTGTTGTTTTGTGTT
CAAACAGCTGAACATCTGGCCTCTCATGTGCAGGTGCAC
AGAACTCAGGAGAAGGGGTTTTAATTTAAGATAAAAAAA
ATAAGGATATGTGCTAGTTGCAGATGAGGGTTTGGGTG
CTGGACTTAAGATGCTTCTGTGTTCAAAAACAAGGAGTC
CTCAATTTGCAAGGTTCATAAAGAGTTTCACACAGATGG
CACCCAAAGTGCTTATTTCTCATTGTGCTGAAATTAAAC
TTGAATATGCTATATATCAAATAAATAGAAGTAAATAGC
CTTTCTTTATACTTTCTAGAAGTTGAGCTCAATGTTCTTT
CGGAGAGAGCAGGCTCATCTCCATTATGTAGCGCCAAT
GACAAATACCTGTATATGTCTGTATTTCCTTGGTCTGTC
TTGCTCACCTGTTAAGACACCTTGCTGCACAACAGATGG
CACATGCTTATCTTGTGGCAGTGAAGAGTTGACATCAAA
GGCCAAGAAAACCTTGAAACTCATCCTTTTCAGCCCACA
AGAGCAGCTTCTCTCTACCACAGACGATGAAAGCTGGA
GATAACAGGGGCATTCCCACCGCTGCACTCTCTCTTGTG
GCCAGCTGACAGTTAACACAGGTGGGCGTGAGGTGCTG
CCTACATTTTGAAGGTTGTCTATTGATGGGGAACACCAC
CTCTCTGAGCTCAGGCCTCTGCTTTGGCCCGTGGAGCTG
CTGCTTCTGAGAAGTAACCAGGTGGTGAATACCTGCCTG
CTTTTCAGAAAATCCGAGGTGGCTGTCAATTGACAATTA
TTTATTCATTGTAAAATAATCACAGGAACAGCAGCAGTG
TAGGTTTCCCTACCTAGAGGGTGGTATGCAGTGATTCTC
AGGCGCTGGTTGGAAGGCACAGCTGAGGGACACAAACT
GCCAGGAAGTAATGTGGTAACTAGCCATGAGCTTGTGG
TACTAATGGTGGCACGGGAAACAAGGTCTCTGCTTGACT
TTTATTTTCACTCCATAACAAACTCACCAGATCAGGAGC
CTAAGGGTGGGTGGGGAGGGAGAAGAGAGAAAAAAGCA
AAGGGAAAGTTCAAAGTGACACTCGCTGGGGCTGAAAA
CCACACTCCCCTGCAGATGAGGTCCTTGGCTcTCTAGGC
AAGTGTCTCTCTCTCTCTCCCCCTCTTTTTCTTTTAGAAA
AATACTTCGTGATAAAAACACAAAAGTATGTGAATGGTA
ATTGAAAATGCATTGCTTCCTTTTAGAAACCCACTAGGA
TTTGCATAAACCACTTGGCTGTCTGATAAGTCATTATCT
GTTCTGTCAGTCCCTGGGGACTTTTAATATTAGGTTTAT
ATTTTTATAGAAAAGGCAAGTTCTAAATTTGAAGATGGG
TATTGTTAAACTCTTCAATAATGACAGTTTGTGAAACTG
CATGTTCCAAAAGTCCTTTAAAAAGTCAATAAGGCgCTT
CTGTCATTTTATTGTTTTCTGGTTGTTTTGCATTTCTCTT
CCTCGTTTCTTTATCTCTTACTGTTTATCTTTGTGTGGTT
TGCTTGGTGACAAATTTTAGTTACTTTCTCTTTCGCATCT
GTGTATCTGCTCTACTAGTGGGTTCTATACTTTTGTTTGT
TCTCCTGATGGTAGTTATTGCCCTTTGGCTTTCAGATAT
AGGGCTCCTTTTTTAGGTCTACTACTCTTGTGTCTGAAA
GTTGCATTTTGTTTGAGTAAGTTCATTAAGCAGGGACCT
GAAAGTAAACATCAAAGGTGTGCTGAATCAGTGGTGAC
AATTTCATGTATCATATTTCATAATAATGTTCTTTCAGAG
AGCACATAACATTAACTAGCATGGAGCAGTGCATGCTCC
CTGTATTTCCTTCTGGGGGCCATGATTGTGAAAGTGTTG
CTTGTGATTTACCAGCAGATATTTATACACATTTACTTAT
CACAAGACGTTTTGAGTCTTTCATGTGGAGCTCAAAGCC
TTAAAACATAAAAACCAATGGCTTGATTTCTGCCACTTG
ActttttttGAAttcctttAtcActcttttActcttttAG
TGATCATTGACGTAGGTTCCTGTACTTGCTGTTGTCAGA
AGAAGCAAGTTTCAGTTTTGGAATGTACCCTGCACGCTT
AGTTCTTCTTTGACTATTGTAAGCCATTCTTCTTTGTCTC
CTTTCTGGCTCCCTGCCCCCACCTTTCTGCTCCTTTTTTC
TTCTATTCTCTAAAGACCTTTTCTTTTCATTTACTGCATT
AATGCAGGAAGCAAGGCACAGTGGTTAGGAGGATAGGT
TCTAGAGTCAGAAGGCAGTGTTCAGATCCCCACTCTGCT
ACTTAACCATCTGTATgCTAAAGAGCCAGGTGGCAGCTG
GAGCTGGGGTCTCCTGGCCCATGATTGGCTGCCATCATT
TGTGGTTAGCCCTCCATGGTGGGGGAGGCTGGGAAGGA
CAGTGGAAGCTGATAAACAGCTCAGCAGCATGTTCTGA
GAAACAAGAGGGCAAGGAGAGAGCAGAGAACACACTTT
GCCTTCTCTTTGGTATTGAGTAATATCAACCAAATTGCA
GACATCTCAACACTTTGGCCAGGCAGCCTGCTGAGCAA
GGTACCTCAGCCAGCATGgtgagcaagggcgaggagctgttcaccggggt
ggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccggcg
agggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaa
gctgcccgtgccctggcccaccctcgtgaccaccttcggctacggcctgatgtgcttcgcccgc
taccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtcca
ggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttc
gagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggc
aacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggccga
caagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcag
cgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgc
ccgacaaccactacctgagctaccagtccgccctgagcaaagaccccaacgagaagcgcga
tcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgta
caagtgactgcaggaattcgagcatcttaccgccatttattcccatatttgttctgtttttcttgat
ttgggtatacatttaaatgttaataaaacaaaatggtggggcaatcatttacatttttagggat
atgtaattactagttcaggtgtattgccacaagacaaacatgttaagaaactttcccgttattta
cgctctgttcctgttaatcaacctctggattacaaaatttgtgaaagattgactgatattcttaac
tatgttgctccttttacgctgtgtggatatgctgctttaatgcctctgtatcatgctattgcttccc
gtacggctttcgttttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtggcc
cgttgtccgtcaacgtggcgtggtgtgctctgtgtttgctgacgcaacccccactggctggggca
ttgccaccacctgtcaactcctttctgggactttcgctttccccctcccgatcgccacggcagaa
ctcatcgccgcctgccttgcccgctgctggacaggggctaggttgctgggcactgataattccg
tggtgttgtcggggaagggcctgctgccggctctgcggcctcttccgcgtcttcgccttcgccct
cagacgagtcggatctccctttgggccgcctccccgcctggaattcgagctcggtacctttaag
accaatgacttacaaggcagctgtagatcttagccactttttaaaagaaaaggggggactgg
aagggctaattcactcccaacgaagacaagatctgctttttgcttgtactgggtctctctggtta
gaccagatctgagcctgggagctctctggctaactagggaacctactgcttaagcctcaataa
agcttgccttgagtgcttCAAGTAGTGTGTGCCCGTCTGTTGTGTG
ACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAG
TGTGGAAAATCTCTAGCagtagtagttcatgtcatcttattattcagtatttata
acttgcaaagaaatgaatatcagagagtgagaggaacttgtttattgcagcttataatggtta
caaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtg
gtttgtccaaactcatcaatgtatcttatcatgtctggctctagctatcccgcccctaactccgcc
catcccgcccctaactccgcccagttccgcccattctccgccccatggctgactaattttttttat
ttatgcagaggccgaggccgcctcggcctctgagctattccagaagtagtgaggaggctttttt
ggaggcctagggacgtacccaattcgccctatagtgagtcgtattacgcgcgctcactggccg
tcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcaca
tccccctttcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagtt
gcgcagcctgaatggcgaatgggacgcgccctgtagcggcgcattaagcgcggcgggtgtg
gtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttctt
cccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttag
ggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacg
tagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaata
gtggactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgatttataag
ggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaa
ttttaacaaaatattaacgcttacaatttaggtggcacttttcggggaaatgtgcgcggaaccc
ctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaa
tgcttcaataatagcacctagatcaagagacaggatgaggatcgtttcgcatgattgaacaa
gatggattgcacgcaggttctccggccgcttgggtggagaggctattcggctatgactgggca
caacagacaatcggctgctctgatgccgccgtgttccggctgtcagcgcaggggcgcccggtt
ctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaagacgaggcagcgcggcta
tcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcggga
agggactggctgctattgggcgaagtgccggggcaggatctcctgtcatctcaccttgctcctg
ccgagaaagtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacct
gcccattcgaccaccaagcgaaacatcgcatcgagcgagcacgtactcggatggaagccgg
tcttgtcgatcaggatgatctggacgaagagcatcaggggctcgcgccagccgaactgttcg
ccaggctcaaggcgagcatgcccgacggcgaggatctcgtcgtgacccatggcgatgcctgc
ttgccgaatatcatggtggaaaatggccgcttttctggattcatcgactgtggccggctgggtg
tggcggaccgctatcaggacatagcgttggctacccgtgatattgctgaagagcttggcggcg
aatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgccttc
tatcgccttcttgacgagttcttctgaattattaacgcttacaatttcctgatgcggtattttctcc
ttacgcatctgtgcggtatttcacaccgcatcaggtggcacttttcggggaaatgtgcgcggaa
cccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgaccaaaatcccttaac
gtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcc
tttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtt
tgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagatac
caaatactgttcttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcc
tacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtctta
ccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacgggggg
ttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtg
agctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcg
gcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatcttta
tagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggc
ggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggcctttt
gctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtga
gctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcg
gaagagcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctg
gcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtgagttag
ctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtg
agcggataacaatttcacacaggaaacagctatgaccatgattacgccaagcgcgcaattaa
ccctcactaaagggaacaaaagctggagctgcaagcttggccattgcatacgttgtatccata
tcataatatgtacatttatattggctcatgtccaacattaccgccat
Cttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagccca
tatatggAGTTCCGCGTTACATAACTTACGGTAAATGGCCCG
CCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTC
AATAATGACGTATGTTCCCATAGTAACGCCAATAGGGAC
TTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAAC
TGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAG
TACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGC
CTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCC
TACTTGGCAGTACATCTACGTATTAGTCATCGCTATTAC
CATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTG
GATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACC
CCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATC
AACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCAT
TGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTC
TATATAAGCAGAGCTCGTTTAGTGAACCGGGGTCTCTCT
GGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAA
CTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCT
TGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGAC
TCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTG
TGGAAAATCTCTAGCagtggcgcccgaacagggacttgaaagcgaaaggga
aaccagaggagctctctcgacgcaggactcggcttgctgaagcgcgcacggcaagaggcga
ggggcggcgactggtgagtacgccaaaaattttgactagcggaggctagaaggagagagat
gggtgcgagagcgtcagtattaagcgggggagaattagatcgcgatgggaaaaaattcggt
taaggccagggggaaagaaaaaatataaattaaaacatatagtatgggcaagcagggagc
tagaacgattcgcagttaatcctggcctgttagaaacatcagaaggctgtagacaaatactgg
gacagctacaaccatcccttcagacaggatcagaagaacttagatcattatataatacagta
gcaaccctctattgtgtgcatcaaaggatagagataaaagacaccaaggaagctttagacaa
gatagaggaagagcaaaacaaaagtaagaccaccgcacagcaagcggccgctgatcttca
gacctggaggaggagatatgagggacaattggagaagtgaattatataaatataaagtagt
aaaaattgaaccattaggagtagcacccaccaaggcaaagagaagagtggtgcagagaga
aaaaagagcagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcacta
tgggcgcagcgtcaatgacgctgacggtacaggccagacaattattgtctggtatagtgcag
cagcagaacaatttgctgagggctattgaggcgcaacagcatctgttgcaactcacagtctgg
ggcatcaagcagctccaggcaagaatcctggctgtggaaagatacctaaaggatcaacagc
tcctggggatttggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagt
tggagtaataaatctctggaacagatttggaatcacacgacctggatggagtgggacagaga
aattaacaattacacaagcttaatacactccttaattgaagaatcgcaaaaccagcaagaaa
agaatgaacaagaattattggaattagataaatgggcaagtttgtggaattggtttaacataa
caaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaat
agtttttgctgtactttctatagtgaatagagttaggcagggatattcaccattatcgtttcagac
ccacctcccaaccccgaggggacccgacaggcccgaaggaatagaagaagaaggtggag
agagagacagagacagatccattcgattagtgaacggatctcgacggtatcggttaactttta
aaagaaaaggggggattggggggtacagtgcaggggaaagaatagtagacataatagca
acagacatacaaactaaagaattacaaaaacaaattacaaaaattcaaaattttatcgatca
cgagactagccAGAAAAGAGGGATTGGGGCCCTCTCCCAACA
GACATGAGTATTTAGGAGTCCCCAGTTCCGGTTTCCACA
TGACATGATATGATGGTCTGTTGTTTTCCTCAGGGACCT
AGAGGCAGATGTAGACAAATAGCAGGTGAGGAGGAAGG
GTGGTGCTGAGCTGTAAACAACAGCTGCGGGCTGTAAA
CAATGGAGCTATATTAAGAAAGTCCTGCATCTGCAGCAT
TCGGTTCAATCCTGCCACCCACTGGGCGTACTCCTGAAT
TGACTTTCCATTGTCAGCTGATCAGTGACAGATGTGAAA
TGACTCGTTACACACACAGGTCACATTGGGAGGATTCTT
AGACGTCATATTCTTTGGTGCTTCACAAAGTCTTACTGT
GGCACATGAAATGATTTCAGATGGTGCACAAGATGATTT
CACATGTAAATTTCCATGAGGGTGCAAAGAGAGGCTTTT
CCCAATCTGAAGAATGAATTTAAAATCTGCTGTAGAAAA
ATACCAGAGAGAAAAATATAGAAAGCAGCTGTCCCTCTT
ACCAATTTCAGAGCAGGAAAGGAATTTCAGTAGAGCATA
AAAACAGCTTTCTCTCATAAAAGAAAACACAACAAGAAA
AATAATCCTTGCTGTGTAGCCTTTTGCAGTTATTTTCTGT
CATGTGTTAGATAGAGACCAGAGGGCTTAACATTGTTTT
GATACCCTTGCATCTGGCAGATTGCCTGTCAGAGGAAGT
TGGAAACGAACTGACCAGCTTTATGCTTCCAGGTGGCAC
TGAAGCCACATTTTCAGTGCCGTTGTTATCAGTCATTTA
ATTCCCTACTGAATATTGAGTGGTGTTTTTAGTTCACAG
GCCATTTGCAGTGCCTTTCTGTTTCCTTTTTAACGTTAGC
CACATTAAGAAAAAAAGTGGGCTTTGCCTACAGCACCTG
CTTCTGCTTTCCGCATTTACTGATCCACTAAGTGTAAGT
GTGACATATAGAGGTCTGTGTTGGTTGTTGTTTTGTGTT
CAAACAGCTGAACATCTGGCCTCTCATGTGCAGGTGCAC
AGAACTCAGGAGAAGGGGTTTTAATTTAAGATAAAAAAA
ATAAGGATATGTGCTAGTTGCAGATGAGGGTTTGGGTG
CTGGACTTAAGATGCTTCTGTGTTCAAAAACAAGGAGTC
CTCAATTTGCAAGGTTCATAAAGAGTTTCACACAGATGG
CACCCAAAGTGCTTATTTCTCATTGTGCTGAAATTAAAC
TTGAATATGCTATATATCAAATAAATAGAAGTAAATAGC
CTTTCTTTATACTTTCTAGAAGTTGAGCTCAATGTTCTTT
CGGAGAGAGCAGGCTCATCTCCATTATGTAGCGCCAAT
GACAAATACCTGTATATGTCTGTATTTCCTTGGTCTGTC
TTGCTCACCTGTTAAGACACCTTGCTGCACAACAGATGG
CACATGCTTATCTTGTGGCAGTGAAGAGTTGACATCAAA
GGCCAAGAAAACCTTGAAACTCATCCTTTTCAGCCCACA
AGAGCAGCTTCTCTCTACCACAGACGATGAAAGCTGGA
GATAACAGGGGCATTCCCACCGCTGCACTCTCTCTTGTG
GCCAGCTGACAGTTAACACAGGTGGGCGTGAGGTGCTG
CCTACATTTTGAAGGTTGTCTATTGATGGGGAACACCAC
CTCTCTGAGCTCAGGCCTCTGCTTTGGCCCGTGGAGCTG
CTGCTTCTGAGAAGTAACCAGGTGGTGAATACCTGCCTG
CTTTTCAGAAAATCCGAGGTGGCTGTCAATTGACAATTA
TTTATTCATTGTAAAATAATCACAGGAACAGCAGCAGTG
TAGGTTTCCCTACCTAGAGGGTGGTATGCAGTGATTCTC
AGGCGCTGGTTGGAAGGCACAGCTGAGGGACACAAACT
GCCAGGAAGTAATGTGGTAACTAGCCATGAGCTTGTGG
TACTAATGGTGGCACGGGAAACAAGGTCTCTGCTTGACT
TTTATTTTCACTCCATAACAAACTCACCAGATCAGGAGC
CTAAGGGTGGGTGGGGAGGGAGAAGAGAGAAAAAAGCA
AAGGGAAAGTTCAAAGTGACACTCGCTGGGGCTGAAAA
CCACACTCCCCTGCAGATGAGGTCCTTGGCTctcgagTCTA
GGCAAGTGTCTCTCTCTCTCTCCCCCTCTTTTTCTTTTAG
AAAAATACTTCGTGATAAAAACACAAAAGTATGTGAATG
GTAATTGAAAATGCATTGCTTCCTTTTAGAAACCCACTA
GGATTTGCATAAACCACTTGGCTGTCTGATAAGTCATTA
TCTGTTCTGTCAGTCCCTGGGGACTTTTAATATTAGGTT
TATATTTTTATAGAAAAGGCAAGTTCTAAATTTGAAGAT
GGGTATTGTTAAACTCTTCAATAATGACAGTTTGTGAAA
CTGCATGTTCCAAAAGTCCTTTAAAAAGTCAATAAGGCg
AAAAGTCTATTTTATCTAATATAAGCGTAGTTACTCCTG
CTTACTTTTGGTTTCCATTTGCATGGAGTATCTTTTTCCA
TCCTTTCACTTTTCATCTATGTGTGTCTTTGTAGTTGAAG
TGAGTTTCTTGTAGATAGCACATGGTTATGTCCTGTTTG
TTTTTGTCCATTCCTTCTGTCATTTTATTGTTTTCTGGTT
GTTTTGCATTTCTCTTCCTCGTTTCTTTATCTCTTACTGT
TTATCTTTGTGTGGTTTGCTTGGTGACAAATTTTAGTTAC
TTTCTCTTTCGCATCTGTGTATCTGCTCTACTAGTGGGTT
CTATACTTTTGTTTGTTCTCCTGATGGTAGTTATTGCCCT
TTGGCTTTCAGATATAGGGCTCCTTTTTTAGGTCTACTA
CTCTTGTGTCTGAAAGTTGCATTTTGTTTGAGTAAGTTC
ATTAAGCAGGGACCTGAAAGTAAACATCAAAGGTGTGCT
GAATCAGTGGTGACAATTTCATGTATCATATTTCATAAT
AATGTTCTTTCAGAGAGCACATAACATTAACTAGCATGG
AGCAGTGCATGCTCCCTGTATTTCCTTCTGGGGGCCATG
ATTGTGAAAGTGTTGCTTGTGATTTACCAGCAGATATTT
ATACACATTTACTTATCACAAGACGTTTTGAGTCTTTCAT
GTGGAGCTCAAAGCCTTAAAACATAAAAACCAAgCTAAA
GAGCCAGGTGGCAGCTGGAGCTGGGGTCTCCTGGCCCA
TGATTGGCTGCCATCATTTGTGGTTAGCCCTCCATGGTG
GGGGAGGCTGGGAAGGACAGTGGAAGCTGATAAACAGC
TCAGCAGCATGTTCTGAGAAACAAGAGGGCAAGGAGAG
AGCAGAGAACACACTTTGCCTTCTCTTTGGTATTGAGTA
ATATCAACCAAATTGCAGACATCTCAACACTTTGGCCAG
GCAGCCTGCTGAGCAAGGTACCTCAGCCAGCATGgtgagca
agggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaa
cggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgacc
ctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccttc
ggctacggcctgatgtgcttcgcccgctaccccgaccacatgaagcagcacgacttcttcaag
tccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaacta
caagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaag
ggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaaca
gccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagat
ccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacaccccc
atcggcgacggccccgtgctgctgcccgacaaccactacctgagctaccagtccgccctgag
caaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccggg
atcactctcggcatggacgagctgtacaagtgactgcaggaattcgagcatcttaccgccatt
tattcccatatttgttctgtttttcttgatttgggtatacatttaaatgttaataaaacaaaatggt
ggggcaatcatttacatttttagggatatgtaattactagttcaggtgtattgccacaagacaa
acatgttaagaaactttcccgttatttacgctctgttcctgttaatcaacctctggattacaaaat
ttgtgaaagattgactgatattcttaactatgttgctccttttacgctgtgtggatatgctgcttta
atgcctctgtatcatgctattgcttcccgtacggctttcgttttctcctccttgtataaatcctggt
tgctgtctctttatgaggagttgtggcccgttgtccgtcaacgtggcgtggtgtgctctgtgtttgc
tgacgcaacccccactggctggggcattgccaccacctgtcaactcctttctgggactttcgctt
tccccctcccgatcgccacggcagaactcatcgccgcctgccttgcccgctgctggacagggg
ctaggttgctgggcactgataattccgtggtgttgtcggggaagggcctgctgccggctctgcg
gcctcttccgcgtcttcgccttcgccctcagacgagtcggatctccctttgggccgcctccccgc
ctggaattcgagctcggtacctttaagaccaatgacttacaaggcagctgtagatcttagcca
ctttttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagatctgc
tttttgcttgtactgggtctctctggttagaccagatctgagcctgggagctctctggctaactag
ggaacctactgcttaagcctcaataaagcttgccttgagtgcttCAAGTAGTGTGT
GCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTC
AGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCagtagtagtt
catgtcatcttattattcagtatttataacttgcaaagaaatgaatatcagagagtgagaggaa
cttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaa
gcatttttttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatcatgtctggc
tctagctatcccgcccctaactccgcccatcccgcccctaactccgcccagttccgcccattctcc
gccccatggctgactaattttttttatttatgcagaggccgaggccgcctcggcctctgagctat
tccagaagtagtgaggaggcttttttggaggcctagggacgtacccaattcgccctatagtga
gtcgtattacgcgcgctcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgtt
acccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcc
cgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatgggacgcgccctgtag
cggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcg
ccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtca
agctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaa
aaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgcccttt
gacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccct
atctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgag
ctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgcttacaatttaggtggcac
ttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatcc
gctcatgagacaataaccctgataaatgcttcaataatagcacctagatcaagagacaggat
gaggatcgtttcgcatgattgaacaagatggattgcacgcaggttctccggccgcttgggtgg
agaggctattcggctatgactgggcacaacagacaatcggctgctctgatgccgccgtgttcc
ggctgtcagcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatg
aactgcaagacgaggcagcgcggctatcgtggctggccacgacgggcgttccttgcgcagct
gtgctcgacgttgtcactgaagcgggaagggactggctgctattgggcgaagtgccggggca
ggatctcctgtcatctcaccttgctcctgccgagaaagtatccatcatggctgatgcaatgcgg
cggctgcatacgcttgatccggctacctgcccattcgaccaccaagcgaaacatcgcatcga
gcgagcacgtactcggatggaagccggtcttgtcgatcaggatgatctggacgaagagcatc
aggggctcgcgccagccgaactgttcgccaggctcaaggcgagcatgcccgacggcgagg
atctcgtcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaaatggccgcttttc
tggattcatcgactgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctac
ccgtgatattgctgaagagcttggcggcgaatgggctgaccgcttcctcgtgctttacggtatc
gccgctcccgattcgcagcgcatcgccttctatcgccttcttgacgagttcttctgaattattaac
gcttacaatttcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgcatcagg
tggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatat
gtatccgctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgta
gaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaa
aaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaag
gtaactggcttcagcagagcgcagataccaaatactgttcttctagtgtagccgtagttaggcc
accacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggc
tgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataa
ggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacc
tacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaaggga
gaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggag
cttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcg
tcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctt
tttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattct
gtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagc
gcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccg
cgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagt
gagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgc
ttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatg
accatgattacgccaagcgcgcaattaaccctcactaaagggaacaaaagctggagctgca
agcttggccattgcatacgttgtatccatatcataatatgtacatttatattggctcatgtccaac
attaccgccat
Cttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagccca
tatatggAGTTCCGCGTTACATAACTTACGGTAAATGGCCCG
CCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTC
AATAATGACGTATGTTCCCATAGTAACGCCAATAGGGAC
TTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAAC
TGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAG
TACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGC
CTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCC
TACTTGGCAGTACATCTACGTATTAGTCATCGCTATTAC
CATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTG
GATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACC
CCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATC
AACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCAT
TGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTC
TATATAAGCAGAGCTCGTTTAGTGAACCGGGGTCTCTCT
GGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAA
CTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCT
TGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGAC
TCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTG
TGGAAAATCTCTAGCagtggcgcccgaacagggacttgaaagcgaaaggga
aaccagaggagctctctcgacgcaggactcggcttgctgaagcgcgcacggcaagaggcga
ggggcggcgactggtgagtacgccaaaaattttgactagcggaggctagaaggagagagat
gggtgcgagagcgtcagtattaagcgggggagaattagatcgcgatgggaaaaaattcggt
taaggccagggggaaagaaaaaatataaattaaaacatatagtatgggcaagcagggagc
tagaacgattcgcagttaatcctggcctgttagaaacatcagaaggctgtagacaaatactgg
gacagctacaaccatcccttcagacaggatcagaagaacttagatcattatataatacagta
gcaaccctctattgtgtgcatcaaaggatagagataaaagacaccaaggaagctttagacaa
gatagaggaagagcaaaacaaaagtaagaccaccgcacagcaagcggccgctgatcttca
gacctggaggaggagatatgagggacaattggagaagtgaattatataaatataaagtagt
aaaaattgaaccattaggagtagcacccaccaaggcaaagagaagagtggtgcagagaga
aaaaagagcagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcacta
tgggcgcagcgtcaatgacgctgacggtacaggccagacaattattgtctggtatagtgcag
cagcagaacaatttgctgagggctattgaggcgcaacagcatctgttgcaactcacagtctgg
ggcatcaagcagctccaggcaagaatcctggctgtggaaagatacctaaaggatcaacagc
tcctggggatttggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagt
tggagtaataaatctctggaacagatttggaatcacacgacctggatggagtgggacagaga
aattaacaattacacaagcttaatacactccttaattgaagaatcgcaaaaccagcaagaaa
agaatgaacaagaattattggaattagataaatgggcaagtttgtggaattggtttaacataa
caaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaat
agtttttgctgtactttctatagtgaatagagttaggcagggatattcaccattatcgtttcagac
ccacctcccaaccccgaggggacccgacaggcccgaaggaatagaagaagaaggtggag
agagagacagagacagatccattcgattagtgaacggatctcgacggtatcggttaactttta
aaagaaaaggggggattggggggtacagtgcaggggaaagaatagtagacataatagca
acagacatacaaactaaagaattacaaaaacaaattacaaaaattcaaaattttatcgatca
cgagactagccAGAAAAGAGGGATTGGGGCCCTCTCCCAACA
GACATGAGTATTTAGGAGTCCCCAGTTCCGGTTTCCACA
TGACATGATATGATGGTCTGTTGTTTTCCTCAGGGACCT
AGAGGCAGATGTAGACAAATAGCAGGTGAGGAGGAAGG
GTGGTGCTGAGCTGTAAACAACAGCTGCGGGCTGTAAA
CAATGGAGCTATATTAAGAAAGTCCTGCATCTGCAGCAT
TCGGTTCAATCCTGCCACCCACTGGGCGTACTCCTGAAT
TGACTTTCCATTGTCAGCTGATCAGTGACAGATGTGAAA
TGACTCGTTACACACACAGGTCACATTGGGAGGATTCTT
AGACGTCATATTCTTTGGTGCTTCACAAAGTCTTACTGT
GGCACATGAAATGATTTCAGATGGTGCACAAGATGATTT
CACATGTAAATTTCCATGAGGGTGCAAAGAGAGGCTTTT
CCCAATCTGAAGAATGAATTTAAAATCTGCTGTAGAAAA
ATACCAGAGAGAAAAATATAGAAAGCAGCTGTCCCTCTT
ACCAATTTCAGAGCAGGAAAGGAATTTCAGTAGAGCATA
AAAACAGCTTTCTCTCATAAAAGAAAACACAACAAGAAA
AATAATCCTTGCTGTGTAGCCTTTTGCAGTTATTTTCTGT
CATGTGTTAGATAGAGACCAGAGGGCTTAACATTGTTTT
GATACCCTTGCATCTGGCAGATTGCCTGTCAGAGGAAGT
TGGAAACGAACTGACCAGCTTTATGCTTCCAGGTGGCAC
TGAAGCCACATTTTCAGTGCCGTTGTTATCAGTCATTTA
ATTCCCTACTGAATATTGAGTGGTGTTTTTAGTTCACAG
GCCATTTGCAGTGCCTTTCTGTTTCCTTTTTAACGTTAGC
CACATTAAGAAAAAAAGTGGGCTTTGCCTACAGCACCTG
CTTCTGCTTTCCGCATTTACTGATCCACTAAGTGTAAGT
GTGACATATAGAGGTCTGTGTTGGTTGTTGTTTTGTGTT
CAAACAGCTGAACATCTGGCCTCTCATGTGCAGGTGCAC
AGAACTCAGGAGAAGGGGTTTTAATTTAAGATAAAAAAA
ATAAGGATATGTGCTAGTTGCAGATGAGGGTTTGGGTG
CTGGACTTAAGATGCTTCTGTGTTCAAAAACAAGGAGTC
CTCAATTTGCAAGGTTCATAAAGAGTTTCACACAGATGG
CACCCAAAGTGCTTATTTCTCATTGTGCTGAAATTAAAC
TTGAATATGCTATATATCAAATAAATAGAAGTAAATAGC
CTTTCTTTATACTTTCTAGAAGTTGAGCTCAATGTTCTTT
CGGAGAGAGCAGGCTCATCTCCATTATGTAGCGCCAAT
GACAAATACCTGTATATGTCTGTATTTCCTTGGTCTGTC
TTGCTCACCTGTTAAGACACCTTGCTGCACAACAGATGG
CACATGCTTATCTTGTGGCAGTGAAGAGTTGACATCAAA
GGCCAAGAAAACCTTGAAACTCATCCTTTTCAGCCCACA
AGAGCAGCTTCTCTCTACCACAGACGATGAAAGCTGGA
GATAACAGGGGCATTCCCACCGCTGCACTCTCTCTTGTG
GCCAGCTGACAGTTAACACAGGTGGGCGTGAGGTGCTG
CCTACATTTTGAAGGTTGTCTATTGATGGGGAACACCAC
CTCTCTGAGCTCAGGCCTCTGCTTTGGCCCGTGGAGCTG
CTGCTTCTGAGAAGTAACCAGGTGGTGAATACCTGCCTG
CTTTTCAGAAAATCCGAGGTGGCTGTCAATTGACAATTA
TTTATTCATTGTAAAATAATCACAGGAACAGCAGCAGTG
TAGGTTTCCCTACCTAGAGGGTGGTATGCAGTGATTCTC
AGGCGCTGGTTGGAAGGCACAGCTGAGGGACACAAACT
GCCAGGAAGTAATGTGGTAACTAGCCATGAGCTTGTGG
TACTAATGGTGGCACGGGAAACAAGGTCTCTGCTTGACT
TTTATTTTCACTCCATAACAAACTCACCAGATCAGGAGC
CTAAGGGTGGGTGGGGAGGGAGAAGAGAGAAAAAAGCA
AAGGGAAAGTTCAAAGTGACACTCGCTGGGGCTGAAAA
CCACACTCCCCTGCAGATGAGGTCCTTGGCTctcgagTCTA
GGCAAGTGTCTCTCTCTCTCTCCCCCTCTTTTTCTTTTAG
AAAAATACTTCGTGATAAAAACACAAAAGTATGTGAATG
GTAATTGAAAATGCATTGCTTCCTTTTAGAAACCCACTA
GGATTTGCATAAACCACTTGGCTGTCTGATAAGTCATTA
TCTGTTCTGTCAGTCCCTGGGGACTTTTAATATTAGGTT
TATATTTTTATAGAAAAGGCAAGTTCTAAATTTGAAGAT
GGGTATTGTTAAACTCTTCAATAATGACAGTTTGTGAAA
CTGCATGTTCCAAAAGTCCTTTAAAAAGTCAATAAGGCg
AAAAGTCTATTTTATCTAATATAAGCGTAGTTACTCCTG
CTTACTTTTGGTTTCCATTTGCATGGAGTATCTTTTTCCA
TCCTTTCACTTTTCATCTATGTGTGTCTTTGTAGTTGAAG
TGAGTTTCTTGTAGATAGCACATGGTTATGTCCTGTTTG
tttttgtccattccttctgtcattttattgttttctggtt
GTTTTGCATTTCTCTTCCTCGTTTCTTTATCTCTTACTGT
TTATCTTTGTGTGGTTTGCTTGGTGACAAATTTTAGTTAC
TTTCTCTTTCGCATCTGTGTATCTGCTCTACTAGTGGGTT
CTATACTTTTGTTTGTTCTCCTGATGGTAGTTATTGCCCT
TTGGCTTTCAGATATAGGGCTCCTTTTTTAGGTCTACTA
CTCTTGTGTCTGAAAGTTGCATTTTGTTTGAGTAAGTTC
ATTAAGCAGGGACCTGAAAGTAAACATCAAAGGTGTGCT
GAATCAGTGGTGACAATTTCATGTATCATATTTCATAAT
AATGTTCTTTCAGAGAGCACATAACATTAACTAGCATGG
AGCAGTGCATGCTCCCTGTATTTCCTTCTGGGGGCCATG
ATTGTGAAAGTGTTGCTTGTGATTTACCAGCAGATATTT
ATACACATTTACTTATCACAAGACGTTTTGAGTCTTTCAT
GTGGAGCTCAAAGCCTTAAAACATAAAAACCAAgCTAAA
GAGCCAGGTGGCAGCTGGAGCTGGGGTCTCCTGGCCCA
TGATTGGCTGCCATCATTTGTGGTTAGCCCTCCATGGTG
GGGGAGGCTGGGAAGGACAGTGGAAGCTGATAAACAGC
TCAGCAGCATGTTCTGAGAAACAAGAGGGCAAGGAGAG
AGCAGAGAACACACTTTGCCTTCTCTTTGGTATTGAGTA
ATATCAACCAAATTGCAGACATCTCAACACTTTGGCCAG
GCAGCCTGCTGAGCAAGGTACCTCAGCCAGCATGgtgagca
agggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaa
cggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgacc
ctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccttc
ggctacggcctgatgtgcttcgcccgctaccccgaccacatgaagcagcacgacttcttcaag
tccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaacta
caagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaag
ggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaaca
gccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagat
ccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacaccccc
atcggcgacggccccgtgctgctgcccgacaaccactacctgagctaccagtccgccctgag
caaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccggg
atcactctcggcatggacgagctgtacaagtgactgcaggaattcgagcatcttaccgccatt
tattcccatatttgttctgtttttcttgatttgggtatacatttaaatgttaataaaacaaaatggt
ggggcaatcatttacatttttagggatatgtaattactagttcaggtgtattgccacaagacaa
acatgttaagaaactttcccgttatttacgctctgttcctgttaatcaacctctggattacaaaat
ttgtgaaagattgactgatattcttaactatgttgctccttttacgctgtgtggatatgctgcttta
atgcctctgtatcatgctattgcttcccgtacggctttcgttttctcctccttgtataaatcctggt
tgctgtctctttatgaggagttgtggcccgttgtccgtcaacgtggcgtggtgtgctctgtgtttgc
tgacgcaacccccactggctggggcattgccaccacctgtcaactcctttctgggactttcgctt
tccccctcccgatcgccacggcagaactcatcgccgcctgccttgcccgctgctggacagggg
ctaggttgctgggcactgataattccgtggtgttgtcggggaagggcctgctgccggctctgcg
gcctcttccgcgtcttcgccttcgccctcagacgagtcggatctccctttgggccgcctccccgc
ctggaattcgagctcggtacctttaagaccaatgacttacaaggcagctgtagatcttagcca
ctttttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagatctgc
tttttgcttgtactgggtctctctggttagaccagatctgagcctgggagctctctggctaactag
ggaacctactgcttaagcctcaataaagcttgccttgagtgcttCAAGTAGTGTGT
GCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTC
AGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCagtagtagtt
catgtcatcttattattcagtatttataacttgcaaagaaatgaatatcagagagtgagaggaa
cttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaa
gcatttttttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatcatgtctggc
tctagctatcccgcccctaactccgcccatcccgcccctaactccgcccagttccgcccattctcc
gccccatggctgactaattttttttatttatgcagaggccgaggccgcctcggcctctgagctat
tccagaagtagtgaggaggcttttttggaggcctagggacgtacccaattcgccctatagtga
gtcgtattacgcgcgctcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgtt
acccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcc
cgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatgggacgcgccctgtag
cggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcg
ccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtca
agctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaa
aaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgcccttt
gacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccct
atctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgag
ctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgcttacaatttaggtggcac
ttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatcc
gctcatgagacaataaccctgataaatgcttcaataatagcacctagatcaagagacaggat
gaggatcgtttcgcatgattgaacaagatggattgcacgcaggttctccggccgcttgggtgg
agaggctattcggctatgactgggcacaacagacaatcggctgctctgatgccgccgtgttcc
ggctgtcagcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatg
aactgcaagacgaggcagcgcggctatcgtggctggccacgacgggcgttccttgcgcagct
gtgctcgacgttgtcactgaagcgggaagggactggctgctattgggcgaagtgccggggca
ggatctcctgtcatctcaccttgctcctgccgagaaagtatccatcatggctgatgcaatgcgg
cggctgcatacgcttgatccggctacctgcccattcgaccaccaagcgaaacatcgcatcga
gcgagcacgtactcggatggaagccggtcttgtcgatcaggatgatctggacgaagagcatc
aggggctcgcgccagccgaactgttcgccaggctcaaggcgagcatgcccgacggcgagg
atctcgtcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaaatggccgcttttc
tggattcatcgactgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctac
ccgtgatattgctgaagagcttggcggcgaatgggctgaccgcttcctcgtgctttacggtatc
gccgctcccgattcgcagcgcatcgccttctatcgccttcttgacgagttcttctgaattattaac
gcttacaatttcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgcatcagg
tggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatat
gtatccgctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgta
gaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaa
aaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaag
gtaactggcttcagcagagcgcagataccaaatactgttcttctagtgtagccgtagttaggcc
accacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggc
tgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataa
ggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacc
tacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaaggga
gaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggag
cttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcg
tcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctt
tttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattct
gtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagc
gcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccg
cgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagt
gagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgc
ttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatg
accatgattacgccaagcgcgcaattaaccctcactaaagggaacaaaagctggagctgca
agcttggccattgcatacgttgtatccatatcataatatgtacatttatattggctcatgtccaac
attaccgccat
In various embodiments, the lentiviral vectors (LVs) described herein can have various “safety” features that can include, for example, the presence of an insulator (e.g., an FB insulator in the 3′LTR). Additionally, or alternatively, in certain embodiments, the HIV LTR has been substituted with an alternative promoter (e.g., a CMV promoter, see, e.g., SEQ ID NO:21) to yield a higher titer vector without the inclusion of the HIV TAT protein during packaging. Other strong promoters (e.g., RSV, and the like can also be used).
As noted above, in various embodiments the lentiviral vectors described herein contain any one or more of the elements typically found in lentiviral vectors. Such elements include, but need not be limited to a ψ region vector genome packaging signal (see, e.g., SEQ ID NO:23), a Rev Responsive Element (RRE) (see, e.g., SEQ ID NO:24), a polypurine tract (e.g., a central polypurine tract, a 3′ polypurine tract (see, e.g., SEQ ID NO:26), etc.), a post-translational regulatory element (e.g., a modified Woodchuck Post-transcriptional Regulatory Element (WPRE) (see, e.g., SEQ ID NO:25), an insulator, and the like, e.g., as described below.
In various embodiments the vector is a SIN vector substantially incapable of reconstituting a wild-type lentivirus through recombination.
As shown above, in Example 1, the vectors described herein are believed to be effective to transduce cells at high titer and to also provide high levels of expression of a nucleic acid encoding RAG1 protein.
In view of these results, it is believed that LVs described herein, e.g., recombinant TAT-independent, SIN LVs that express a nucleic acid encoding a RAG1 protein can be used to effectively treat RAG1 SCID in subjects (e.g., human and non-human mammals) It is believed these vectors can be used for the modification of stem cells (e.g., hematopoietic stem and progenitor cells) that can be introduced into a subject in need thereof for the treatment of, e.g., subjects identified as having RAG1 SCID. Moreover, it is believed that the resulting cells will produce enough of the transgenic RAG1 protein to demonstrate significant improvement in subject health. It is also believed the vectors can be directly administered to a subject to achieve in vivo transduction of the target (e.g., hematopoietic stem or progenitor cells) and thereby also effect a treatment of subjects in need thereof.
As noted above, in various embodiments the LVs described herein can comprise various safety features. For example, the HIV LTR has been substituted with a CMV promoter to yield higher titer vector without the inclusion of the HIV TAT protein during packaging. In certain embodiments an insulator (e.g., the FB insulator) can be introduced into the 3′LTR for safety. The LVs are also constructed to provide efficient transduction and high titer.
It will be appreciated that the foregoing elements are illustrative and need not be limiting. In view of the teachings provided herein, suitable substitutions for these elements will be recognized by one of skill in the art and are contemplated within the scope of the teachings provided herein.
As noted above, in various embodiments the lentiviral vector can comprise a RAG1 gene or cDNA. However, in certain embodiments the nucleic acid encoding RAG1 protein is codon optimized. Numerous methods of codon optimization are known to those of skill in the art. One illustrative method is JCat (Java Codon Adaptation Tool). The jCAT tool adapts gene codon usage to most sequenced prokaryotes and various eukaryotic gene expression hosts. In contrast to many tools, JCat does not require the manual definition of highly expressed genes and is, therefore, a very rapid and easy method. Further options of JCat for codon adaptation include the avoidance of unwanted cleavage sites for restriction enzymes and Rho-independent transcription terminators. The output of JCat is both graphically and as Codon Adaptation Index (CAI) values given for the input sequence and the newly adapted sequence. JCat optimization is described by Grote et al. (2005) Nucleic Acids Res. 33 (suppl 2): W526-W531) and a JCat tool is available online at www.jcat.de.
Another codon optimization tool is provided by GeneArt (from ThermoFisher Scientific®.
Still another codon optimization tool is IDT. The IDT codon optimization tool was developed to optimize a DNA or protein sequence from one organism for expression in another by reassigning codon usage based on the frequencies of each codon's usage in the new organism. For example, valine is encoded by 4 different codons (GUG, GUU, GUC, and GUA). In human cell lines, however, the GUG codon is preferentially used (46% use vs. 18, 24, and 12%, respectively). The codon optimization tool takes this information into account and assigns valine codons with those same frequencies. In addition, the tool algorithm eliminates codons with less than 10% frequency and re-normalizes the remaining frequencies to 100%. Moreover, the optimization tool reduces complexities that can interfere with manufacturing and downstream expression, such as repeats, hairpins, and extreme GC content. The IDT optimization tool is available from IDT (Integrated DNA Technologies, Coralville, Iowa) and can be found at ww.idtdna.com/CodonOpt.
Other codon optimization tools include, but are not limited to CodonW an open source software program that can be found at codonw.sourceforge.net, and the OptimumGene™ algorithm from GenScript.
These codon optimizations are illustrative and non-limiting. Using the teaching provided here and in Example 1, the RAG1 codon usage can readily be optimized for particular applications.
To further improve safety, in various embodiments, the lentiviral vectors described herein comprise a TAT-independent, self-inactivating (SIN) configuration. Thus, in various embodiments it is desirable to employ in the LVs described herein an LTR region that has reduced promoter activity relative to wild-type LTR. Such constructs can be provided that are effectively “self-inactivating” (SIN) which provides a biosafety feature. SIN vectors are ones in which the production of full-length vector RNA in transduced cells is greatly reduced or abolished altogether. This feature minimizes the risk that replication-competent recombinants (RCRs) will emerge. Furthermore, it reduces the risk that that cellular coding sequences located adjacent to the vector integration site will be aberrantly expressed.
Furthermore, a SIN design reduces the possibility of interference between the LTR and the promoter that is driving the expression of the transgene. SIN LVs can often permit full activity of the internal promoter.
The SIN design increases the biosafety of the LVs. The majority of the HIV LTR is comprised of the U3 sequences. The U3 region contains the enhancer and promoter elements that modulate basal and induced expression of the HIV genome in infected cells and in response to cell activation. Several of these promoter elements are essential for viral replication. Some of the enhancer elements are highly conserved among viral isolates and have been implicated as critical virulence factors in viral pathogenesis. The enhancer elements may act to influence replication rates in the different cellular target of the virus
As viral transcription starts at the 3′ end of the U3 region of the 5′ LTR, those sequences are not part of the viral mRNA and a copy thereof from the 3′ LTR acts as template for the generation of both LTR's in the integrated provirus. If the 3′ copy of the U3 region is altered in a retroviral vector construct, the vector RNA is still produced from the intact 5′ LTR in producer cells, but cannot be regenerated in target cells. Transduction of such a vector results in the inactivation of both LTR's in the progeny virus. Thus, the retrovirus is self-inactivating (SIN) and those vectors are known as SIN transfer vectors.
In certain embodiments self-inactivation is achieved through the introduction of a deletion in the U3 region of the 3′ LTR of the vector DNA, i.e., the DNA used to produce the vector RNA. During RT, this deletion is transferred to the 5′ LTR of the proviral DNA. Typically, it is desirable to eliminate enough of the U3 sequence to greatly diminish or abolish altogether the transcriptional activity of the LTR, thereby greatly diminishing or abolishing the production of full-length vector RNA in transduced cells. However, it is generally desirable to retain those elements of the LTR that are involved in polyadenylation of the viral RNA, a function typically spread out over U3, R and U5. Accordingly, in certain embodiments, it is desirable to eliminate as many of the transcriptionally important motifs from the LTR as possible while sparing the polyadenylation determinants.
The SIN design is described in detail in Zufferey et al. (1998) J Virol. 72(12): 9873-9880, and in U.S. Pat. No. 5,994,136. As described therein, there are, however, limits to the extent of the deletion at the 3′ LTR. First, the 5′ end of the U3 region serves another essential function in vector transfer, being required for integration (terminal dinucleotide+att sequence). Thus, the terminal dinucleotide and the att sequence may represent the 5′ boundary of the U3 sequences which can be deleted. In addition, some loosely defined regions may influence the activity of the downstream polyadenylation site in the R region. Excessive deletion of U3 sequence from the 3′LTR may decrease polyadenylation of vector transcripts with adverse consequences both on the titer of the vector in producer cells and the transgene expression in target cells.
Additional SIN designs are described in U.S. Patent Publication No: 2003/0039636. As described therein, in certain embodiments, the lentiviral sequences removed from the LTRs are replaced with comparable sequences from a non-lentiviral retrovirus, thereby forming hybrid LTRs. In particular, the lentiviral R region within the LTR can be replaced in whole or in part by the R region from a non-lentiviral retrovirus. In certain embodiments, the lentiviral TAR sequence, a sequence which interacts with TAT protein to enhance viral replication, is removed, preferably in whole, from the R region. The TAR sequence is then replaced with a comparable portion of the R region from a non-lentiviral retrovirus, thereby forming a hybrid R region. The LTRs can be further modified to remove and/or replace with non-lentiviral sequences all or a portion of the lentiviral U3 and U5 regions.
Accordingly, in certain embodiments, the SIN configuration provides a retroviral LTR comprising a hybrid lentiviral R region that lacks all or a portion of its TAR sequence, thereby eliminating any possible activation by TAT, wherein the TAR sequence or portion thereof is replaced by a comparable portion of the R region from a non-lentiviral retrovirus, thereby forming a hybrid R region. In a particular embodiment, the retroviral LTR comprises a hybrid R region, wherein the hybrid R region comprises a portion of the HIV R region (e.g., a portion comprising or consisting of the nucleotide sequence shown in SEQ ID NO: 10 in US 2003/0039636) lacking the TAR sequence, and a portion of the MoMSV R region (e.g., a portion comprising or consisting of the nucleotide sequence shown in SEQ ID NO: 9 in 2003/0039636) comparable to the TAR sequence lacking from the HIV R region. In another particular embodiment, the entire hybrid R region comprises or consists of the nucleotide sequence shown in SEQ ID NO: 11 in 2003/0039636.
Suitable lentiviruses from which the R region can be derived include, for example, HIV (HIV-1 and HIV-2), EIV, SIV and FIV. Suitable retroviruses from which non-lentiviral sequences can be derived include, for example, MoMSV, MoMLV, Friend, MSCV, RSV and Spumaviruses. In one illustrative embodiment, the lentivirus is HIV and the non-lentiviral retrovirus is MoMSV.
In another embodiment described in US 2003/0039636, the LTR comprising a hybrid R region is a left (5′) LTR and further comprises a promoter sequence upstream from the hybrid R region. Preferred promoters are non-lentiviral in origin and include, for example, the U3 region from a non-lentiviral retrovirus (e.g., the MoMSV U3 region). In one particular embodiment, the U3 region comprises the nucleotide sequence shown in SEQ ID NO: 12 in US 2003/0039636. In another embodiment, the left (5′) LTR further comprises a lentiviral U5 region downstream from the hybrid R region. In one embodiment, the U5 region is the HIV U5 region including the HIV att site necessary for genomic integration. In another embodiment, the U5 region comprises the nucleotide sequence shown in SEQ ID NO: 13 in US 2003/0039636. In yet another embodiment, the entire left (5′) hybrid LTR comprises the nucleotide sequence shown in SEQ ID NO: 1 in US 2003/0039636.
In another illustrative embodiment, the LTR comprising a hybrid R region is a right (3′) LTR and further comprises a modified (e.g., truncated) lentiviral U3 region upstream from the hybrid R region. The modified lentiviral U3 region can include the att sequence, but lack any sequences having promoter activity, thereby causing the vector to be SIN in that viral transcription cannot go beyond the first round of replication following chromosomal integration. In a particular embodiment, the modified lentiviral U3 region upstream from the hybrid R region consists of the 3′ end of a lentiviral (e.g., HIV) U3 region up to and including the lentiviral U3 att site. In one embodiment, the U3 region comprises the nucleotide sequence shown in SEQ ID NO: 15 in US 2003/0039636. In another embodiment, the right (3′) LTR further comprises a polyadenylation sequence downstream from the hybrid R region. In another embodiment, the polyadenylation sequence comprises the nucleotide sequence shown in SEQ ID NO: 16 in US 2003/0039636. In yet another embodiment, the entire right (5′) LTR comprises the nucleotide sequence shown in SEQ ID NO: 2 or 17 of US 2003/0039636.
Thus, in the case of HIV based LV, it has been discovered that such vectors tolerate significant U3 deletions, including the removal of the LTR TATA box (e.g., deletions from −418 to −18), without significant reductions in vector titers. These deletions render the LTR region substantially transcriptionally inactive in that the transcriptional ability of the LTR in reduced to about 90% or lower.
It has also been demonstrated that the trans-acting function of Tat becomes dispensable if part of the upstream LTR in the transfer vector construct is replaced by constitutively active promoter sequences (see, e.g., Dull et al. (1998) J Virol. 72(11): 8463-8471. Furthermore, we show that the expression of rev in trans allows the production of high-titer HIV-derived vector stocks from a packaging construct which contains only gag and pol. This design makes the expression of the packaging functions conditional on complementation available only in producer cells. The resulting gene delivery system, conserves only three of the nine genes of HIV-1 and relies on four separate transcriptional units for the production of transducing particles.
In one embodiments illustrated in Example 1, the cassette expressing a nucleic acid encoding RAG1 protein is a SIN vector with the CMV enhancer/promoter substituted in the 5′ LTR.
It will be recognized that the CMV promoter typically provides a high level of non-tissue specific expression. Other promoters with similar constitutive activity include, but are not limited to the RSV promoter, and the SV40 promoter. Mammalian promoters such as the beta-actin promoter, ubiquitin C promoter, elongation factor 1αpromoter, tubulin promoter, etc., may also be used.
The foregoing SIN configurations are illustrative and non-limiting. Numerous SIN configurations are known to those of skill in the art. As indicated above, in certain embodiments, the LTR transcription is reduced by about 95% to about 99%. In certain embodiments LTR may be rendered at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95% at least about 96%, at least about 97%, at least about 98%, or at least about 99% transcriptionally inactive.
In certain embodiments, to further enhance biosafety, insulators are inserted into the lentiviral vectors described herein. Insulators are DNA sequence elements present throughout the genome. They bind proteins that modify chromatin and alter regional gene expression. The placement of insulators in the vectors described herein offer various potential benefits including, inter alia: 1) Shielding of the vector from positional effect variegation of expression by flanking chromosomes (i.e., barrier activity); and 2) Shielding flanking chromosomes from insertional trans-activation of gene expression by the vector (enhancer blocking). Thus, insulators can help to preserve the independent function of genes or transcription units embedded in a genome or genetic context in which their expression may otherwise be influenced by regulatory signals within the genome or genetic context (see, e.g., Burgess-Beusse et al. (2002) Proc. Natl. Acad. Sci. USA, 99: 16433; and Zhan et al. (2001) Hum. Genet., 109: 471). In the present context insulators may contribute to protecting lentivirus-expressed sequences from integration site effects, which may be mediated by cis-acting elements present in genomic DNA and lead to deregulated expression of transferred sequences. In various embodiments LVs are provided in which an insulator sequence is inserted into one or both LTRs or elsewhere in the region of the vector that integrates into the cellular genome.
The first and best characterized vertebrate chromatin insulator is located within the chicken β-globin locus control region. This element, which contains a DNase-I hypersensitive site-4 (cHS4), appears to constitute the 5′ boundary of the chicken β-globin locus (Prioleau et al. (1999) EMBO J. 18: 4035-4048). A 1.2-kb fragment containing the cHS4 element displays classic insulator activities, including the ability to block the interaction of globin gene promoters and enhancers in cell lines (Chung et al. (1993) Cell, 74: 505-514), and the ability to protect expression cassettes in Drosophila (Id.), transformed cell lines (Pikaart et al. (1998) Genes Dev. 12: 2852-2862), and transgenic mammals (Wang et al. (1997) Nat. Biotechnol., 15: 239-243; Taboit-Dameron et al. (1999) Transgenic Res., 8: 223-235) from position effects. Much of this activity is contained in a 250-bp fragment. Within this stretch is a 49-bp cHS4 core (Chung et al. (1997) Proc. Natl. Acad. Sci., USA, 94: 575-580) that interacts with the zinc finger DNA binding protein CTCF implicated in enhancer-blocking assays (Bell et al. (1999) Cell, 98: 387-396).
One illustrative and suitable insulator is FB (FII/BEAD-A), a 77 bp insulator element, that contains the minimal CTCF binding site enhancer-blocking components of the chicken β-globin 5′ HS4 insulators and a homologous region from the human T-cell receptor alpha/delta blocking element alpha/delta I (BEAD-I) insulator described by Ramezani et al. (2008) Stem Cell 26: 3257-3266. The FB “synthetic” insulator has full enhancer blocking activity. This insulator is illustrative and non-limiting. Other suitable insulators may be used including, for example, the full-length chicken beta-globin HS4 or insulator sub-fragments thereof, the ankyrin gene insulator, and other synthetic insulator elements.
In various embodiments the vectors described herein further comprise a packaging signal. A “packaging signal,” “packaging sequence,” or “PSI sequence” is any nucleic acid sequence sufficient to direct packaging of a nucleic acid whose sequence comprises the packaging signal into a retroviral particle. The term includes naturally occurring packaging sequences and also engineered variants thereof. Packaging signals of a number of different retroviruses, including lentiviruses, are known in the art. One illustrative, but non-limiting PSI is provided by SEQ ID NO:23.
In certain embodiments the lentiviral vectors described herein comprise a Rev response element (RRE) to enhance nuclear export of unspliced RNA. RREs are well known to those of skill in the art. Illustrative RREs include, but are not limited to RREs such as that located at positions 7622-8459 in the HIV NL4-3 genome (Genbank accession number AF003887) as well as RREs from other strains of HIV or other retroviruses. Such sequences are readily available from Genbank or from the database with URL hiv-web.lanl.gov/content/index. One illustrative, but non-limiting RRE is shown in SEQ ID NO:24).
PolyPurine Tract (cPPT, 3′PPT).
In various embodiments the lentiviral vectors described herein further include a polypurine tract (e.g., central polypurine tract (cPPT), 3′ poplypurine tract (3′PPT)). Insertion of a fragment containing the 3′PPT (see, e.g., SEQ ID NO:26) or the central polypurine tract (cPPT) in lentiviral (e.g., HIV-1) vector constructs is known to enhance transduction efficiency.
In certain embodiments the lentiviral vectors (LVs) described herein may comprise any of a variety of posttranscriptional regulatory elements (PREs) whose presence within a transcript increases expression of the heterologous nucleic acid (e.g., RAG1) at the protein level. PREs may be particularly useful in certain embodiments, especially those that involve lentiviral constructs with modest promoters.
One type of PRE is an intron positioned within the expression cassette, which can stimulate gene expression. However, introns can be spliced out during the life cycle events of a lentivirus. Hence, if introns are used as PRE's they are typically placed in an opposite orientation to the vector genomic transcript.
Posttranscriptional regulatory elements that do not rely on splicing events offer the advantage of not being removed during the viral life cycle. Some examples are the posttranscriptional processing element of herpes simplex virus, the posttranscriptional regulatory element of the hepatitis B virus (HPRE) and the woodchuck hepatitis virus (WPRE). Of these the WPRE is typically preferred as it contains an additional cis-acting element not found in the HPRE. This regulatory element is typically positioned within the vector so as to be included in the RNA transcript of the transgene, but outside of stop codon of the transgene translational unit.
The WPRE is characterized and described in U.S. Pat. No. 6,136,597. As described therein, the WPRE is an RNA export element that mediates efficient transport of RNA from the nucleus to the cytoplasm. It enhances the expression of transgenes by insertion of a cis-acting nucleic acid sequence, such that the element and the transgene are contained within a single transcript. Presence of the WPRE in the sense orientation was shown to increase transgene expression by up to 7- to 10-fold. Retroviral vectors transfer sequences in the form of cDNAs instead of complete intron-containing genes as introns are generally spliced out during the sequence of events leading to the formation of the retroviral particle. Introns mediate the interaction of primary transcripts with the splicing machinery. Because the processing of RNAs by the splicing machinery facilitates their cytoplasmic export, due to a coupling between the splicing and transport machineries, cDNAs are often inefficiently expressed. Thus, the inclusion of the WPRE (see, e.g., SEQ ID NO:25) in a vector results in enhanced expression of transgenes.
The recombinant lentiviral vectors (LV) and resulting virus described herein are capable of transferring a heterologous nucleic acid sequence (e.g., a nucleic acid encoding RAG1 protein) into a mammalian cell. In various embodiments, for delivery to cells, vectors described herein are preferably used in conjunction with a suitable packaging cell line or co-transfected into cells in vitro along with other vector plasmids containing the necessary retroviral genes (e.g., gag and pol) to form replication incompetent virions capable of packaging the vectors of the present invention and infecting cells.
In certain embodiments the vectors are introduced via transfection into a packaging cell line. The packaging cell line produces viral particles that contain the vector genome. Methods for transfection are well known by those of skill in the art. After cotransfection of the packaging vectors and the transfer vector to the packaging cell line, the recombinant virus is recovered from the culture media and titered by standard methods used by those of skill in the art. Thus, the packaging constructs can be introduced into human cell lines by calcium phosphate transfection, lipofection or electroporation, generally together with or without a dominant selectable marker, such as neomycin, DHFR, Glutamine synthetase, followed by selection in the presence of the appropriate drug and isolation of clones. In certain embodiments the selectable marker gene can be linked physically to the packaging genes in the construct.
Stable cell lines wherein the packaging functions are configured to be expressed by a suitable packaging cell are known (see, e.g., U.S. Pat. No. 5,686,279, which describes packaging cells). In general, for the production of virus particles, one may employ any cell that is compatible with the expression of lentiviral Gag and Pol genes, or any cell that can be engineered to support such expression. For example, producer cells such as 293T cells and HT1080 cells may be used.
The packaging cells with a lentiviral vector incorporated therein form producer cells. Producer cells are thus cells or cell-lines that can produce or release packaged infectious viral particles carrying the therapeutic gene of interest (e.g., a nucleic acid that encodes a RAG1 protein). These cells can further be anchorage dependent which means that these cells will grow, survive, or maintain function optimally when attached to a surface such as glass or plastic. Some examples of anchorage dependent cell lines used as lentiviral vector packaging cell lines when the vector is replication competent are HeLa or 293 cells and PERC.6 cells.
Accordingly, in certain embodiments, methods are provided of delivering a gene to a cell which is then integrated into the genome of the cell, comprising contacting the cell with a virion containing a lentiviral vector described herein. The cell (e.g., in the form of tissue or an organ) can be contacted (e.g., infected) with the virion ex vivo and then delivered to a subject (e.g., a mammal, animal or human) in which the gene (e.g., a nucleic acid encoding RAG1 protein) will be expressed. In various embodiments the cell can be autologous to the subject (i.e., from the subject) or it can be non-autologous (i.e., allogeneic or xenogenic) to the subject. Moreover, because the vectors described herein are capable of being delivered to both dividing and non-dividing cells, the cells can be from a wide variety including, for example, bone marrow cells, mesenchymal stem cells (e.g., obtained from adipose tissue), and other primary cells derived from human and animal sources. Alternatively, the virion can be directly administered in vivo to a subject or a localized area of a subject (e.g., bone marrow).
In certain embodiments, the lentivectors described herein will be particularly useful in the transduction of human hematopoietic progenitor cells or a hematopoietic stem cells, obtained either from the bone marrow, the peripheral blood or the umbilical cord blood, as well as in the transduction of a CD4+ T cell, a peripheral blood B or T lymphocyte cell, and the like. In certain embodiments particularly preferred targets are CD34+ hematopoietic stem and progenitor cells.
In still other embodiments, methods are provided for transducing a human hematopoietic stem cell. In certain embodiments the methods involve contacting a population of human cells that include hematopoietic stem cells with one of the foregoing lentivectors under conditions to effect the transduction of a human hematopoietic progenitor cell in said population by the vector. The stem cells may be transduced in vivo or in vitro, depending on the ultimate application. Even in the context of human gene therapy, such as gene therapy of human stem cells, one may transduce the stem cell in vivo or, alternatively, transduce in vitro followed by infusion of the transduced stem cell into a human subject. In one aspect of this embodiment, the human stem cell can be removed from a human, e.g., a RAG1 SCID patient, using methods well known to those of skill in the art and transduced as noted above. The transduced stem cells are then reintroduced into the same or a different human.
Stem Cell/Progenitor Cell Gene Therapy.
In various embodiments the lentivectors described herein are particularly useful for the transduction of human hematopoietic progenitor cells or haematopoietic stem cells (HSCs), obtained either from the bone marrow, the peripheral blood or the umbilical cord blood, as well as in the transduction of a CD4+ T cell, a peripheral blood B or T lymphocyte cell, and the like. In certain embodiments particularly preferred targets are CD34+ hematopoietic stem and progenitor cells.
When cells, for instance CD34+ cells, dendritic cells, peripheral blood cells or tumor cells are transduced ex vivo, the vector particles are incubated with the cells using a dose generally in the order of between 1 to 50 multiplicities of infection (MOI) which also corresponds to 1×105 to 50×105 transducing units of the viral vector per 105 cells. This can include amounts of vector corresponding to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, and 50 MOI. Typically, the amount of vector may be expressed in terms of HT-29 transducing units (TU).
In certain embodiments cell-based therapies involve providing stem cells and/or hematopoietic precursors, transduce the cells with the lentivirus encoding, e.g., a nucleic acid encoding a RAG1 protein, and then introduce the transformed cells into a subject in need thereof (e.g., a subject with a mutation in the RAG1 gene).
In certain embodiments the methods involve isolating population of cells, e.g., stem cells from a subject, optionally expand the cells in tissue culture, and administer the lentiviral vector whose presence within a cell results in production of a normal RAG1 protein in the cells in vitro. The cells are then returned to the subject, where, for example, they may provide a population of lymphocytes that produce the RAG1 protein.
In some illustrative, but non-limiting, embodiments, a population of cells, which may be cells from a cell line or from an individual other than the subject, can be used. Methods of isolating stem cells, immune system cells, etc., from a subject and returning them to the subject are well known in the art. Such methods are used, e.g., for bone marrow transplant, peripheral blood stem cell transplant, etc., in patients undergoing chemotherapy.
Where stem cells are to be used, it will be recognized that such cells can be derived from a number of sources including bone marrow (BM), cord blood (CB), mobilized peripheral blood stem cells (mPBSC), and the like. In certain embodiments the use of induced pluripotent stem cells (IPSCs) is contemplated. Methods of isolating hematopoietic stem cells (HSCs), transducing such cells and introducing them into a mammalian subject are well known to those of skill in the art.
Direct Introduction of Vector.
In certain embodiments direct treatment of a subject by direct introduction of the vector(s) described herein is contemplated. The lentiviral compositions may be formulated for delivery by any available route including, but not limited to parenteral (e.g., intravenous), intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, rectal, and vaginal. Commonly used routes of delivery include inhalation, parenteral, and transmucosal.
In various embodiments pharmaceutical compositions can include an LV in combination with a pharmaceutically acceptable carrier. As used herein the language “pharmaceutically acceptable carrier” includes solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Supplementary active compounds can also be incorporated into the compositions.
In some embodiments, active agents, i.e., a lentiviral described herein and/or other agents to be administered together the vector, are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such compositions will be apparent to those skilled in the art. Suitable materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomes can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811. In some embodiments the composition is targeted to particular cell types or to cells that are infected by a virus. For example, compositions can be targeted using monoclonal antibodies to cell surface markers, e.g., endogenous markers or viral antigens expressed on the surface of infected cells.
It is advantageous to formulate compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit comprising a predetermined quantity of a LV calculated to produce the desired therapeutic effect in association with a pharmaceutical carrier.
A unit dose need not be administered as a single injection but may comprise continuous infusion over a set period of time. Unit dose of the LV described herein may conveniently be described in terms of transducing units (T.U.) of lentivector, as defined by titering the vector on a cell line such as HeLa or 293. In certain embodiments unit doses can range from 103, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013 T.U. and higher.
Pharmaceutical compositions can be administered at various intervals and over different periods of time as required, e.g., one time per week for between about 1 to about 10 weeks; between about 2 to about 8 weeks; between about 3 to about 7 weeks; about 4 weeks; about 5 weeks; about 6 weeks, etc. It may be necessary to administer the therapeutic composition on an indefinite basis. The skilled artisan will appreciate that certain factors can influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Treatment of a subject with a LV can include a single treatment or, in many cases, can include a series of treatments.
Illustrative, but non-limiting, doses for administration of gene therapy vectors and methods for determining suitable doses are known in the art. It is furthermore understood that appropriate doses of a LV may depend upon the particular recipient and the mode of administration. The appropriate dose level for any particular subject may depend upon a variety of factors including the age, body weight, general health, gender, and diet of the subject, the time of administration, the route of administration, the rate: of excretion, other administered therapeutic agents, and the like.
In certain embodiments lentiviral gene therapy vectors described herein can be delivered to a subject by, for example, intravenous injection, local administration, or by stereotactic injection (see, e.g., Chen et al. (1994) Proc. Natl. Acad. Sci. USA, 91: 3054). In certain embodiments vectors may be delivered orally or inhalationally and may be encapsulated or otherwise manipulated to protect them from degradation, enhance uptake into tissues or cells, etc. Pharmaceutical preparations can include a LV in an acceptable diluent, or can comprise a slow release matrix in which a LV is imbedded. Alternatively or additionally, where a vector can be produced intact from recombinant cells, as is the case for retroviral or lentiviral vectors as described herein, a pharmaceutical preparation can include one or more cells which produce vectors. Pharmaceutical compositions comprising a LV described herein can be included in a container, pack, or dispenser, optionally together with instructions for administration.
The foregoing compositions, methods and uses are intended to be illustrative and not limiting. Using the teachings provided herein other variations on the compositions, methods and uses will be readily available to one of skill in the art.
The goal of the experiments described below was to develop a novel lentiviral vector driven by endogenous regulatory elements of the native RAG1 gene for the treatment of Recombination-Activating Gene 1 Severe Combined Immunodeficiency (RAG1 SCID). In particular, it was desired to develop a novel clinical lentiviral vector for the treatment of RAG1 SCID. In particular, it was desired to develop a lentiviral vector regulated by endogenous elements of the RAG1 locus for high-level, lineage and temporal specific expression.
A bioinformatic analysis (using publicly available databases: Project Encode, Ensembl, FANTOM, VISTA Enhancer Browser, GeneHancer) was utilized to elucidate the endogenous regulatory elements of the native RAG1 gene. Eighteen putative enhancer elements were identified located within a 400,000 base pair window. It is believed that a subset of the 18 putative enhancer elements are each responsible for RAG1 expression at specific timepoints throughout T and B cell development and that various combinations of these elements can be incorporated into an expression cassette in, for example, a lentiviral vector, to provide vectors that can recapitulate the expression pattern of the native RAG1 gene at therapeutically effective levels.
In order to experimentally identify the critical enhancer elements that regulate the RAG1 gene, each putative enhancer element was cloned upstream of the endogenous RAG1 promoter to drive expression of a reporter (mCitrine) (see, e.g.,
A duplicate set of the vectors were re-cloned to contain a unique 15 nucleotide barcode in the 3′ untranslated region (3′UTR) to allow for multiplexing (see, e.g.,
The experimental plan involves providing a pooled viral supernatant containing all 42 vectors to transduce CB CD34+ HSCs. Transduced HSCs are transplanted into irradiated NSG neonates and the transduced HSCs containing all 42 vectors will develop into mature T and B cells. Mice will be harvested 16 weeks post transplantation and the different cell stages of T-cell (esp. thymocytes) and B-cell development will be collected. RNA and gDNA will be extracted from each cell population; barcodes in the RNA and gDNA will be amplified by PCR and quantified by next-generation sequencing.
Since each barcode is associated with a known enhancer element, by quantifying the relative abundance of each barcode in a specific cell population, we can elucidate the enhancer elements which are responsible for the high level, lineage and temporal specific expression of RAG through specific stages of T and B cell development.
As a proof of concept, NALM6 cells (pre B-cell line) were transduced with non-barcoded RAG1 vectors to validate that the vectors express and to validate known pre-B cell enhancers. Element #14 BRAG is a pre-B cell enhancer needed to advance from the pro-B cell stage to the pre-B cell stage previously defined in the literature. Expression levels of each of the vectors in transduced NALM6 cells are shown in
In order to confirm the credibility of multiplexing, all the singleplex transduced barcoded wells are mixed together (see,
Additionally, NALM6 cells were transduced with pooled viral supernatant containing all 42 vectors in increasing vector doses to determine if recombination of barcodes occurs at high vector copy numbers. This was also done to determine if a single multiplexed transduced well can recapitulate the data from 42 singleplex transduced wells.
Multiplexed CB CD34+ HSCs were transduced into NSG neonates to identify lineage and temporal specific enhancers at different stages of T and B cell development. Bone marrow was harvested from femurs and tibias as well as lymph nodes from 21 mice and recovered cells were selected for CD45+ cells. B-cell and T-cell yields were determined.
High cell yields of each B-cell developmental population from NSG mice were observed. Lower but workable yields of T-cell developmental stages (very low CD34+ Thy1, Thy2, Thy3 populations) were also observed.
RNA and gDNA from each population can be collected and the RNA can be cDNA converted and barcodes can be PCR′d out of cDNA and gDNA.
As described below, we performed an in-vivo enhancer screen of the various constructs in:
The in vivo ehancer screen in NSG mice is described above. The in vivo enhancer screen in BLT mice was similar to the NSG screen, but the transduced CD34+ cells are transplanted into BLT mice instead of NSG mice. BLT mice are modified NSG mice transplanted with a human fetal thymus to facilitate human T-cell development.
The enhancer screen in ATOs was similar to the NSG mice but the transduced cells were differentiated in-vitro instead of being transplanted into mice. Briefly, a pool of viral supernatant containing all 42 vectors was used to transduce CB CD34+ HSPCs. The transduced cells were then differentiated into the different stages of T-cell development using the Artificial Thymic Organoid (ATO) system (see, e.g., Seet et al. (2017) Nat. Meth. 14(5): 521-530)J. RNA and gDNA were extracted from each T-cell developmental population and barcodes in the RNA and gDNA were be amplified by PCR and quantified by next-generation sequencing. Since each barcode is associated with a known enhancer element, by quantifying the relative abundance of each barcode in a specific cell population, we can elucidate the enhancer elements which are responsible for the high level, lineage and temporal specific expression of RAG through specific stages of T development.
The results of the enhancer screen throughout the different stages of T cell development are recapitulated across 3 different models—NSG mice, BLT mice and ATOs. Enhancer elements 9 and 12 seem to be the major enhancers for RAG expression in T-cells. Element 9 has homology to a previously identified enhancer element in mouse cells (essential for RAG1 expression at the DP stage—known as the ASE element). Element 12 is a newly identified element. Elements 5, 6, 11, 13, 14, 18 also had enhancer activity in T-cells. The enhancers were most active during the DP stage as expected (during TCRa rearrangement). All enhancer were off at the single positive CD4+/CD8+ stages. Element 9 alone expressed >8-fold higher than UCOE at the DP stage, comparable expression with MNDU3. MNDU3 and UCOE were active at all developmental stages.
Additionally, enhancer elements 14 and 5 seem to be the major enhancers necessary for RAG1 expression in B-cells. Element 14 has homology to a previously defined element in the literature in mouse cells (eRAG). Element 5 is a newly identified element. Expression of elements 5 and 14 peak at the HG1/HG2 stage. Enhancers are off at the NB and MB stage and surprisingly gain expression again at the plasma cell stage. It is possible that a larger element for #5 and #14 can be taken as the illustrated elements express lower than MNDU3—which is under WT levels. 19 (MNDU3) and 20 (UCOE) are active at all stages of B-cell development.
The results from the enhancer screens described above were used to design our lead candidate vectors. In designing our lead candidates, we want to increase expression from the B-cell enhancer elements (elements 5 and 14) since the expression is lower than that of MNDU3 (which is under WT levels). Therefore, we increased the size of the elements in an attempt to increase expression. Without being bound to a particular theory, it is believed that boundaries of the enhancer element were defined too narrowly and can be missing important sequences necessary for complete transcription factor binding. The new boundaries are termed the element 5 and 14 “cores”—which are larger than the original elements. The vectors also contained a novel B-cell enhancer which was missed in the initial screen. The element is adjacent to enhancer element 11 so it is designated “E11 B-cell enhancer”. Additionally, the size of element 9.1 is decreased with the goal of decreasing the size of the vector while maintaining expression. Ten illustrative lead candidate vectors are shown in Table 2.
It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.
This application claims benefit of and priority to U.S. Ser. No. 62/935,022, filed on Nov. 13, 2019, which is incorporated herein by reference in its entirety for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US20/60279 | 11/12/2020 | WO |
Number | Date | Country | |
---|---|---|---|
62935022 | Nov 2019 | US |