The subject matter relates to a levelness measuring device with a levelness measuring system and a levelness measuring method with the levelness measuring system.
Levelness refers to an angle between a to-be-measured surface and an absolute horizontal plane. The levelness of the to-be-measured surface can be measured by levelness measuring devices. The levelness measuring devices include bubble levels and electronic level meters. However, the levelness measuring devices need to be in contact with the to-be-measured surface in operation. Thus, it is difficult to measure the levelness of the to-be-measured surfaces that are not accessible or inconvenient to reach using the levelness measuring devices.
Implementations of the present technology will now be described, by way of example only, with reference to the attached figures, wherein:
It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the exemplary embodiments described herein. However, it will be understood by those of ordinary skill in the art that the exemplary embodiments described herein can be practiced without these specific details. In other instances, methods, procedures, and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the exemplary embodiments described herein. The drawings are not necessarily to scale and the proportions of certain parts may be exaggerated to better illustrate details and features of the present disclosure.
One definition that applies throughout this disclosure will now be presented.
The term “comprising,” when utilized, means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in the so-described combination, assembly, series, and the like.
In the exemplary embodiment, the rail 11 is L-shaped.
The distance detector 12 is positioned on the rail 11, and is movable along the rail 11. In the exemplary embodiment, the distance detector 12 can perform non-contact measurement on a to-be-measured surface. For example, the distance detector 12 can be a laser sensor or an ultrasonic sensor.
The angle detector 13 is positioned on the rail 11, and can measure an angle γ between the plane (hereinafter, “reference plane c”) of the rail 11 and an absolute horizontal plane a (in
The memory 14 is configured to store a levelness measuring system 10 (shown in
Referring to
Referring to
At step S01, the coordinate system establishing module 101 establishes a three-dimensional (3D) coordinate system X-Y-Z which can be superimposed on a to-be-measured surface b. An X-axis and a Y-axis of the 3D coordinate system X-Y-Z thus enable a plane of the rail 11 to be treated as a reference plane c.
At step S02, the distance measurement controlling module 102 controls the distance detector 12 to move along the rail 11, thereby controlling distance detector 12 to measure height variations between the rail 11 and the measured plane b along the X-axis and the Y-axis. Data group (X,Z) and data group (Y,Z) can thus be obtained. In this exemplary embodiment, the distance measurement controlling module 102 can further store the groups of data in the memory 14.
At step S03, referring to
Wherein, a1, a2, b1, b2, c1, and c2 are constants.
In the exemplary embodiment, the data fitting module 103 obtains the two linear function equations through a linear fitting method. The linear fitting method can process the data with a certain degree of fault tolerance. For uneven surfaces (rough, concave and convex, small amounts of dirt, etc.), deviation data can be isolated to ensure the accuracy of data statistics, to obtain a more satisfactory result.
At step S04, the plane equation calculating module 104 processes the two linear function equations to obtain a plane equation of the reference plane c:
AX+BY+CZ+D=0.
In this exemplary embodiment, the plane equation calculating module 104 extracts two points from each of the two linear equations, and substitutes the coordinates of the two points into the plane equation, to obtain the values of the constants A, B, C, and D, thereby obtaining the plane equation.
At step S05, the plane equation calculating module 104 obtains the normal vector from the plane equation:
{right arrow over (c)}=(A,B,C).
Specifically, two arbitrary points P (x1, y1, z1) and Q (x2, y2, z2) are obtained in the obtained plane, and a direction vector of any straight line PQ in the plane: {right arrow over (PQ)}=(x2−x1, y2−y1, z2−z1), so
Because {right arrow over (c)}*{right arrow over (PQ )}=0, the {right arrow over (c)} is perpendicular to the plane b, the {right arrow over (c)} is the normal vector of the reference plane c. The normal vector of the reference plane c is {right arrow over (c)}=(A,B,C).
At step S06, the first angle calculating module 105 calculates the normal vector of the to-be-measured surface b, and obtains an angle β between the to-be-measured surface b and the reference plane c according to the normal vector.
In this exemplary embodiment, the normal vector of the to-be-measured surface b is: {right arrow over (b)}=(0, 0, 1).
Thus, the angle β can be obtained by following formula:
cos β={right arrow over (b)}*{right arrow over (c)}/(|{right arrow over (b)}|*|{right arrow over (c)}|)=C/√{square root over (A2+B2+C2)}
β=arcsin(C/√{square root over (A2+B2+C2)})
At step S07, referring to
At step S08, referring to
At step S09, the display controlling module 108 controls the display 16 to display the levelness α of the to-be-measured surface b.
With the above configuration, no distance detector such as a plurality of sensors is needed, which reduces the cost of the levelness measuring device 1. Since non-contact measurement is performed on the to-be-measured surface b, the act of measuring has no influence on the to-be-measured surface b of the object, and some objects that cannot be directly contacted (such as high-temperature objects) can be measured.
The embodiments shown and described above are only examples. Many other details are found in such art such. Therefore, many such details are neither shown nor described. Even though numerous characteristics and advantages of the present technology have been set forth in the foregoing description, together with details of the structure and function of the present disclosure, the disclosure is illustrative only, and changes may be made in the detail, especially in matters of shape, size, and arrangement of the parts within the principles of the present disclosure, up to and including the full extent established by the broad general meaning of the terms used in the claims. It will therefore be appreciated that the embodiments described above may be modified within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
201711484685.1 | Dec 2017 | CN | national |