The present disclosure relates generally to catheter devices that can be used to cross a calcified lesion. The catheter includes a distal shock wave generator configured with a very low profile to permit advancement through narrow vascular structures.
A wide variety of catheters have been developed to treat arterial disease. For example, treatment systems for percutaneous coronary angioplasty or peripheral angioplasty use angioplasty balloons to dilate a lesion (e.g., a calcified lesion) and restore normal blood flow in an artery. In these types of procedures, a catheter carrying a balloon is advanced into the vasculature along a guidewire until the balloon is aligned with calcified plaques. The balloon is then pressurized to reduce or break the calcified plaques and push them back into the vessel wall. The balloon can have smooth walls or be provided with structures that physically score the lesions in the vessel. Other catheters, known as atherectomy devices, have rotating members for drilling out the lesion.
More recently, catheters have been developed that include one or more electrode pairs positioned inside an angioplasty balloon. In these devices, the catheter is advanced over a guidewire in a patient's vasculature until it is proximal to a lesion. The balloon is inflated with conductive fluid to contact the lesion and then shock wave generators are fired to produce shock waves that direct acoustic waves into the lesion. Shock wave devices are particularly effective for treating calcified lesions because the acoustic waves can crack the lesions without harming the surrounding vasculature. Once the lesions are cracked, the balloon can be expanded further in the vessel to create an improved blood flow lumen.
The shock wave generators are typically electrode pairs excited by the application of high voltage pulses. Efforts have been made to reduce the size of the electrode pairs to allow access to tighter and harder-to-cross calcified lesions. Examples of such low profile designs can be found in U.S. Pat. Nos. 8,747,416 and 10,555,744, and U.S. Publication No. 2019/0150960, all of which are incorporated herein by reference.
While the low profile designs discussed above have been deployed in both coronary and peripheral vessel applications, even those designs have difficulty crossing a partial or total occlusion in vasculature. One approach to deal with the problem is to use guidewire having a shock wave generator at the distal tip. In that case, the catheter proximal and distal shaft portions are reinforced to support the advancement of the guidewire into the occlusion. One or more shock waves are generated to partially open the blockage. The guidewire can then be advanced further into the occlusion where additional shock waves are generated. This sequence can be continued in order to move the guidewire through the occlusion and provide a large enough channel that a balloon catheter can now be inserted. An example of such a shock wave guidewire design can be found in U.S. Pat. No. 9,730,715, incorporated herein by reference.
While placing a shock wave electrode on the tip of a guidewire can lead to an extremely low profile structure, such an approach has some disadvantages compared to low profile designs that include an inflatable balloon. For example, the guidewire necessarily has a soft tip which cannot be easily pushed through a blockage. In addition, the guidewire design is unipolar, with one electrode at the tip of the guidewire and the second electrode defined by a pad affixed to the patient's body. This means that the patient is part of the electrical circuit. In addition, the guidewire design does not have a balloon at the tip. A balloon is advantageous in that it can shield the tissue from direct contact with the plasma that is generated during shock wave creation. A balloon also ensures that the conductive fluid surrounds the electrodes during shock wave generation.
Accordingly, there is a need to provide a catheter design with a lower profile than previous approaches that incorporates an angioplasty balloon and includes a bipolar electrical circuit to generate shockwaves inside a balloon.
The above objects are realized in a catheter for treating occlusions in blood vessels that has at least one electrode pair inside of a flexible angioplasty balloon at the distal end of the catheter. In some designs, the electrodes are coplanar reducing the diameter of the device. In addition, a low profile balloon is used that does need to be folded before insertion into the cardiovascular system. Such a balloon can be expanded a relatively small amount sufficient to immerse the electrodes in a conductive fluid before generating shock waves at the electrodes to treat an occlusion. The balloon can be made of material having elastomeric properties such that it returns to its original low profile configuration when it is deflated following treatment.
The invention provides a catheter for treating occlusions in blood vessels. An exemplary catheter for treating occlusions in blood vessels comprises a tubular guidewire sheath defining a first lumen for receiving a guidewire and a second lumen for carrying a first wire; a shock wave generator located near a distal end of the catheter, said shock wave generator including at least one electrode pair, with electrodes of each pair being spaced apart to define at least one gap; a first wire extending within the second lumen, with a proximal end of the first wire being connectable to a pulsed voltage source and with a distal end of the first wire being connected to the at least one electrode pair; a reinforced sheath wrapped circumferentially around the guidewire sheath, wherein a proximal end of the reinforced sheath is connectable to the pulsed voltage source and a distal end of the reinforced wire sheath is connected to the at least one electrode pair, such that when high voltage pulses are applied across the reinforced wire sheath and the first wire, current flows across the at least one gap creating shock waves for treating an occlusion; and a cap sealably attached to the distal end of the catheter and surrounding the at least one electrode pair, said cap being fillable with a conductive fluid. The cap can be flexible and can be expanded thereby providing space between an inner wall of the cap and the at least one electrode pair.
A second exemplary catheter for treating occlusions in blood vessels comprises a tubular guidewire sheath defining a plurality of lumens, the plurality of lumens comprising a first lumen for carrying a guidewire; a shock wave generator located near a distal end of the catheter, said shock wave generator including at least one distal electrode pair, with electrodes of each pair being spaced apart to define at least one gap; a first wire and a second wire, wherein proximal ends of the first wire and the second wire are connectable to a pulsed voltage source, and wherein distal ends of the first wire and the second wire are connected to the at least one distal electrode pair such that when high voltage pulses are applied across the first wire and the second wire, current flows across the at least one gap creating shock waves for treating an occlusion; and a flexible cap sealably attached to the distal end of the catheter and surrounding the at least one electrode pair, said flexible cap being inflatable with conductive fluid such that the cap expands to provide a space between an inner wall of the cap and the at least one electrode pair.
The following description is presented to enable a person of ordinary skill in the art to make and use the various embodiments disclosed herein. Descriptions of specific devices, techniques, and applications are provided only as examples. Various modifications to the examples described herein will be readily apparent to those of ordinary skill in the art, and the general principles described herein may be applied to other examples and applications without departing from the spirit and scope of the various embodiments. Thus, the various embodiments are not intended to be limited to the examples described herein and shown, but are to be accorded the scope consistent with the claims.
The assignee herein has developed a number of low-profile shock wave electrodes that may be suitable for use in angioplasty and/or valvuloplasty procedures. For example, in U.S. Pub. No. 2019/0150960, the assignee discloses a low-profile electrode assembly, in which an outer electrode is formed by a conductive sheath, and an inner electrode is formed by removing a portion of an insulated wire (e.g., cutting a hole in the insulating layer near the end of the wire) to expose an electrically conductive portion of the insulated wire. The inner electrode is placed a controlled distance apart from the side edge of the conductive sheath to allow for a reproducible arc for a given current and voltage.
More recently, the assignee has developed a number of coplanar electrode assemblies for use in shock wave catheters. These designs provide novel configurations of electrode pairs having, e.g., helical structures and tongue-and-groove designs, with respective electrodes on the same lateral plane to limit the overall thickness of the electrode assemblies. These assemblies are particularly advantageous for generating shock waves in tight, hard-to-pass lesions or totally occluded vasculature. For example, in U.S. Pat. No. 9,993,292 and U.S. Publication No. 2018/0098779, incorporated herein by reference, the assignee discloses forming electrode pairs from helically wound wires to generate shock waves at various gaps positioned circumferentially around a tubular structure. In U.S. Pat. No. 10,555,744, also incorporated herein by reference, the assignee discloses a tongue-and-groove electrode assembly in which electrode pairs are formed from a groove-shaped cut-out in a conductive sheath and a coplanar tongue-shaped protrusion extending into the groove-shaped cut-out.
Described herein are catheters incorporating low-profile design elements that permit intravascular lithotripsy (IVL) treatment in tighter, hard-to-cross calcific lesions and coronary total occlusions. The present invention is similar to existing IVL systems in that it can comprise an array of lithotripsy emitters (e.g., electrode pairs) on a catheter that is entered into a patient's vasculature to deliver shock waves to an occlusion. However, the present invention additionally includes a low-profile angioplasty balloon attached to the distal end of the catheter that can be positioned in a patient's vasculature without folding. When deflated, the surface area of the balloon is small enough that the balloon does not need to be folded while advancing the catheter through a blood vessel. The low profile of the no-fold balloon advantageously allows the catheter to advance into even tighter regions of vasculature, such as those that are partially or totally occluded. Once the balloon has been positioned, the elastomeric material properties of the low-profile balloon allow the balloon to inflate with conductive fluid to increase the balloon's profile, i.e., in order to contact an occlusion and provide space in the balloon for conductive fluid to immerse the electrodes.
In some embodiments, the catheters described herein include additional low-profile elements, such as coplanar electrodes, which further reduce the diameter of the distal end of the catheter. Additionally or alternatively, the catheters may provide an electrical connection to the electrodes by way of a reinforced wire sheath wrapped circumferentially around the catheter shaft. The reinforced wire sheath provides improved kink resistence, torqueability, and pushability to the catheter for more easily maneuvering the device within a patient's vasculature. Including at least one electrical connection integrated into the reinforced wire sheath also improves the low-profile aspects of the device by reducing the number of wires or other conductors that must be carried elsewhere in the catheter.
A flexible cap 18 (e.g., a low-profile flexible angioplasty balloon) is sealably attached to the distal end 14 of the catheter 10, forming an annular channel around the shaft 12 of the catheter. The flexible cap 18 surrounds the shock wave generator 16, such that the shock waves are produced in a closed system defined by the walls of the cap. The cap 18 is filled with a conductive fluid, such as saline. The conductive fluid allows the acoustic shock waves to propagate from the electrode pairs of the shock wave generator 16 through the walls of the cap 18 and then into the target lesion. In some embodiments, the conductive fluid may also contain an x-ray contrast to permit fluoroscopic viewing of the catheter 10 during use. In some embodiments, the cap is rigid and not flexible.
Once the balloon 18 has been positioned in a patient's vasculature, additional conductive fluid can be flowed into the balloon to inflate the balloon and gently fix the outer surface of the balloon to a lesion.
After the lesion has been treated, the balloon 18 can be deflated to its original low profile deflated configuration. When the balloon 18 returns to a deflated state after being inflated, the balloon should return to its original low profile configuration (i.e., a configuration having a small surface area and diameter) such that that the balloon is not folded when removing the catheter 10 from the patient's vasculature.
Returning to
The catheter 10 also includes a flexible shaft 12 that extends from the proximal handle 22 to the distal end 14 of the catheter. The shaft 12 provides various internal conduits connecting elements of the distal end 14 with the handle 22 of the catheter (see, e.g.,
As shown in
The distal end 14 of the catheter 10 is advanced as far as possible inside the tight lesion. The flexible cap 18 is then inflated by a conductive fluid (e.g., saline and/or saline mixed with an image contrast agent) introduced via the fluid port 26, allowing conductive fluid to expand the cap so that the outer surface of the cap contacts the target lesion. The cap is inflated to IVL pressure, which is between approximately one atmosphere and approximately six atmospheres. The diameter of the flexible cap in an inflated state may be about 10-15% greater than the diameter of the flexible cap in a deflated state. However, in some examples the diameter of the cap in an inflated state is even less than 10% greater than the diameter of the cap in a deflated state. A voltage pulse is then applied by the pulsed high voltage source 28 across one or more electrode pairs (i.e., emitters of the shockwave generator 16). Each pulse initially ionizes the conducive fluid in the flexible cap 18 to create small gas bubbles around the shock wave generator 16 that insulate the electrodes. Fluid can be continuously flowed through the cap 18 during treatment at a constant rate to clear the bubbles and debris from the electrodes. The fluid flow rate may be controlled throughout treatment, but is generally in the range of approximately 1 ml/min to approximately 3 ml/min. At some point, a plasma arc forms across the electrode pairs, creating a low impedance path where current flows freely. The heat from the plasma arc heats the conductive fluid creating a rapidly expanding vapor bubble. The expansion of the vapor bubble creates a shock wave that is conducted through the fluid, through walls of the flexible cap 18, and into an occlusion where the energy breaks up the hardened lesion.
For treatment of an occlusion in a blood vessel, the voltage pulse applied by the voltage pulse generator 28 is typically in the range of approximately 2000 volts to approximately 3000 volts and preferably between 2300 and 3000 volts. The pulse width of the applied voltage pulses ranges between 2 microseconds and 6 microseconds. The repetition rate or frequency of the applied voltage pulses may be between approximately 1 Hz and approximately 10 Hz. However, the preferred voltage and repetition rate may vary depending on, e.g., the size of the lesion, the extent of calcification, the size of the blood vessel, the attributes of the patient, or the stage of treatment. For instance, a physician may start with low energy shock waves and increase the energy as needed during the procedure. The magnitude of the shock waves can be controlled by controlling the voltage, current, duration, and repetition rate of the pulsed voltage from the pulsed voltage source 28. More information about the physics of shock wave generation and their control can be found in U.S. Pat. Nos. 8,956,371; 8,728,091; 9,522,012; and 10,226,265, each of which is incorporated by reference.
During an IVL treatment, one or more cycles of shock waves can be applied to create a more compliant vessel. For example, once the stenosis has been softened sufficiently by a first cycle of shock waves, the flexible cap 18 can be deflated and the distal end 14 of the catheter 10 can be advanced further into the occlusion. The flexible cap 18 is then re-inflated and another cycle of shock waves can be applied. Further advancement of the cap 18 can be attempted after the completion of successive cycles.
The placement and spacing of the electrode pairs can be controlled to provide a more effective shock wave treatment. For instance, the electrode pairs of the shockwave generator 16 may be spaced circumferentially around the distal end 14 of the catheter 10 in consistent increments, e.g., 180 degrees apart or 90 degrees apart, to generate shock waves more evenly around the catheter. In some embodiments, the shock wave generator 16 includes electrode pairs positioned in various groupings spaced longitudinally along the catheter 10 within the flexible cap 18. For example, the shock wave generator 16 may include at least one distal electrode pair and at least one proximal electrode pair. In such examples, the pulsed voltage source 28 can be controlled to selectively generate high voltage pulses at either the proximal or distal electrode pairs, e.g., by applying voltage pulses across differing set of wires or other conductors leading to the respective pairs. In a first stage of treatment (i.e., during initial treatment of the tight or totally-occluding lesion), only the distal electrode pairs are activated to generate shock waves. After the tight lesion has been modified and more proximal portions of the cap 18 are able to cross the lesion, the cap is again inflated and more proximal electrode pairs are activated to generate more proximal shock waves.
The progress of the procedure may be monitored by x-ray and/or fluoroscopy. Shock wave cycles can be repeated until the occlusion has been cleared, or until a channel is formed in the lesion having a diameter sufficient to receive a second treatment device having a larger profile. For example, the enlarged channel can receive a different catheter having a more conventional angioplasty balloon or differently oriented shock wave sources. Catheters of this type are described in U.S. Pat. No. 8,747,416 and U.S. Publication No. 2019/0150960, cited above. Once the lesion has been sufficiently treated, the flexible cap 18 may be inflated further, then deflated, and catheter 10 and guidewire 20 can be withdrawn from the patient.
The flexible cap 280 is inflatable with a conductive fluid, for example, saline, such that the cap expands to provide a space between the inner wall of the cap and the electrode pairs (see, e.g.,
The conductive fluid is admitted into the cap 280 via a fluid inlet 217 in the guidewire sheath 210, and removed from the cap via a fluid outlet 219 in the guidewire sheath. The fluid inlet 217 and fluid outlet 219 provide channels extending from the surface of the guidewire sheath 210 to a respective fluid inlet lumen 216 and fluid outlet lumen 218 in the guidewire sheath (and, more proximally, allow the cap to access fluid supplied by the fluid port shown in
Returning to
As shown in
Surrounding the guidewire sheath 210 is a tubular reinforced wire sheath 230 formed from at least one conductive reinforced wire material (e.g., a wire that is braided, coiled or both), for example, reinforced copper or stainless steel. As described previously with reference to
Returning to
The distal end 200 also includes the shock wave generator of the catheter, which includes a first electrode pair, shown in
An electrode pair can be formed by a side edge of a conductive sheath (e.g., a ring electrode) and a conductive portion of a wire, as described in assignee's prior filing U.S. Pub. No. 2019/0150960. The conductive portion of the wire can be formed by removing a portion of the insulating layer of an insulated wire near the distal end of the wire to expose an electrically conductive portion of the wire. The location, size, and shape of the removed portion may vary to control the location, direction, and/or magnitude of the shock wave. In some embodiments, an electrode may be formed by cutting the end of an insulated wire to expose an electrically conductive cross-section. In some embodiments, flat wires rather than round wires are used to further reduce the crossing profile of the electrode assembly.
With reference to
The insulation removed portion 243 of the wire 242 and the cut out 222 of the conductive sheath 220 are spaced apart to define a gap between the first electrode and the second electrode of the first electrode pair. The spacing of the gap can be controlled to generate reproducible electrical arcs in the conductive fluid between the electrodes. The spacing of the electrodes may be modified to produce shock waves having a desired magnitude for a given voltage and current output from a pulsed voltage source. To permit current flow between the insulation removed portion 243 of the wire 242 in the lumen and the cut out 222 of the outer conductive sheath 220, the guidewire sheath 210 includes an aperture extending between the outer surface of the guidewire sheath and the wire lumen 212. The aperture is positioned over the insulation removed portion 243 of the wire 242 and under the cut out 222 such that current flows through the aperture when high voltage pulses are applied across the reinforced wire sheath 230 and the wire 242. The size of the aperture may correspond to the size of the insulation removed portion 243 of the wire 242, the size of the cut out 222 in the conductive sheath 220, or some other desired size or shape.
As shown in
The wire 242 and the reinforced wire sheath 230 complete a circuit between the electrode pairs and the pulsed voltage source, such that when high voltage pulses are applied across the reinforced wire sheath 230 and the wire 242, current flows across the gaps between the electrodes of the first electrode pair and the second electrode pair creating shock waves for treating an occlusion.
In operation, a physician may simultaneously connect the wire 242 to a positive lead of the voltage pulse generator, and connect the reinforced wire sheath 230 (or a wire electrically connected to a proximal end of the sheath) to a negative lead or the ground. In such an example, current will flow from the voltage source, down the wire 242, across the first gap between the insulation removed portion 243 of the wire and the cut out 222 in the conductive sheath 220, creating a plasma arc that generates a shock wave at the first electrode pair. The current then flows across the conductive sheath 220 and across the second gap between the edge 224 of the conductive sheath 220 and the conductive emitter portion 234, creating another plasma arc that generates a shock wave at the second electrode pair. The current then flows from the conductive emitter portion 234 to the reinforced wire sheath 230, and down the reinforced wire sheath to reach the negative lead or ground. Alternatively (as seen in
The flexible cap 380 is inflatable with a conductive fluid, for example, saline, such that the cap expands to provide a space between the inner wall of the cap and the proximal and distal electrode pairs (see, e.g.,
The conductive fluid is admitted into the cap 380 via a fluid inlet 317 in the guidewire sheath 310, and removed from the cap via a fluid outlet 319 in the guidewire sheath. The fluid inlet 317 and fluid outlet 319 provide channels extending from the surface of the guidewire sheath 310 to a respective fluid inlet lumen 316 and fluid outlet lumen 318 in the guidewire sheath (and, more proximally, allow the flexible cap to access fluid supplied by the fluid port shown in
As illustrated in
As shown in
As shown in
Returning to
The distal end 300 also includes the shock wave generator of the catheter, which includes a first distal electrode pair and a first proximal electrode pair, shown in
As mentioned above, an electrode pair can be formed by a side edge of a conductive sheath and a portion of a wire. The portion of wire can be formed by removing a portion of the insulating layer of a wire near the distal end of the wire to expose an electrically conductive portion of the wire. The location, size, and shape of the removed portion may vary to control the location, direction, and/or magnitude of the shock wave. In some embodiments, an electrode may be formed by cutting the end of an insulated wire to expose an electrically conductive cross-section. In some embodiments, flat wires rather than round wires are used to further reduce the crossing profile of the electrode assembly.
With reference to
The conductive portion 343 of the first wire 342 is spaced apart from the side edge 328 of the distal conductive sheath 326 to define a first gap between the electrodes of the first distal pair. Likewise, the conductive portion 345 of the second wire 344 is spaced apart from the side edge 328 of the distal conductive sheath 326 to define a second gap between the electrodes of the second distal pair. The spacing of the gaps can be controlled to generate reproducible electrical arcs in the conductive fluid between the electrodes of the respective pairs and to produce shock waves having a desired magnitude for a given voltage and current output from the pulsed voltage source. To permit current flow between the conductive portions 343, 345 of the wires 342, 344 and the distal conductive sheath 326, the guidewire sheath 310 includes distal apertures extending between the outer surface of the guidewire sheath 310 and the lumens containing the first wire 342 and the second wire 344. The apertures are positioned between the conductive portions 343, 345 of the wires 342, 344 and the side edge 328 of the distal conductive sheath 326 such that current flows through the respective apertures when high voltage pulses are applied across the first wire 342 and the second wire 344.
Returning to
The insulation removed portion 347 of the third wire 346 is spaced apart from the first cut out 322 of the proximal conductive sheath 320 to define a first gap between the electrodes of the first proximal pair. Likewise, the insulation removed portion 349 of the fourth wire 348 is spaced apart from the second cut out 324 of the proximal conductive sheath 320 to define a second gap between the electrodes of the second proximal pair. The spacing of the gaps can be controlled to generate reproducible electrical arcs in the conductive fluid between the electrodes of the respective pairs and to produce shock waves having a desired magnitude for a given voltage and current output from the pulsed voltage source. To permit current flow between the insulation removed portions 347, 349 of the wires 346, 348 in the lumens and the external cut outs 322, 324 in the proximal conductive sheath 320, the guidewire sheath 310 includes proximal apertures extending between the outer surface of the guidewire sheath 310 and the lumens containing the third wire 346 and the fourth wire 348. The apertures are positioned between the insulation removed portions 347, 349 of the wires 346, 348 and the cut outs 322, 324 in the proximal conductive sheath 320 such that current flows through the respective apertures when high voltage pulses are applied across the third wire 346 and the fourth wire 348.
As shown in
In operation, a physician may want to independently control the distal and proximal electrode pairs to selectively generate shock waves in different portion of the cap 380.
It should be noted that the elements and features of the example catheters illustrated in
Further, while
It is noted that in the designs described above in reference to
It will be understood that the foregoing is only illustrative of the principles of the invention, and that various modifications, alterations and combinations can be made by those skilled in the art without departing from the scope and spirit of the invention. Any of the variations of the various shock wave catheters disclosed herein can include features described by any other shock wave catheters or combination of shock wave catheters herein. Furthermore, any of the methods can be used with any of the shock wave devices disclosed. Accordingly, it is not intended that the invention be limited, except as by the appended claims.
The application claims priority to U.S. Provisional Patent Application No. 62/904,847, entitled “LESION CROSSING CATHETER WITH LOW PROFILE SHOCK WAVE GENERATOR,” filed on Sep. 24, 2019, the content of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2916647 | Barbini | Dec 1959 | A |
3412288 | Ostrander | Nov 1968 | A |
3413976 | Voolfovich | Dec 1968 | A |
3524101 | Barbini | Aug 1970 | A |
3583766 | Padberg, Jr. | Jun 1971 | A |
3785382 | Schmidt et al. | Jan 1974 | A |
3902499 | Shene | Sep 1975 | A |
3942531 | Hoff et al. | Mar 1976 | A |
4027674 | Tessler et al. | Jun 1977 | A |
4030505 | Tessler | Jun 1977 | A |
4445509 | Auth | May 1984 | A |
4662126 | Malcolm | May 1987 | A |
4662375 | Hepp et al. | May 1987 | A |
4671254 | Fair | Jun 1987 | A |
4685458 | Leckrone | Aug 1987 | A |
4741405 | Moeny et al. | May 1988 | A |
4809682 | Forssmann et al. | Mar 1989 | A |
4813934 | Engelson et al. | Mar 1989 | A |
4878495 | Grayzei | Nov 1989 | A |
4890603 | Filler | Jan 1990 | A |
4900303 | Lemeison | Feb 1990 | A |
4990134 | Auth | Feb 1991 | A |
4994032 | Sugiyama et al. | Feb 1991 | A |
5009232 | Hassler et al. | Apr 1991 | A |
5046503 | Schneiderman | Sep 1991 | A |
5057103 | Davis | Oct 1991 | A |
5057106 | Kasevich et al. | Oct 1991 | A |
5061240 | Cherian | Oct 1991 | A |
5078717 | Parins et al. | Jan 1992 | A |
5102402 | Dror et al. | Apr 1992 | A |
5103804 | Abele et al. | Apr 1992 | A |
5116227 | Levy | May 1992 | A |
5152767 | Sypal et al. | Oct 1992 | A |
5152768 | Bhatta | Oct 1992 | A |
5154722 | Filip et al. | Oct 1992 | A |
5176675 | Watson et al. | Jan 1993 | A |
5195508 | Muller et al. | Mar 1993 | A |
5231976 | Wiksell | Aug 1993 | A |
5245988 | Einars et al. | Sep 1993 | A |
5246447 | Rosen et al. | Sep 1993 | A |
5254121 | Manevitz et al. | Oct 1993 | A |
5281231 | Rosen et al. | Jan 1994 | A |
5295958 | Shturman | Mar 1994 | A |
5304134 | Kraus et al. | Apr 1994 | A |
5321715 | Trost | Jun 1994 | A |
5324255 | Passafaro et al. | Jun 1994 | A |
5336234 | Vigil et al. | Aug 1994 | A |
5362309 | Carter | Nov 1994 | A |
5364393 | Auth et al. | Nov 1994 | A |
5368591 | Lennox et al. | Nov 1994 | A |
5395335 | Jang | Mar 1995 | A |
5417208 | Winkler | May 1995 | A |
5425735 | Rosen et al. | Jun 1995 | A |
5431173 | Chin et al. | Jul 1995 | A |
5454809 | Janssen | Oct 1995 | A |
5472406 | De La Torre et al. | Dec 1995 | A |
5582578 | Zhong et al. | Dec 1996 | A |
5584843 | Wulfman et al. | Dec 1996 | A |
5603731 | Whitney | Feb 1997 | A |
5609606 | O'Boyle | Mar 1997 | A |
5662590 | De La Torre et al. | Sep 1997 | A |
5709676 | Alt | Jan 1998 | A |
5846218 | Brisken et al. | Dec 1998 | A |
5891089 | Katz et al. | Apr 1999 | A |
5893840 | Hull et al. | Apr 1999 | A |
5931805 | Brisken | Aug 1999 | A |
6007530 | Domhofer et al. | Dec 1999 | A |
6024718 | Chen et al. | Feb 2000 | A |
6033371 | Torre et al. | Mar 2000 | A |
6056722 | Jayaraman | May 2000 | A |
6080119 | Schwarze et al. | Jun 2000 | A |
6083232 | Cox | Jul 2000 | A |
6090104 | Webster et al. | Jul 2000 | A |
6113560 | Simnacher | Sep 2000 | A |
6132444 | Shturman et al. | Oct 2000 | A |
6146358 | Rowe | Nov 2000 | A |
6186963 | Schwarze et al. | Feb 2001 | B1 |
6210408 | Chandrasekaran et al. | Apr 2001 | B1 |
6215734 | Moeny et al. | Apr 2001 | B1 |
6217531 | Reitmajer | Apr 2001 | B1 |
6267747 | Samson et al. | Jul 2001 | B1 |
6277138 | Levinson et al. | Aug 2001 | B1 |
6287272 | Brisken et al. | Sep 2001 | B1 |
6352535 | Lewis et al. | Mar 2002 | B1 |
6364894 | Healy et al. | Apr 2002 | B1 |
6367203 | Graham et al. | Apr 2002 | B1 |
6371971 | Tsugita et al. | Apr 2002 | B1 |
6398792 | O'Connor | Jun 2002 | B1 |
6406486 | De La Torre et al. | Jun 2002 | B1 |
6440124 | Esch et al. | Aug 2002 | B1 |
6494890 | Shturman et al. | Dec 2002 | B1 |
6514203 | Bukshpan | Feb 2003 | B2 |
6524251 | Rabiner et al. | Feb 2003 | B2 |
6589253 | Comish et al. | Jul 2003 | B1 |
6607003 | Wilson | Aug 2003 | B1 |
6638246 | Naimark et al. | Oct 2003 | B1 |
6652547 | Rabiner et al. | Nov 2003 | B2 |
6666834 | Restle et al. | Dec 2003 | B2 |
6689089 | Tiedtke et al. | Feb 2004 | B1 |
6736784 | Menne et al. | May 2004 | B1 |
6740081 | Hilal | May 2004 | B2 |
6755821 | Fry | Jun 2004 | B1 |
6939320 | Lennox | Sep 2005 | B2 |
6989009 | Lafontaine | Jan 2006 | B2 |
7066904 | Rosenthal et al. | Jun 2006 | B2 |
7087061 | Chernenko et al. | Aug 2006 | B2 |
7241295 | Maguire | Jul 2007 | B2 |
7309324 | Hayes et al. | Dec 2007 | B2 |
7389148 | Morgan | Jun 2008 | B1 |
7505812 | Eggers et al. | Mar 2009 | B1 |
7569032 | Naimark et al. | Aug 2009 | B2 |
7850685 | Kunis et al. | Dec 2010 | B2 |
7853332 | Olsen et al. | Dec 2010 | B2 |
7873404 | Patton | Jan 2011 | B1 |
7951111 | Drasler et al. | May 2011 | B2 |
8162859 | Schultheiss et al. | Apr 2012 | B2 |
8177801 | Kallok et al. | May 2012 | B2 |
8353923 | Shturman | Jan 2013 | B2 |
8556813 | Cioanta et al. | Oct 2013 | B2 |
8574247 | Adams et al. | Nov 2013 | B2 |
8728091 | Hakala et al. | May 2014 | B2 |
8747416 | Hakala et al. | Jun 2014 | B2 |
8888788 | Hakala et al. | Nov 2014 | B2 |
8956371 | Hawkins et al. | Feb 2015 | B2 |
8956374 | Hawkins et al. | Feb 2015 | B2 |
9005216 | Hakala et al. | Apr 2015 | B2 |
9011462 | Adams et al. | Apr 2015 | B2 |
9011463 | Adams et al. | Apr 2015 | B2 |
9044618 | Hawkins et al. | Jun 2015 | B2 |
9044619 | Hawkins et al. | Jun 2015 | B2 |
9072534 | Adams et al. | Jul 2015 | B2 |
9138249 | Adams et al. | Sep 2015 | B2 |
9198825 | Katragadda et al. | Dec 2015 | B2 |
9333000 | Hakala et al. | May 2016 | B2 |
9421025 | Hawkins et al. | Aug 2016 | B2 |
9433428 | Hakala et al. | Sep 2016 | B2 |
9522012 | Adams | Dec 2016 | B2 |
9642673 | Adams et al. | May 2017 | B2 |
9730715 | Adams | Aug 2017 | B2 |
9993292 | Adams et al. | Jun 2018 | B2 |
10039561 | Adams et al. | Aug 2018 | B2 |
10118015 | De La Rama et al. | Nov 2018 | B2 |
10149690 | Hawkins et al. | Dec 2018 | B2 |
10154799 | Van Der Weide et al. | Dec 2018 | B2 |
10159505 | Hakala et al. | Dec 2018 | B2 |
10206698 | Hakala et al. | Feb 2019 | B2 |
10226265 | Ku et al. | Mar 2019 | B2 |
10517620 | Adams | Dec 2019 | B2 |
10517621 | Adams | Dec 2019 | B1 |
10555744 | Nguyen et al. | Feb 2020 | B2 |
10682178 | Adams et al. | Jun 2020 | B2 |
10702293 | Adams et al. | Jul 2020 | B2 |
10709462 | Nguyen et al. | Jul 2020 | B2 |
10959743 | Adams et al. | Mar 2021 | B2 |
10966737 | Nguyen | Apr 2021 | B2 |
10973538 | Hakala et al. | Apr 2021 | B2 |
11000299 | Hawkins et al. | May 2021 | B2 |
11076874 | Hakala et al. | Aug 2021 | B2 |
11337713 | Nguyen et al. | May 2022 | B2 |
11432834 | Adams | Sep 2022 | B2 |
11534187 | Bonutti | Dec 2022 | B2 |
11596424 | Hakala et al. | Mar 2023 | B2 |
11602363 | Nguyen | Mar 2023 | B2 |
11622780 | Nguyen et al. | Apr 2023 | B2 |
11696799 | Adams et al. | Jul 2023 | B2 |
11771449 | Adams et al. | Oct 2023 | B2 |
11950793 | Nguyen | Apr 2024 | B2 |
20010044596 | Jaafar | Nov 2001 | A1 |
20020045890 | Celliers et al. | Apr 2002 | A1 |
20020077643 | Rabiner et al. | Jun 2002 | A1 |
20020082553 | Duchamp | Jun 2002 | A1 |
20020177889 | Brisken et al. | Nov 2002 | A1 |
20030004434 | Greco et al. | Jan 2003 | A1 |
20030060813 | Loeb et al. | Mar 2003 | A1 |
20030176873 | Chernenko et al. | Sep 2003 | A1 |
20030229370 | Miller | Dec 2003 | A1 |
20040006333 | Arnold et al. | Jan 2004 | A1 |
20040010249 | Truckai et al. | Jan 2004 | A1 |
20040044308 | Naimark et al. | Mar 2004 | A1 |
20040097963 | Seddon | May 2004 | A1 |
20040097996 | Rabiner et al. | May 2004 | A1 |
20040162508 | Uebelacker | Aug 2004 | A1 |
20040249401 | Rabiner et al. | Dec 2004 | A1 |
20040254570 | Hadjicostis et al. | Dec 2004 | A1 |
20050015953 | Keidar | Jan 2005 | A1 |
20050021013 | Visuri et al. | Jan 2005 | A1 |
20050059965 | Eberl et al. | Mar 2005 | A1 |
20050075662 | Pedersen et al. | Apr 2005 | A1 |
20050090888 | Hines et al. | Apr 2005 | A1 |
20050113722 | Schultheiss | May 2005 | A1 |
20050113822 | Fuimaono et al. | May 2005 | A1 |
20050171527 | Bhola | Aug 2005 | A1 |
20050228372 | Truckai et al. | Oct 2005 | A1 |
20050240146 | Nash et al. | Oct 2005 | A1 |
20050245866 | Azizi | Nov 2005 | A1 |
20050251131 | Lesh | Nov 2005 | A1 |
20060004286 | Chang et al. | Jan 2006 | A1 |
20060069424 | Acosta et al. | Mar 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060184076 | Gm et al. | Aug 2006 | A1 |
20060190022 | Beyar et al. | Aug 2006 | A1 |
20060221528 | Li et al. | Oct 2006 | A1 |
20070016112 | Schultheiss et al. | Jan 2007 | A1 |
20070088380 | Hirszowicz et al. | Apr 2007 | A1 |
20070129667 | Tiedtke et al. | Jun 2007 | A1 |
20070156129 | Kovalcheck | Jul 2007 | A1 |
20070239082 | Schultheiss et al. | Oct 2007 | A1 |
20070239253 | Jagger et al. | Oct 2007 | A1 |
20070244423 | Zumeris et al. | Oct 2007 | A1 |
20070250052 | Wham | Oct 2007 | A1 |
20070255270 | Camey | Nov 2007 | A1 |
20070282301 | Segalescu et al. | Dec 2007 | A1 |
20070299481 | Syed et al. | Dec 2007 | A1 |
20080097251 | Babaev | Apr 2008 | A1 |
20080188913 | Stone et al. | Aug 2008 | A1 |
20080294037 | Ritcher | Nov 2008 | A1 |
20090041833 | Bettinger et al. | Feb 2009 | A1 |
20090227992 | Nir et al. | Sep 2009 | A1 |
20090230822 | Kushculey et al. | Sep 2009 | A1 |
20090234282 | McAndrew | Sep 2009 | A1 |
20090247945 | Levit et al. | Oct 2009 | A1 |
20090254114 | Hirszowicz et al. | Oct 2009 | A1 |
20090299447 | Jensen et al. | Dec 2009 | A1 |
20090312768 | Hawkins et al. | Dec 2009 | A1 |
20100016862 | Hawkins et al. | Jan 2010 | A1 |
20100022950 | Anderson et al. | Jan 2010 | A1 |
20100036294 | Mantell et al. | Feb 2010 | A1 |
20100094209 | Drasler et al. | Apr 2010 | A1 |
20100114020 | Hawkins et al. | May 2010 | A1 |
20100114065 | Hawkins et al. | May 2010 | A1 |
20100121322 | Swanson | May 2010 | A1 |
20100125244 | McAndrew | May 2010 | A1 |
20100179424 | Warnking et al. | Jul 2010 | A1 |
20100274189 | Kurth et al. | Oct 2010 | A1 |
20100286709 | Diamant et al. | Nov 2010 | A1 |
20100305565 | Truckai et al. | Dec 2010 | A1 |
20110034832 | Cioanta et al. | Feb 2011 | A1 |
20110118634 | Golan | May 2011 | A1 |
20110166570 | Hawkins et al. | Jul 2011 | A1 |
20110208185 | Diamant et al. | Aug 2011 | A1 |
20110257523 | Hastings et al. | Oct 2011 | A1 |
20110295227 | Hawkins et al. | Dec 2011 | A1 |
20120071889 | Mantell et al. | Mar 2012 | A1 |
20120095461 | Herscher et al. | Apr 2012 | A1 |
20120116289 | Hawkins et al. | May 2012 | A1 |
20120143177 | Avitall et al. | Jun 2012 | A1 |
20120157991 | Christian | Jun 2012 | A1 |
20120203255 | Hawkins et al. | Aug 2012 | A1 |
20120221013 | Hawkins et al. | Aug 2012 | A1 |
20120253358 | Golan et al. | Oct 2012 | A1 |
20120271339 | O'Beirne | Oct 2012 | A1 |
20120289889 | Genstler et al. | Nov 2012 | A1 |
20130030431 | Adams | Jan 2013 | A1 |
20130030447 | Adams | Jan 2013 | A1 |
20130041355 | Heeren et al. | Feb 2013 | A1 |
20130116714 | Adams et al. | May 2013 | A1 |
20130123694 | Subramaniyan et al. | May 2013 | A1 |
20130150874 | Kassab | Jun 2013 | A1 |
20130253622 | Hooven | Sep 2013 | A1 |
20140005576 | Adams et al. | Jan 2014 | A1 |
20140039513 | Hakala | Feb 2014 | A1 |
20140046229 | Hawkins et al. | Feb 2014 | A1 |
20140052145 | Adams et al. | Feb 2014 | A1 |
20140052147 | Hakala et al. | Feb 2014 | A1 |
20140074111 | Hakala et al. | Mar 2014 | A1 |
20140074113 | Hakala et al. | Mar 2014 | A1 |
20140214061 | Adams et al. | Jul 2014 | A1 |
20140243820 | Adams et al. | Aug 2014 | A1 |
20140243847 | Hakala et al. | Aug 2014 | A1 |
20140288570 | Adams | Sep 2014 | A1 |
20140350401 | Sinelnikov | Nov 2014 | A1 |
20150073430 | Hakala et al. | Mar 2015 | A1 |
20150238208 | Adams et al. | Aug 2015 | A1 |
20150238209 | Hawkins et al. | Aug 2015 | A1 |
20150320432 | Adams | Nov 2015 | A1 |
20160135828 | Hawkins et al. | May 2016 | A1 |
20160151081 | Adams et al. | Jun 2016 | A1 |
20160174995 | Turjman | Jun 2016 | A1 |
20160183957 | Hakala et al. | Jun 2016 | A1 |
20160262784 | Grace et al. | Sep 2016 | A1 |
20160324534 | Hawkins et al. | Nov 2016 | A1 |
20160331389 | Hakala et al. | Nov 2016 | A1 |
20170135709 | Nguyen et al. | May 2017 | A1 |
20170151415 | Maeda | Jun 2017 | A1 |
20170311965 | Adams | Nov 2017 | A1 |
20180098779 | Betelia et al. | Apr 2018 | A1 |
20180360482 | Nguyen | Dec 2018 | A1 |
20190069916 | Hawkins et al. | Mar 2019 | A1 |
20190150960 | Nguyen et al. | May 2019 | A1 |
20190365400 | Adams et al. | Dec 2019 | A1 |
20200085458 | Nguyen et al. | Mar 2020 | A1 |
20200297366 | Nguyen et al. | Sep 2020 | A1 |
20200383724 | Adams et al. | Dec 2020 | A1 |
20210085383 | Vo et al. | Mar 2021 | A1 |
20210177445 | Nguyen | Jun 2021 | A1 |
20210338258 | Hawkins et al. | Nov 2021 | A1 |
20220015785 | Hakala et al. | Jan 2022 | A1 |
20220183708 | Phan et al. | Jun 2022 | A1 |
20220240958 | Nguyen et al. | Aug 2022 | A1 |
20230043475 | Adams | Feb 2023 | A1 |
20230293197 | Nguyen et al. | Sep 2023 | A1 |
20230310073 | Adams et al. | Oct 2023 | A1 |
20230329731 | Hakala et al. | Oct 2023 | A1 |
20240188975 | Nguyen | Jun 2024 | A1 |
20240268842 | Phan et al. | Aug 2024 | A1 |
Number | Date | Country |
---|---|---|
2009313507 | Nov 2014 | AU |
2013284490 | May 2018 | AU |
2104414 | Feb 1995 | CA |
1204242 | Jan 1999 | CN |
1269708 | Oct 2000 | CN |
1942145 | Apr 2007 | CN |
101043914 | Sep 2007 | CN |
102057422 | May 2011 | CN |
102271748 | Dec 2011 | CN |
102355856 | Feb 2012 | CN |
102765785 | Nov 2012 | CN |
103068330 | Apr 2013 | CN |
203564304 | Apr 2014 | CN |
104582621 | Apr 2015 | CN |
104736073 | Jun 2015 | CN |
105188848 | Dec 2015 | CN |
107072666 | Aug 2017 | CN |
109674508 | Apr 2019 | CN |
111067591 | Apr 2020 | CN |
3038445 | May 1982 | DE |
202006014285 | Dec 2006 | DE |
442199 | Aug 1991 | EP |
571306 | Nov 1993 | EP |
623360 | Nov 1994 | EP |
647435 | Apr 1995 | EP |
1596746 | Nov 2005 | EP |
2253884 | Nov 2010 | EP |
2362798 | Apr 2014 | EP |
3434209 | Jan 2019 | EP |
3473195 | Apr 2019 | EP |
60-191353 | Dec 1985 | JP |
S61135648 | Jun 1986 | JP |
62-099210 | Jun 1987 | JP |
62-275446 | Nov 1987 | JP |
3-63059 | Mar 1991 | JP |
6-125915 | May 1994 | JP |
7-47135 | Feb 1995 | JP |
8-89511 | Apr 1996 | JP |
1099444 | Apr 1998 | JP |
10-314177 | Dec 1998 | JP |
10513379 | Dec 1998 | JP |
2002538932 | Nov 2002 | JP |
2004081374 | Mar 2004 | JP |
2004357792 | Dec 2004 | JP |
2005501597 | Jan 2005 | JP |
2005095410 | Apr 2005 | JP |
2005515825 | Jun 2005 | JP |
2006516465 | Jul 2006 | JP |
2007289707 | Nov 2007 | JP |
2007532182 | Nov 2007 | JP |
2008506447 | Mar 2008 | JP |
2011513694 | Apr 2011 | JP |
2011520248 | Jul 2011 | JP |
2011524203 | Sep 2011 | JP |
2011528963 | Dec 2011 | JP |
2012505050 | Mar 2012 | JP |
2012508042 | Apr 2012 | JP |
2014208305 | Nov 2014 | JP |
2015525657 | Sep 2015 | JP |
2015528327 | Sep 2015 | JP |
6029828 | Nov 2016 | JP |
6081510 | Feb 2017 | JP |
2020524032 | Aug 2020 | JP |
2022501112 | Jan 2022 | JP |
2022544651 | Oct 2022 | JP |
WO-1989011307 | Nov 1989 | WO |
WO-1992003975 | Mar 1992 | WO |
WO-1996024297 | Aug 1996 | WO |
WO-1999000060 | Jan 1999 | WO |
WO-1999002096 | Jan 1999 | WO |
WO-2000056237 | Sep 2000 | WO |
WO-2004069072 | Aug 2004 | WO |
WO-2005099594 | Oct 2005 | WO |
WO-2005102199 | Nov 2005 | WO |
WO-2006006169 | Jan 2006 | WO |
WO-2006127158 | Nov 2006 | WO |
WO-2007088546 | Aug 2007 | WO |
WO-2007149905 | Dec 2007 | WO |
WO-2009121017 | Oct 2009 | WO |
WO-2009126544 | Oct 2009 | WO |
WO-2009136268 | Nov 2009 | WO |
WO-2009152352 | Dec 2009 | WO |
WO-2010014515 | Feb 2010 | WO |
WO-2010014515 | Aug 2010 | WO |
WO-2010054048 | Sep 2010 | WO |
WO-2011006017 | Jan 2011 | WO |
WO-2011094111 | Aug 2011 | WO |
WO-2011143468 | Nov 2011 | WO |
WO-2012025833 | Mar 2012 | WO |
WO-2013059735 | Apr 2013 | WO |
WO-2013169807 | Nov 2013 | WO |
WO-2014025397 | Feb 2014 | WO |
WO-2014025620 | Feb 2014 | WO |
WO-2015017499 | Feb 2015 | WO |
WO-2016077627 | May 2016 | WO |
WO-2016109739 | Jul 2016 | WO |
WO-2018075924 | Apr 2018 | WO |
WO-2019099218 | May 2019 | WO |
Entry |
---|
21 C.F.R. 870.5100 Title 21, vol. 8 Apr. 1, 2018 pp. 1-2. |
Abraham et al. (1992). “Effect of Humidity and on the dc Breakdown and Rod-Plane Temperature of Rod-Rod Gaps,” IEEE Transactions on Electrical Insulation, 27(2):207-213. |
Advisory Action received for U. S. Appl. No. 13/615,107, mailed on Nov. 6, 2015, 3 pages. |
Advisory Action Received for U.S. Appl. No. 12/482,995, mailed on Jun. 2, 2014, 3 pages. |
Advisory Action Received for U.S. Appl. No. 12/482,995, mailed on Sep. 29, 2011, 2 pages. |
Advisory Action Received for U.S. Appl. No. 12/581,295, mailed on Jul. 3, 2014, 3 pages. |
Advisory Action Received for U. S. Appl. No. 13/049,199, mailed on Jun. 7, 2012, 3 pages. |
Advisory Action received for U.S. Appl. No. 13/267,383, mailed on Jan. 6, 2014, 4 pages. |
After Orbital Atherectomy Video (post treatment) Video 2019. |
Allen et al. (1993). “Dielectric Breakdown in Nonuniform Field Air Gaps: Ranges of Applicability to dc Voltage Measurement,” IEEE Transactions on Electrical Insulation, 28(2):183-191. |
Allibone et al. (1972). “Influence of Humidity on the Breakdown of Sphere and Rod Gaps Under Impulse Voltages of Short and Long Wavefronts,” Proceedings of the Institution of Electrical Engineers, 119(9):1417-1422. |
Amendment After Final Action received for U.S. Appl. No. 12/482,995, filed May 16, 2014, 8 pages. |
Amendment in Response to Non-Final Office Action received for U.S. Appl. No. 12/482,995, filed Jan. 9, 2014 Jan. 9, 2014, 9 pages. |
Amighi et al., (2005). “Impact of the Rapid-Exchange Versus Over-the-Wire Technique on Procedural Complications of Renal Artery Angioplasty,” J Endovasc Ther., 12:233-239. |
Anvari et al. (1973). “Study of a 40 KV Multistage Spark Gap Operated in Air at Atmospheric Pressure,” Exhibit 1044, Declaration of Juanita DeLoach, Ph.D., 3 pages. |
Armstrong, Ehrin, “Responses to Question 6 by Patent Owner's Declarants Ehrin Armstrong,” Jan. 29, 2020, 5 pages. |
Armstrong, Ehrin, “Responses to Questions 1-5 by Patent Owner's Declarants Ehrin Armstrong,” Jan. 24, 2020, 4 pages. |
Athanasoulis, (1980). “Percutaneous Transluminal Angioplasty: General Principles,” American journal of Roentgenology, 135:893-900. |
Bank of America Merrill Lynch, “A Simple Solution to a Difficult (and Large) Problem—Initiating Coverage of SWAV,” Shockwave Medical Inc., Apr. 1, 2019, pp. 1-22. |
Becker et al., (1988). “Radiofrequency Balloon Angioplasty,” Rationale and Proof of Principle Investigative Radiology, 23(11):810-817. |
Before Orbital Aterectomy Video (pre-treatment) Video 2019. |
Belmouss (2015). “Effect of Electrode Geometry on High Energy Spark Discharges in Air,” Purdue University Open Access Theses, 216 pages. |
Ben-Dor et al., “Handbook of Shock Waves”, Shockwave Medical, Inc. Patent Owner Exhibit 2223, vol. 2, 2001, 824 pages. |
Bittl et al., (1993). “Coronary Artery Perforation during Excimer Laser Coronary Angioplasty,” Journal of the American College of Cardiology, 21(5):1158-1165. |
Bittl et al., (1993). “Publication Information—Coronary Artery Perforation during Excimer Laser Coronary Angioplasty,” Journal of the American College of Cardiology, 21(5): 1-6. |
Brace et al. (2009). “Pulmonary Thermal Ablation: Comparison of Radiofrequency and Microwave Devices by Using Gross Pathologic and CT Findings in a Swine Model,” Radiology, 251(3):705-711. |
Brinton et al., (2016). “Publication Information—TCT-777 Safety and Performance of the Shockwave Medical Lithoplasty® System in Treating Calcified Peripheral Vascular Lesions: 6-Month Results from the Two-Phase DISRUPT PAD Study,” Journal of the American College of Cardiology, 68(18):1-5. |
Brinton et al., (2016). “TCT-777 Safety and Performance of the Shockwave Medical Lithoplasty® System in Treating Calcified Peripheral Vascular Lesions: 6-Month Results from the Two-Phase DISRUPT PAD Study,” Journal of the American College of Cardiology, 68(18):B314. |
Brodmann et al., (2018). “Primary outcomes and mechanism of action of intravascular lithotripsy in calcified femoropopliteal lesions: Results of the Disrupt PAD II,” Catheter Cardiovasc Interv., 93(2):335-342. |
Calcium in the Peripheral and Coronary Arteries: The Pathologist View, Deposition Exhibit from Deposition of Dr. Finn, Mar. 6, 2020, 27 pages. |
Canfield et al., (2018). “40 Years of Percutaneous Coronary Intervention: History and Future Directions,” Journal of Personalized Medicine, 8(33):1-9. |
Cardiology Today's Intervention, “Shockwave Attracts Additional Investment from Abiomed, has IPO,” Available Online at <https://www.healio.com/cardiac-vascular-intervention/peripheral/news/online/%7Bf96c1e20-b4a9-4167-bdb8-254e86a8182a%7D/shockwave-attracts-additional-investment-from-abiomed-has-ipo>, Mar. 12, 2019, pp. 1-2. |
Chart of Mantell Detailed Mapping of Provisional to '371 Claims Case No. IPR2019-00405 2020, 12 pages. |
Cleveland et al. (2000). “Design and Characterization of a Research Electrohydraulic Lithotripter Patterned after the Dornier HM3,” Review of Scientific Instruments, 71(6):2514-2525. |
Cleveland et al. (2000). “Publication Information—Design and Characterization of a Research Electrohydraulic Lithotripter Patterned after the Dornier HM3,” Review of Scientific Instruments, 71, No. 6, 4 pages. |
Cleveland et al., (2012). “The Physics of Shock Wave Lithotripsy”, Extracorporeal Shock Wave Lithotripsy, Part IV, Chapter 38, pp. 317-332. |
Concise Description of Relevance Accompanying Third Party Preissuance Submission Under 37 CFR 1.290 for U.S. Appl. No. 15/817,073, filed Aug. 5, 2019, 31 pages. |
Concise Description of Relevance Accompanying Third Party Preissuance Submission Under 37 CFR 1.290 for U.S. Appl. No. 16/028,225, filed Aug. 2, 2019, 4 pages. |
Concise Description of Relevance Accompanying Third Party Preissuance Submission Under 37 CFR 1.290 U.S. Appl. No. 16/240,556, filed Sep. 20, 2019, 14 pages. |
Connors et al., (2003). “Renal Nerves Mediate Changes in Contralateral Renal Blood Flow after Extracorporeal Shockwave Lithotripsy”, Nephron Physiology, vol. 95, pp. 67-75. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/544,516, mailed on May 26, 2020, 5 pages. |
Das et al., (2014). “Technique Optimization of Orbital Atherectomy in Calcified Peripheral Lesions of the Lower Extremities,” Catheterization and Cardiov Interv, 83:115-122. |
DEAGON (2019). “Technology—Shockwave Medical IPO Soars On First Day Of Trading,” Investor's Business Daily, Available Online at <https://www.investors.com/news/technology/shockwave-medical-ipo-soars-trading/>, pp. 1-15. |
Decision Instituting Inter Partes Review for U.S. Pat. No. 8,956,371, by the Patent Trial and Appeal Board dated Jul. 9, 2019, 28 pages. |
Decision Instituting Inter Partes Review of U.S. Pat. No. 9,642,673, by the Patent Trial and Appeal Board dated Jul. 22, 2019, 22 pages. |
Decision of Appeals Notice received for Japanese Patent Application No. 2011-534914, mailed on Oct. 17, 2016, 2 pages of Official Copy only. |
Decision to Grant received for European Patent Application No. 13756766.5, mailed on May 27, 2016, 2 pages. |
Decision to Grant received for European Patent Application No. 09763640.1, mailed on Feb. 22, 2018, 2 pages. |
Decision to Grant received for European Patent Application No. 09825393.3, mailed on Mar. 13, 2014, 2 pages. |
Decision to Grant received for European Patent Application No. 13827971.6, mailed on Jan. 31, 2019, 2 pages. |
Decision to Grant received for Japanese Patent Application No. 2011-513694, mailed on Oct. 7, 2014, 3 pages of official copy only. |
Declaration and CV of Aloke V. Finn Case IPR2019-00405 Feb. 20, 2020, 45 pages. |
Declaration and CV of Jeffrey Chambers Case IPR2019-00405 Dec. 19, 2020, 32 pages. |
Declaration of Dr. Morten Olgaard Jensen dated Dec. 6, 2018, pp. 1-137. |
Declaration of Juanita DeLoach Exhibit 1236, Case IPR2019-00408 Feb. 18, 2020, 4 pages. |
Declaration of Natalie J. Grace dated Apr. 10, 2019, pp. 1-3. |
Declaration of Natalie J. Grace, Apr. 22, 2019, pp. 1-5. |
Declaration of William Patrick Stephens, Apr. 22, 2019, pp. 1-6. |
Deposition Exhibit from Deposition of Dr. Jensen, Balloon Attributes that Impact Deliverability, Mar. 4, 2020, 1 page. |
Deposition Exhibit from Deposition of Dr. Jensen, Diagram from Wikipedia Page for Balloon Catheters, Mar. 4, 2020, 1 page. |
Deposition Exhibit from Deposition of Dr. Jensen, Figures 1 and 2 of JP Patent No. 62-275446 (color added), Mar. 4, 2020, 1 page. |
Deposition Exhibit from Deposition of Dr. Jensen, Handwritten Diagram, Mar. 4, 2020, 1 page. |
Deposition Exhibit of Ronald David Berger Case No. IPR2019-00405 Jan. 27, 2020, 42 pages. |
Deposition Transcript (compressed) of Dr. Aloke Finn, Case No. IPR2019-00405, Mar. 6, 2020, 31 pages. |
Deposition Transcript (compressed) of Dr. Daniel van der Weide, Case No. IPR2019-00409, U.S. Pat. No. 8,728,091 B2, Jan. 10, 2020., 111 pages. |
Deposition Transcript (compressed) of Dr. Jeffrey Chambers, Case No. IPR2019-00405, Mar. 2, 2020., 81 pages. |
Deposition Transcript (compressed) of Dr. Morten Olgaard Jensen, Case No. IPR2019-00405, U.S. Pat. No. 8,956,371, Mar. 4, 2020, 73 pages. |
Deposition Transcript (compressed) of Dr. Morten Olgaard Jensen, Case No. IPR2019-00408, U.S. Pat. No. 9,642,673, Feb. 26, 2020., 80 pages. |
Deposition Transcript (compressed) of Ronald David Berger Case No. IPR2019-00405 Jan. 27, 2020, 103 pages. |
Dewhirst et al., (2003). “Basic Principles of Thermal Dosimetry and Thermal Thresholds for Tissue Damage from Hyperthermia International,” Journal of Hyperthermia, 19(3):267-294. |
Dewhirst et al., (2003). “Publication Information—Basic Principles of Thermal Dosimetry and Thermal Thresholds for Tissue Damage from Hyperthermia,” International Journal of Hyperthermia, 19(3):1-3. |
Diamondback 360® Peripheral Orbital Atherectomy System, Cardiovascular Systems, Inc., Patent Owner Exhibit 2231, 2019, 58 pages. |
Dictionary.com Definition of ‘Angioplasty’ Available Online at <https://www.dictionary.com/browse/angioplasty> pp. 1-5. |
Dodd, (1842). “Two Cases of Calculus in the Bladder, in Which Lithotripsy Was Performed,” Provincial Medical & Surgical Journal, 3(71):368-370. |
Dodge Jr., et al., (1992). “Lumen Diameter of Normal Human Coronary Arteries,” Influence of Age, Sex, Anatomic Variation, and Left Ventricular Hypertrophy or Dilation Circulation, 86(1):232-246. |
Drilling Research on the Electrical Detonation and Subsequent Cavitation in a Liquid Technique (Spark Drilling), Drilling Research Division—5718, Sandia Laboratories, Status Report Jul. 1-Dec. 31, 1975, 53 pages. |
E-mail from Cook Alciati to Mark Nelson confirming Dr. Chamber's total compensation amount from Cardiovascular Systems, Inc, CSI v. Shockwave—Dr. Chambers Testimony, Mar. 20, 2020, 1 page. |
Extended European Search Report (includes Supplementary European Search Report and Search Opinion) received for European Patent Application No. 09763640.1, mailed on Oct. 10, 2013, 5 pages. |
Extended European Search Report and Search Opinion received for European Patent Application No. 09825393.3, mailed on Feb. 28, 2013, 6 pages. |
Extended European Search Report received for European Patent Application No. 13827971.6, mailed on Apr. 12, 2016, 8 pages. |
Farb et al., (2002). “Morphological Predictors of Restenosis After Coronary Stenting in Humans,” Circulation, pp. 2974-2980. |
FDA Clears Lithoplasty Balloon That Shatters Calcified Lesions With Ultrasound, Diagnostic and Interventional Cardiology, Available Online at <https://www.dicardiology.com/product/fda-clearslithoplasty-balloon-shatters-calcified-lesions-ultrasound>, Sep. 16, 2016, pp. 1-5. |
Fernandes et al., (2007). “Enhanced infarct border zone function and altered mechanical activation predict inducibility of monomorphic ventricular tachycardia in patients with ischemic cardiomyopathy,” Radiology, 245(3):712-719. |
File History for U.S. Pat. No. 9,642,673, May 9, 2017, pp. 1-1789. |
File History of U.S. Pat. No. 8,956,371, pp. 1-1561. |
Final Office Action received for U.S. Appl. No. 12/482,995, mailed on Jul. 22, 2011, 14 pages. |
Final Office Action received for U.S. Appl. No. 12/501,619, mailed on Feb. 21, 2012, 12 pages. |
Final Office Action received for U.S. Appl. No. 12/611,997, mailed on Dec. 11, 2012, 9 pages. |
Final Office Action received for U.S. Appl. No. 12/611,997, mailed on Nov. 10, 2011, 15 pages. |
Final Office Action received for U.S. Appl. No. 13/049,199, mailed on Apr. 4, 2012, 10 pages. |
Final Office Action received for U.S. Appl. No. 13/207,381, mailed on Nov. 2, 2012, 7 pages. |
Final Office Action received for U.S. Appl. No. 14/271,342 mailed on Feb. 27, 2015, 7 pages. |
Final Office Action received for U.S. Appl. No. 12/482,995, mailed on Feb. 20, 2014, 11 pages. |
Final Office Action received for U.S. Appl. No. 12/581,295, mailed on Jun. 5, 2014, 14 pages. |
Final Office Action received for U.S. Appl. No. 12/611,997, mailed on Oct. 24, 2013 10 pages. |
Final Office Action received for U.S. Appl. No. 13/049,199 mailed on Aug. 11, 2014, 8 pages. |
Final Office Action received for U.S. Appl. No. 13/207,381, mailed on Nov. 7, 2013 7 pages. |
Final Office Action Received for U.S. Appl. No. 13/267,383, mailed on May 28, 2015, 12 pages. |
Final Office Action received for U.S. Appl. No. 13/267,383, mailed on Oct. 25, 2013 8 pages. |
Final Office Action received for U.S. Appl. No. 13/534,658, mailed on Aug. 23, 2016, 11 pages. |
Final Office Action received for U.S. Appl. No. 13/615,107 mailed on Sep. 1, 2015, 9 pages. |
Final Office Action received for U.S. Appl. No. 13/646,570, mailed on Dec. 23, 2014, 10 pages. |
Final Office Action received for U.S. Appl. No. 14/229,735, mailed on Aug. 27, 2015, 7 pages. |
Final Office Action received for U.S. Appl. No. 14/273,063, mailed on Dec. 28, 2016, 11 pages. |
Final Office Action received for U.S. Appl. No. 15/213,105, mailed on May 4, 2018, 8 pages. |
Final Office Action received for U.S. Appl. No. 15/346,132, mailed on Jun. 5, 2019, 12 pages. |
Final Office Action received for U.S. Appl. No. 15/979,182, mailed on Oct. 21, 2019, 6 pages. |
Final Office Action received for U.S. Appl. No. 16/183,438, mailed on Aug. 11, 2020, 12 pages. |
Final Office Action received for U.S. Appl. No. 14/660,539, mailed on Aug. 3, 2017, 11 pages. |
Final Written Decision Ariosa Diagnostics Inc. vs. Illumina Inc. dated Jan. 7, 2016, pp. 1-18. |
Final Written Decision for U.S. Pat. No. 8,956,371, by the Patent Trial and Appeal Board dated Jul. 8, 2020, 89 pages. |
Fung (1993). “Biomechanics—Mechanical Properties of Living Tissues,” Second Edition, Springer, 14 pages. |
Gambihler et al., (1994). “Permeabilization of the Plasma Membrane of LI210 Mouse Leukemia Cells Using Lithotripter Shock Waves,” The Journal of Membrane Biology, 141:267-275. |
Goryachev et al., (1997). “Mechanism of Electrode Erosion in Pulsed Discharges in Water with a Pulse Energy of ˜1 J,” Tech. Phys. Lett. vol. 23(5):386-387. |
Gottlieb (2018). “U.S. Department of Health and Human Services, Food and Drug Administration Report to Congress by Scott Gottlieb,” Exhibit 1217, 10 pages. |
Grassi et al., (2012). “Novel Antihypertensive Therapies: Renal Sympathetic Nerve Ablation and Carotid Baroreceptor Stimulation,” Curr Hypertens Rep, 14:567-572. |
Grocela et al., (1997). “Intracorporeal Lithotripsy,” Instrumentation and Development Urologic Clinics of North America, 24(1):13-23. |
Hawkins et al. U.S. Appl. No. 61/061,170, filed on Jun. 13, 2008, titled “Shockwave Balloon Catheter System”. pp. 1-50. |
Hill (2019). “Deposition Transcript (compressed) of Jonathan M. Hill, M.d.,” Exhibit 1211, Case No. IPR2019-00408, U.S. Pat. No. 9,642,673, 63 pages. |
Hodges et al., (1994). “Publication Information—Ultrasound Determination of Total Arterial Wall Thickness,” Journal of Vascular Surgery, 19(4):1-13. |
Hodges et al., (1994). “Ultrasound Determination of Total Arterial Wall Thickness,” Journal of Vascular Surgery, 19(4):745-753. |
Huang et al., (1998). “Cost Effectiveness of Electrohydraulic Lithotripsy v Candela Pulsed-Dye Laser in Management of the Distal Ureteral Stone,” Journal of Endourology, 12(3):237-240. |
Intention to Grant received for European Patent Application No. 09763640.1, mailed on Oct. 11, 2017, 8 pages. |
Intention to Grant received for European Patent Application No. 13756766.5, mailed on Jan. 8, 2016, 5 pages. |
Intention to Grant received for European Patent Application No. 13827971.6, mailed on Sep. 28, 2018, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2009/047070, mailed on Dec. 23, 2010, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2009/063354, mailed on May 19, 2011, 6 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2011/047070, mailed on Feb. 21, 2013, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/023172, mailed on Aug. 15, 2013, 6 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/063925, mailed on May 22, 2014, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/031805, mailed on Feb. 19, 2015, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/039987 issued on Nov. 20, 2014, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/048277 mailed on Jan. 8, 2015, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/054104 mailed on Feb. 19, 2015, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/055431, mailed on Feb. 26, 2015, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/059533 mailed on Mar. 26, 2015, 10 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/029088, mailed on Nov. 17, 2016, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2016/060817, mailed on May 31, 2018, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2018/059083, mailed on May 28, 2020, 7 pages. |
International Search Report and Written Opinion Received for PCT Application No. PCT/US2018/034855, mailed on Aug. 23, 2018, 13 pages. |
International Search Report and Written Opinion Received for PCT Application No. PCT/US2018/059083, mailed on Jan. 22, 2019, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/031805 mailed on May 20, 2013, 13 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/039987, mailed on Sep. 23, 2013, 15 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/048277, mailed on Oct. 2, 2013, 14 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/055431, mailed on Nov. 12, 2013, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/059533, mailed on Nov. 7, 2013, 14 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/029088 mailed on Jul. 16, 2015, 13 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/060453, mailed on Jan. 21, 2016, 15 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/060817, mailed on Feb. 20, 2017, 13 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/046134, mailed on Oct. 26, 2020, 18 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/050899 mailed on Feb. 2, 2021, 23 pages. |
International Search Report received for PCT Patent Application No. PCT/US2009/047070, mailed on Jan. 19, 2010, 4 pages. |
International Search Report received for PCT Patent Application No. PCT/US2009/063354, mailed on Jun. 11, 2010, 3 pages. |
International Search Report received for PCT Patent Application No. PCT/US2012/023172, mailed on Sep. 28, 2012, 3 pages. |
International Written Opinion received for PCT Patent Application No. PCT/US2009/047070, mailed on Jan. 19, 2010, 5 pages. |
International Written Opinion received for PCT Patent Application No. PCT/US2009/063354, mailed on Jun. 11, 2010, 4 pages. |
International Written Opinion received for PCT Patent Application No. PCT/US2011/047070, mailed on May 1, 2012, 5 pages. |
International Written Opinion received for PCT Patent Application No. PCT/US2012/023172, mailed on Sep. 28, 2012, 4 pages. |
Invitation to Pay Additional Fees for PCT Patent Application No. PCT/US2020/050899, mailed on Nov. 5, 2020, 16 pages. |
Jacob (1993). “Applications and Design with Analog Integrated Circuits,” Second Edition, Prentice-Hall International Editions, pp. 1-8. |
Jahnke et al. (2008). “Retrospective Study of Rapid-Exchange Monorail Versus Over-the-Wire Technique for Femoropopliteal Angioplasty,” Cardiovascular and Interventional Radiology, vol. 31, pp. 854-859. |
Johnson et al. (1992). “Electric Circuit Analysis—Second Edition,” Prentice-Hall International Editions, pp. 1-17. |
Johnston et al., (2004). “Publication Information—Non-Newtonian Blood Flow in Human Right Coronary Arteries: Steady State Simulations,” Journal of Biomechanics, 37(5):1-2. |
Johnston et al., (2006). “Non-Newtonian Blood Flow in Human Right Coronary Arteries: Transient Simulations,” Journal of Biomechanics, 39(6):1-35. |
Kaplan et al., (1993). “Healing after Arterial Dilatation with Radiofrequency Thermal and Nonthermal Balloon Angioplasty Systems,” Journal of Investigative Surgery, 6:33-52. |
Knuttinen et al., (2014). “Unintended Thermal Injuries from Radiofrequency Ablation: Organ Protection with An Angioplasty Balloon Catheter in an Animal Model,” Journal of Clinical Imaging Science, 4(1):1-6. |
Laeseke et al. (2006). “Multiple-Electrode RF Ablation Creates Confluent Areas of Necrosis: Results in in vivo Porcine Liver,” Radiology, 241(1):116-124. |
Lauer et al., (1997). “Shock wave permeabilization as a new gene transfer method,” Gene Therapy, 4:710-715. |
Lee et al., (2017). “Orbital atherectomy for treating de novo, severely calcified coronary lesions: 3-year results of the pivotal ORBIT II trial,” Cardiovascular Revascularization Medicine, 18:261-264. |
Lee et al., (2018). “Acute Procedural Outcomes of Orbital Atherectomy for the Treatment of Profunda Femoris Artery Disease: Subanalysis of the CONFIRM Registries,” J Invasive Cardio, 330(5):177-181. |
Lipowski, et al. U.S. Appl. No. 61/051,262 pp. 1-36. |
Liu et al., (2015). “Current Understanding of Coronary Artery Calcification,” Journal of Geriatric Cardiology, 12:668-675. |
Llewellyn-Jones (1963). “The Mechanism of Electrode Erosion in Electrical Discharges,” Platinum Metals Rev. vol. 7(2):58-65. |
Loske (2007). “Shock Wave Physics for Urologists,” Universidad Nacional Autónoma de México, pp. 1-188. |
Med Device Online Angioplasty Balloons Advanced Polymers Inc., Available Online at <https://www.meddeviceonline.com/doc/angioplasty-balloons-0001>, 1 page. |
MedlinePlus Angioplasty U.S. National Library of Medicine, Available Online at <https://medlineplus.gov/angioplasty.html>, pp. 1-4. |
Millman et al. (1987). “Microelectronics—Second Edition,” McGraw-Hill International Editions, pp. 1-15. |
Mills et al., (2019). “Cracking the Code on Calcium; Initiate with BUY, $39 Target Canaccord Genuity—Capital Markets,” US Equity Research Apr. 1, 2019, pp. 1-63. |
Mitomo (2018). “Intravascular lithotripsy: A Novel Technology for Treating Calcified Coronary Stenoses,” Cardiovascular News, Online Available at <https://cardiovascularnews.com/intravascular-lithotripsy-anovel-technology-for-treating-calcified-coronary-stenoses>, pp. 1-4. |
Mooney et al., (1990). “Monorail Piccolino Catheter: A New Rapid Exchange/Ultralow Profile Coronary Angioplasty System,” Catheterization and Cardiovascular Diagnosis, 20:114-119. |
Mori et al., “Coronary Artery Calcification and its Progression—What Does it Really Mean”, American College of Cardiology Foundation, vol. 11, No. 1, 2018, 16 pages. |
Myler et al., (1987). “Recurrence After Coronary Aangioplasty,” Catheterization and Cardiovascular Diagnosis, 13:77-86. |
Nichols et al., (2005). “McDonald's Blood Flow in Arteries: Theoretical,” Experimental and Clinical Principles 5th Edition, pp. 1-9. |
Nisonson et al., (1986). “Ambulatory Extracorporeal Shockwave Lithotripsy,” Urology, 28(5):381-384. |
Non Final Office Action received for U.S. Appl. No. 12/482,995, mailed on Aug. 13, 2014, 10 pages. |
Non Final Office Action received for U.S. Appl. No. 12/482,995, mailed on Jul. 12, 2013, 11 pages. |
Non Final Office Action received for U.S. Appl. No. 12/611,997, mailed on Nov. 26, 2014, 8 pages. |
Non Final Office Action received for U.S. Appl. No. 13/207,381, mailed on Nov. 25, 2014, 5 pages. |
Non Final Office Action received for U.S. Appl. No. 13/465,264, mailed on Oct. 29, 2014, 13 pages. |
Non Final Office Action received for U.S. Appl. No. 13/646,570, mailed on Oct. 29, 2014, 10 pages. |
Non Final Office Action received for U.S. Appl. No. 14/079,463, mailed on Mar. 4, 2014, 9 pages. |
Non Final Office Action received for U.S. Appl. No. 12/482,995, mailed on Feb. 11, 2011, 27 pages. |
Non Final Office Action received for U.S. Appl. No. 12/501,619, mailed on Nov. 3, 2011, 10 pages. |
Non Final Office Action received for U.S. Appl. No. 12/611,997, mailed on Apr. 8, 2013, 9 pages. |
Non Final Office Action received for U.S. Appl. No. 12/611,997, mailed on Aug. 24, 2012, 11 pages. |
Non Final Office Action received for U.S. Appl. No. 12/611,997, mailed on Jun. 21, 2011, 13 pages. |
Non Final Office Action received for U.S. Appl. No. 13/049,199, mailed on Dec. 12, 2011, 10 pages. |
Non Final Office Action received for U.S. Appl. No. 13/207,381, mailed on Feb. 22, 2013, 7 pages. |
Non Final Office Action received for U.S. Appl. No. 13/207,381, mailed on Jun. 12, 2012, 6 pages. |
Non Final Office Action received for U.S. Appl. No. 13/534,658, mailed on Mar. 11, 2016, 12 pages. |
Non Final Office Action received for U.S. Appl. No. 14/218,858, mailed on Mar. 30, 2016, 13 pages. |
Non Final Office Action received for U.S. Appl. No. 14/515,130, mailed on Jan. 14, 2016, 16 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/501,619, mailed on Jan. 28, 2014, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/581,295, mailed on Jan. 15, 2015, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/581,295, mailed on Mar. 10, 2014, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/611,997, mailed on Feb. 13, 2014, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/049,199, mailed on Feb. 4, 2014, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/207,381, mailed on Feb. 25, 2014, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/267,383, mailed on Feb. 25, 2015, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/465,264, mailed on Dec. 23, 2014, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/615,107, mailed on Apr. 24, 2015, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/646,583, mailed on Oct. 31, 2014, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/962,315, mailed on Aug. 26, 2015, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/061,554, mailed on Mar. 12, 2014, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/271,276, mailed on Aug. 4, 2014, 7 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/271,342, mailed on Sep. 2, 2014, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/273,063, mailed on Jun. 3, 2016, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/660,539, mailed on Nov. 24, 2017, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/693,155, mailed on Jan. 15, 2016, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/213,105, mailed on Nov. 28, 2017, 7 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/346,132, mailed on Dec. 20, 2018, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/474,885, mailed on Oct. 5, 2017, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/817,073, mailed on Nov. 12, 2019, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/979,182, mailed on Aug. 9, 2019, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/183,438, mailed on Mar. 31, 2020, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/660,539, mailed on Mar. 6, 2017, 14 pages. |
Notice of Acceptance Received for Australian Patent Application No. 2009257368, mailed on Aug. 28, 2014, 2 pages. |
Notice of Acceptance Received for Australian Patent Application No. 2009313507, mailed on Nov. 17, 2014, 2 pages. |
Notice of Acceptance received for Australian Patent Application No. 2013284490, mailed on May 8, 2018, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2013300176, mailed on Aug. 7, 2017, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2018204691, mailed on Jun. 18, 2019, 3 pages. |
Notice of Allowance received for Canadian Patent Application No. 2,727,429, mailed on May 26, 2015, 1 page. |
Notice of Allowance received for Canadian Patent Application No. 2,779,600, mailed on Jul. 7, 2017, 1 page. |
Notice of Allowance received for Canadian Patent Application No. 2,881,208, mailed on Oct. 24, 2019, 1 page. |
Notice of Allowance received for Chinese Patent Application No. 201380033808.3, mailed on Dec. 29, 2016, 4 pages (Official Copy Only). |
Notice of Allowance received for Chinese Patent Application No. 201380041656.1, mailed on Mar. 3, 2017, 4 pages (Official Copy Only). |
Notice of Allowance received for Japanese Patent Application No. 2015-036444, mailed on Jan. 13, 2017, 3 pages (Official Copy Only). |
Notice of Allowance received for Japanese Patent Application No. 2015-520522, mailed on Feb. 23, 2017, 3 pages (Official Copy Only). |
Notice of Allowance received for Japanese Patent Application No. 2015-526523, mailed on Dec. 4, 2017, 3 pages (Official Copy Only) (See Communication under 37 CFR § 1.98(a) (3)). |
Notice of Allowance received for Japanese Patent Application No. 2016-143049, mailed on Nov. 13, 2017, 3 pages (Official copy only). |
Notice of Allowance received for Japanese Patent Application No. 2017-212658, mailed on May 13, 2019, 3 pages (Official Copy Only). |
Notice of Allowance received for U.S. Appl. No. 14/515,130, mailed on May 2, 2016, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 14/515,130, mailed on May 25, 2016, 3 pages. |
Notice of Allowance received for U.S. Appl. No. 12/581,295, mailed on Jul. 10, 2015, 15 pages. |
Notice of Allowance received for U.S. Appl. No. 12/581,295, mailed on Jul. 29, 2015, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 12/611,997, mailed on Apr. 15, 2015, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 13/207,381, mailed on Apr. 14, 2015, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 13/465,264, mailed on May 8, 2015, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 13/957,276, mailed on Aug. 28, 2015, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 14/271,276, mailed on Feb. 25, 2015, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 12/482,995, mailed on Dec. 24, 2014, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 13/049,199, mailed on Dec. 15, 2014, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 13/049,199, mailed on Jan. 13, 2015, 4 pages. |
Notice of Allowance received for U.S. Appl. No. 13/534,658, mailed on Jan. 5, 2017, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 13/534,658, mailed on Jan. 18, 2017, 4 pages. |
Notice of Allowance received for U.S. Appl. No. 13/646,570, mailed on Mar. 11, 2015, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 13/777,807, mailed on May 19, 2015, 13 pages. |
Notice of Allowance received for U.S. Appl. No. 13/831,543, mailed on Oct. 8, 2014, 14 pages. |
Notice of Allowance received for U.S. Appl. No. 14/061,554, mailed on Apr. 25, 2014, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 14/079,463, mailed on Apr. 1, 2014, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 14/218,858, mailed on Aug. 26, 2016, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 14/271,342, mailed on Mar. 13, 2015, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 14/273,063, mailed on Apr. 12, 2017. 7 pages. |
Notice of Allowance received for U.S. Appl. No. 14/660,539, mailed on Apr. 6, 2018, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 14/693,155, mailed on Apr. 26, 2016, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 15/213,105, mailed on Aug. 10, 2018, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 15/220,999, mailed on Oct. 10, 2018, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 15/346,132, mailed on Aug. 21, 2019, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 15/346,132, mailed on Dec. 17, 2019, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 15/474,885, mailed on Feb. 14, 2018, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 15/817,073, mailed on Mar. 13, 2020, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/544,516, mailed on May 5, 2020, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 13/615,107, mailed on Dec. 31, 2015, 10 pages. |
Office Action received for Japanese Patent Application No. 2016-143049, mailed on Jul. 28, 2017, 7 pages (4 pages of English Translation and 3 pages of Official copy). |
Office Action received for Australian Patent Application No. 2009257368, issued on Apr. 28, 2014, 4 pages. |
Office Action received for Australian Patent Application No. 2009257368, issued on Jul. 31, 2013, 4 pages. |
Office Action received for Australian Patent Application No. 2009313507, mailed on Nov. 13, 2013, 3 pages. |
Office Action received for Australian Patent Application No. 2013284490, mailed on Jun. 5, 2017, 4 pages. |
Office Action received for Australian Patent Application No. 2013284490, mailed on May 3, 2018, 5 pages. |
Office Action received for Australian Patent Application No. 2013300176, mailed on Nov. 10, 2016, 2 pages. |
Office Action received for Australian Patent Application No. 2018204691, mailed on Jul. 12, 2018, 2 pages. |
Office Action received for Canadian Patent Application No. 2,727,429, mailed on Apr. 14, 2015, 4 pages. |
Office Action received for Canadian Patent Application No. 2,779,600, mailed on Jan. 4, 2016, 6 pages. |
Office Action received for Canadian Patent Application No. 2,877, 160, mailed on Feb. 7, 2019, 4 pages. |
Office Action received for Canadian Patent Application No. 2,881,208, mailed on Feb. 12, 2019, 4 pages. |
Office Action received for Canadian Patent Application No. 2,779,600, mailed on Oct. 19, 2016, 3 pages. |
Office Action received for Chinese Patent Application No. 200980153687.X, mailed on Dec. 26, 2012, 11 pages of Official copy only. |
Office Action received for Chinese Patent Application No. 200980153687.X, mailed on Jul. 11, 2013, 11 pages (Official copy only). |
Office Action received for Chinese Patent Application No. 201380033808.3, mailed on Jul. 5, 2016. 9 pages (3 pages of English translation and 6 pages of Official copy). |
Office Action received for Chinese Patent Application No. 201380041656.1, mailed on Jul. 5, 2016. 9 pages (4 pages of English translation and 5 pages of Official copy). |
Office Action received for Chinese Patent Application No. 201380042887.4, mailed on Aug. 8, 2016, 9 pages (4 pages of English translation and 5 pages of Official copy). |
Office Action received for European Patent Application No. 13735174.8, mailed on Oct. 15, 2018, 5 pages. |
Office Action received for European Patent Application No. 09763640.1, mailed on Dec. 2, 2016, 4 pages. |
Office Action received for Japanese Patent Application No. 2011-513694, mailed on Aug. 27, 2013, 6 pages (3 pages of English Translation and 3 pages of Official copy). |
Office Action Received for Japanese Patent Application No. 2011-513694, mailed on Jun. 10, 2014, 4 pages total (2 pages of Official Copy and 2 pages of English Translation) . |
Office Action Received for Japanese Patent Application No. 2011-534914, mailed on Jan. 13, 2015, 9 pages (7 pages of English Translation and 2 pages of Official Copy. |
Office Action Received for Japanese Patent Application No. 2011-534914, mailed on Jul. 15, 2014, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2011-534914, mailed on May 10, 2016, 10 pages ( 4 pages of Official Copy and 6 pages of English Translation). |
Office Action received for Japanese Patent Application No. 2011-534914, mailed on Oct. 1, 2013, 5 pages (2 pages of English Translation and 3 pages of Official copy). |
Office Action received for Japanese Patent Application No. 2014-158517, mailed on Feb. 15, 2017, 8 pages (5 pages of English Translation and 3 pages of Official Copy Only). |
Office Action Received for Japanese Patent Application No. 2014-158517, mailed on Jun. 22, 2017. 14 pages of official Copy only. |
Office Action Received for Japanese Patent Application No. 2014-158517, mailed on May 19, 2015, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2015-036444, mailed on Feb. 23, 2016, 3 pages of English translation only. |
Office Action received for Japanese Patent Application No. 2015-526523, mailed on Jan. 25, 2017, 8 pages (5 pages of English Translation and 3 pages of Official Copy Only). |
Office Action received for Japanese Patent Application No. 2016-143049, mailed on Apr. 24, 2017. 5 pages ( 2 pages of English Translation and 3 pages of Official copy). |
Office Action received for Japanese Patent Application No. 2017-212658, mailed on Dec. 20, 2018, 10 pages (6 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2017-212658, mailed on Sep. 12, 2018, 8 pages (5 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2017-212659, mailed on Jul. 5, 2018, 2 pages (Official Copy Only). |
Office Action received for Japanese Patent Application No. 2017-212659, mailed on Mar. 4, 2019, 2 pages (Official Copy Only). |
Office Action received for Japanese Patent Application No. 2015-036444, mailed on Sep. 14, 2016, 5 pages (3 Pages of English Translation and 2 Pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2016-094326, mailed on Dec. 2, 2016, 4 pages (2 pages of English Translation and 2 pages Official Copy Only). |
Office Action received for Japanese Patent Application No. 2016-094326, mailed on Jul. 6, 2017, 2 pages (Official Copy Only). |
Operator's Manual Intravascular Lithotripsy (IVL) Generator and Connector Cable LBL 61876 Rev. E Mar. 2018, pp. 1-16. |
Kini et al., (2015). “Optical Coherence Tomography Assessment of the Mechanistic Effects of Rotational and Orbital Atherectomy in Severely Calcified Coronary Lesions,” Catheterization and Cardiovascular Interventions, 86:1024-1032. |
Oral Argument Cardiovascular Systems Inc. vs. Shockwave Medical Inc. in Inter Partes Review No. IPR2019-00405, dated May 8, 2019, 35 pages. |
Otsuka et al., “Has Our Understanding of Calcification in Human Coronary Atherosclerosis Progressed”, Coronary Calcification, Apr. 2014, pp. 724-738. |
Patent Owner Preliminary Response for U.S. Pat. No. 8,956,371, by the Patent Trial and Appeal Board dated Apr. 10, 2019, 79 pages. |
Patent Owner Preliminary Response for U.S. Pat. No. 9,642,673, by the Patent Trial and Appeal Board dated Apr. 24, 2019, 56 pages. |
Patent Owner Sur-Reply for U.S. Pat. No. 8,956,371, by the Patent Trial and Appeal Board dated May 24, 2019, 8 pages. |
Patent Owner's Response Nov. 7, 2019, 70 pages. |
Patent Owner's Response Case No. IPR2019-00409 Nov. 3, 2019, 65 pages. |
Patent Owner's Updated Exhibit List for U.S. Pat. No. 8,956,371, by the Patent Trial and Appeal Board dated May 24, 2019, 7 pages. |
Patent Owner's Sur-Reply for U.S. Pat. No. 8,956,371, by the Patent Trial and Appeal Board dated Mar. 20, 2020, Mar. 20, 2020, 53 pages. |
Patent Owner's Updated Exhibit List for U.S. Pat. No. 8,956,371, by the Patent Trial and Appeal Board dated Mar. 20, 2020, 18 pages. |
Patterson et al., (1985). “The Etiology and Treatment of delayed Bleeding following Percutaneous Lithotripsy,” The Journal of Urology, 133:447-451. |
Peripheral Diamondback 360 Peripheral OAS, Micro Crown, Patents, Cardiovascular Systems, INC., 2017, 6 pages. |
Peripheral Intravascular Lithotripsy (IVL) Catheter—Instructions for Use (IFU) LBL 61932, Rev A Instructions for Use US Jan. 2018, pp. 1-5. |
Peripheral Intravascular Lithotripsy (IVL) Catheter Instructions for Use (IFU) LBL 61959, Rev. B Instructions for Use Jun. 2018, pp. 1-7. |
Peripheral IVL Case Setup and Execution Shockwave Medical Inc., Available Online at <http://shockwavemedical.com/wp-content/uploads/2018/12/PAD-IVL-Case-Set-Up.pdf>, pp. 1-11. |
Petition for Inter Partes Review for U.S. Pat. No. 8,956,371, issued on Feb. 17, 2015, 75 pages. |
Petition for Inter Partes Review of U.S. Pat. No. 9,642,673, issued on May 9, 2017, 77 pages. |
Petitioner Power of Attorney for U.S. Pat. No. 8,956,371, dated Dec. 6, 2018, pp. 1-2. |
Petitioner Power of Attorney for U.S. Pat. No. 9,642,673, dated Dec. 6, 2018, pp. 1-2. |
Petitioner's Reply Brief Case IPR2019-00405 Feb. 21, 2020, 65 pages. |
Petitioner's Reply Brief, Dated Feb. 18, 2020, 32 pages. |
Petitioner's Reply to Patent Owner's Preliminary Response for U.S. Pat. No. 8,956,371, by the Patent Trial and Appeal Board dated May 15, 2019, 7 pages. |
Press Release: Shockwave Medical Reports Fourth Quarter and Full Year 2019 Financial Results and Provides Full Year 2020 Financial Outlook, Mar. 4, 2020, 7 pages. |
Press Release: St. Francis Participates in Landmark Study Using Sonic Pressure Waves to Treat Heart Blockages, Catholic Health, Jan. 17, 2019, 5 pages. |
Publicly Available Professional & Educational Background Summary for Actus Medical, Nov. 2, 2020, 9 pages. |
Publicly Available Professional & Educational Background Summary for Alex Asconeguy, Nov. 2, 2020, 4 pages. |
Publicly Available Professional & Educational Background Summary for Chris Kunis, 2012, 3 pages. |
Publicly available Professional & Educational Background Summary for Clifton Alferness Exhibit 1229 2013, 3 pages. |
Publicly available Professional & Educational Background Summary for Daniel Hawkins Exhibit 1226, 2018, 2 pages. |
Publicly Available Professional & Educational Background Summary for Doug Hakala, 2016, 5 pages. |
Publicly available Professional & Educational Background Summary for Guy Levy Exhibit 1253 2019, 2 pages. |
Publicly Available Professional & Educational Background Summary for J. Christopher Flaherty, Nov. 2, 2020, 2 pages. |
Publicly available Professional & Educational Background Summary for John Adams Exhibit 1221, 2009, 2 pages. |
Publicly available Professional & Educational Background Summary for Krishna Bhatta Exhibit 1251 2005, 2 pages. |
Publicly available Professional & Educational Background Summary for Marat Izrailevich Lerner 2020, 3 pages. |
Publicly available Professional & Educational Background Summary for Marat Lerner 2008-2020, 4 pages. |
Publicly Available Professional & Educational Background Summary for Michael D. Lesh, 2017, 4 pages. |
Publicly available Professional & Educational Background Summary for Naoki Uchiyama 2020, 2 pages. |
Publicly available Professional & Educational Background Summary for Ralph de la Torre Exhibit 1252 2010, 2 pages. |
Publicly Available Professional & Educational Background Summary for Randy Werneth, Nov. 2, 2020, 3 pages. |
Publicly available Professional & Educational Background Summary for Robert Mantell Exhibit 1256 2000, 2 pages. |
Publicly available Professional & Educational Background Summary for Stepan Khachin 2008-2020, 3 pages. |
Publicly Available Professional & Educational Background Summary for Tom Goff, 2017, 3 pages. |
Publicly available Professional & Educational Background Summary for Valery Diamant Exhibit 1257 2017, 2 pages. |
Redline of Shockwave Provisional to Utility, pp. 1-6. |
Response to Final Office Action received for U.S. Appl. No. 12/482,995, filed Sep. 19, 2011 Sep. 19, 2011, 20 pages. |
Ricks (2019). “Long Island Doctors Using Sound Waves to Loosen Calcium Deposits from Arteries, Restore Blood Flow,” News/Health, Available Online at <https://www.newsday.com/news/health/calcium-treatment-st-francis-hospital-1.27314331>, pp. 1-4. |
Rocha-Singh et al. (2014). “Peripheral Arterial Calcification: Prevalence, Mechanism, Detection, and Clinical Implications,” Catheterization and Cardiovascular Interventions, vol. 86, pp. E212-E220. |
Rosenschein et al., (1992). “Shock-Wave Thrombus Ablation, a New Method for Noninvasive Mechanical Thrombolysis,” The American Journal of Cardiology, 70:1358-1361. |
Salunke et al., (2001). “Compressive Stress-Relaxation of Human Atherosclerotic Plaque,” J Biomed Mater, 55:236-241. |
Sasaki et al., (2015). New Insight into Scar-related Ventricular Tachycardia Circuits in Ischemic Cardiomyopathy: Fat Deposition after Myocardial Infarction on Computed Tomography, Heart Rhythm, 12(7):1508-1518. |
Schenkman, Noah Ureter Anatomy WebMD LLC, Emedicine.medscape.com, Jul. 10, 2013, 8 pages. |
Second Declaration of Natalie J. Grace dated May 24, 2019, pp. 1-2. |
Shlofmitz et al., (2019). “Orbital Atherectomy: A Comprehensive Review,” Interv Cardiol Clin, 8(2):161-171. |
Shockwavemedical.com, “Intravascular Lithotripsy (IVL),” Available Online at <https://shockwavemedical.com/technology/intravascular-lithotripsy-ivl/?country=Egypt>, 2019, pp. 1-4. |
Simpson et al., (1982). “A New Catheter System for Coronary Angioplasty,” The American Journal of Cardiology, 49:1216-1222. |
Smith et al., (1992). “Microwave Thermal Balloon Angioplasty in the Normal Rabbit,” American Heart Journal, 123(6):1516-1521. |
Sokol (2011). “Clinical Anatomy of the Uterus, Fallopian Tubes, and Ovaries,” Glob. Libr. Women's Med., pp. 1-12. |
Soukas, Peter, “Deposition Transcript (compressed) of Peter Soukas,” Cases: IPR2019-00405, IPR2019-00408, IPR2019-00409, Dec. 30, 2019, 81 pages. |
Stephens, William, “Deposition Transcript (compressed) of William Patrick Stephens,” Case No. IPR2019-00408, Jan. 22, 2020, 55 pages. |
Supplemental Declaration of Dr. Morten Olgaard Jensen Case IPR2019-00405 Feb. 21, 2020, 136 pages. |
Sweers et al. (2012). “Lightning Strikes: Protection, Inspection, and Repair,” Aero Magazine, Quarter 4, pp. 19-28. |
Tanaka et al., (2001). “A New Radiofrequency Thermal Balloon Catheter for Pulmonary Vein Isolation,” Journal of the American College of Cardiology, 38(7):2079-2086. |
Thiem et al., (2018). “The 12-Month Results of the EffPac Trial,” Journal of Vascular Surgery, 68(55):e122-e123. |
Third Party Preissuance Submission for U.S. Appl. No. 15/817,073, filed Aug. 5, 2019, 3 pages. |
Third Party Preissuance Submission for U.S. Appl. No. 15/989,016, filed Mar. 8, 2019, 3 pages. |
Third Party Preissuance Submission for U.S. Appl. No. 16/240,556, filed Sep. 20, 2019, 3 pages. |
Third-Party Submission Under 37 CFR 1.290 Concise Description of Relevance for U.S. Appl. No. 15/817,073, filed Aug. 5, 2019, 3 pages. |
Third-Party Submission Under 37 CFR 1.290 Concise Description of Relevance for U.S. Appl. No. 16/028,225, filed Aug. 2, 2019, 4 pages. |
Third-Party Submission Under 37 CFR 1.290 Concise Description of Relevance for U.S. Appl. No. 16/240,556, filed Sep. 20, 2019, 14 pages. |
TOMLINSON (1991). “Electrical Networks and Filters: Theory and Design,” Prentice Hall, pp. 1-9. |
Top Cardiovascular Innovation Award Cardiovascular Research Technologies (CRT) 2015, 1 page. |
U.S. Unpublished U.S. Appl. No. 16/993,114, filed on Sep. 13, 2020, titled “Low Profile Electrodes for a Shock Wave Catheter,” (Copy not submitted herewith pursuant to the waiver of 37 C.F.R. § 1.98(a)(2)(iii)). |
Viljoen (2008). “Flashover Performance of a Rod-Rod Gap Containing a Floating Rod Under Switching Impulses with Critical and Near Critical Times to Crest,” A Dissertation Submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, 128 pages. |
Vorreuther et al. (1992). “Impact of Voltage and Capacity on the Electrical and Acoustic Output of Intracorporeal Electrohydraulic Lithotripsy,” Urological Research, 20(5):355-359. |
Vorreuther et al. (1992). “Publication Information—Impact of Voltage and Capacity on the Electrical and Acoustic Output of Intracorporeal Electrohydraulic Lithotripsy,” Urological Research, 20, No. 5, Available Online at <https://rd.springer.com/article/10.1007/BF00922748>): pp. 1-3. |
Wagner et al. (1961). “Mechanism of Breakdown of Laboratory Gaps,” Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, 80(3):604-618. |
Wakerly (1990). “Digital Design: Principles and Practices,” Prentice Hall Inc., pp. 1-19. |
WebMD.com Definition of ‘Angioplasty’ Available Online at <https://www.webmd.com/heart-disease/heart-failure/qa/what-is-the-definition-of-angioplasty> Oct. 29, 2017, pp. 1-2. |
Weide, Daniel, “Deposition Transcript (compressed) of Daniel Van Der Weide, Ph.d.,” Exhibit 1203, Case No. IPR2019-00408, U.S. Pat. No. 9,642,673 B2, Jan. 13, 2020, 94 pages. |
Weide, Daniel, “Exhibit 1116 to Deposition of Daniel Van Der Weide,” Jan. 13, 2020, 1 page. |
Weide, Daniel, “Exhibit to 1117 Deposition of Daniel Van Der Weide, Ph.d.,” Jan. 13, 2020, 1 page. |
Weide, Daniel, “Exhibit to 1118 Deposition of Daniel Van Der Weide, Ph.d.,” Jan. 13, 2020, 1 page. |
Wells Fargo Securities LLC, “SWAV: Initiating With A Market Perform Rating,” Shockwave Medical Inc., Apr. 1, 2019, pp. 1-34. |
Whitaker (2001). “Modelling of Three-Dimensional Field Around Lightning Rods,” University of Tasmania, pp. 1-64. |
Whitaker (2001). “Publication Information—Modelling of Three-Dimensional Field Around Lightning Rods,” University of Tasmania, 1 page. |
Yamamoto et al., (2018). “Effect of orbital atherectomy in calcified coronary artery lesions as assessed by optical coherence tomography,” Catheter Cardiovasc Interv, 93(7):1211-1218. |
Zhong et al., (1997). “Publication Information—Transient Oscillation of Cavitation Bubbles Near Stone Surface During Electrohydraulic Lithotripsy,” Journal of Endourology, 11, 1 page. |
Zhong et al., (1997). “Transient Oscillation of Cavitation Bubbles Near Stone Surface During Electrohydraulic Lithotripsy,” Journal of Endourology, 11:55-61. |
Extended European Search Report received for European Patent Application No. 21191690.3, mailed on Jan. 17, 2022, 3 pages. |
International Search Report received for PCT Patent Application No. PCT/US2021/062666 mailed on Mar. 25, 2022, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/021,905, mailed on Apr. 8, 2022, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 17/185,276, mailed on Jan. 4, 2023, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 17/185,276, mailed on Oct. 26, 2022, 10 pages. |
Office Action received for Chinese Patent Application No. 201880040835.6, mailed on Oct. 14, 2022, 8 pages. English translation. |
Office Action received for Japanese Patent Application No. 2019-569918, mailed on Feb. 14, 2022, 6 pages. English translation. |
Requirement for Restriction/Election received for U.S. Appl. No. 17/021,905 mailed on Nov. 8, 2021, 5 pages. |
Notice of Allowance and Examiner Interview Summary Record received for U.S. Appl. No. 17/537,325 mailed on Nov. 22, 2024, 11 pages. |
Notice of Allowance and Examiner Interview Summary Record received for U.S. Appl. No. 18/582,579 mailed on Oct. 25, 2024, 13 pages. |
Office Action received for European Patent Application No. 21844444.6 mailed on Sep. 5, 2024, 5 pages. |
Office Action received for Japanese Patent Application No. 2022-518253 mailed on Oct. 10, 2024, 6 pages. English translation. |
Office Action received for Chinese Patent Application No. 202080081317.6 mailed on Jul. 16, 2024, 14 pages. English translation. |
Requirement for Restriction/Election received for U.S. Appl. No. 18/582,579 mailed on Sep. 5, 2024, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20210085347 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
62904847 | Sep 2019 | US |