Lever assembly for positive lock adjustable seat post

Information

  • Patent Grant
  • 11866110
  • Patent Number
    11,866,110
  • Date Filed
    Friday, November 20, 2020
    4 years ago
  • Date Issued
    Tuesday, January 9, 2024
    a year ago
Abstract
A method and apparatus for a seat post assembly that is adjustable to an upper, intermediate, and lower seat post position using a locking member and a sleeve member coupled to an actuator for securing and releasing an inner tube with respect to an outer tube. The actuator may move the sleeve member to release the locking member from engagement with the outer tube to adjust the inner tube and thus the seat post assembly to the upper, intermediate, or lower seat post positions. The actuator and the sleeve may be biased into an initial position that urges the locking member into engagement with outer tube to lock the inner tube to the outer tube.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

Embodiments of the invention generally relate to a seat support assembly for a vehicle. More specifically, embodiments of the invention relate to a height adjustable seat support. Embodiments of the invention further relate to a height adjustable seat post for a bicycle.


Description of the Related Art

Most modern bicycles include a rigid seat post that may be moved relative to the bicycle frame and clamped at a desired height relative to the frame for accommodating different sizes of riders and different rider styles. Generally, adjusting the seat post height in the frame requires that the rider be off the bicycle and/or may requires a significant amount of time and manipulation of the bicycle to achieve the desired seat height.


Therefore, there is a need for new and improved adjustable seat post designs and methods of use.


SUMMARY OF THE INVENTION

In one embodiment, a seat post assembly may comprise an first or outer tube; a second or inner tube axially movable within the outer tube; a locking member coupled to the inner tube and operable to lock the inner tube to the outer tube at a first location and at a second location spaced apart along the axial length of the outer tube; and an actuator operable to secure the locking member into engagement with the outer tube at the first and second locations, and operable to release the locking member from engagement with the outer tube to move the locking member from the first location to the second location.


In one embodiment, a method of adjusting a seat post assembly that has an inner tube axially movable within an outer tube may comprise locking the inner tube to the outer tube at a first location using a locking member that is coupled to the tube; securing the locking member into engagement with the outer tube using an actuator to lock the inner tube to the outer tube; moving the actuator against the bias of a biasing member to release the locking member from engagement with the outer tube at the first location; and moving the inner tube from the first location to a second location after releasing the locking member.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIGS. 1A-1C illustrate a seat post assembly.



FIGS. 2A-2E illustrate an inner tube of the seat post assembly.



FIGS. 3A-3C illustrate an outer tube of the seat post assembly.



FIGS. 4A-4C illustrate the seat post assembly when locked in an extended or upper seat post position.



FIGS. 5A-5H illustrate cross sectional views of the seat post assembly of FIGS. 4A-4C.



FIGS. 6A-6C illustrate the seat post assembly when actuated for movement into an intermediate seat post position.



FIGS. 7A-7H illustrate cross sectional views of the seat post assembly of FIGS. 6A-6C.



FIGS. 8A-8C illustrate the seat post assembly when locked in the intermediate seat post position.



FIGS. 9A-9H illustrate cross sectional views of the seat post assembly of FIGS. 8A-8C.



FIGS. 10A-10C illustrate the seat post assembly when actuated for movement into a compressed or lower seat post position.



FIGS. 11A-11G illustrate cross sectional views of the seat post assembly of FIGS. 10A-10C.



FIGS. 12A-12C illustrate the seat post assembly when locked in the compressed or lower seat post position.



FIGS. 13A-13C and 14A-14D illustrate cross sectional views of the seat post assembly of FIGS. 12A-12C.



FIGS. 15A-15G illustrate the seat post assembly prior to being locked in the compressed or lower seat post position.



FIGS. 16A-16J illustrate the seat post assembly when locked in an extended or upper seat post position.



FIGS. 17A-17J illustrate the seat post assembly when actuated for movement into an intermediate seat post position.



FIGS. 18A-18J illustrate the seat post assembly when locked in the intermediate seat post position.



FIGS. 19A-19J illustrate the seat post assembly when actuated for movement into a compressed or lower seat post position.



FIGS. 20A-20J illustrate the seat post assembly when locked in the compressed or lower seat post position.



FIGS. 21A-21E illustrate a lever assembly.





DETAILED DESCRIPTION


FIGS. 1A-1C illustrate a seat post assembly 100 for a vehicle, such as a bicycle. FIGS. 2A-2E and 3A-3C illustrate an inner tube 110 and an outer tube 120, respectively, of the seat post assembly 100. The seat post assembly 100 includes the inner tube 110 telescopically received within the outer tube 120. An upper end of the inner tube 110 includes a seat retainer 130 for retaining a selected riding saddle or bicycle seat. The inner tube 110 further includes a cable guide 160 and a lever 140 fixed thereto and pivotable about a pin 150 (as will be described in greater detail herein). A lower end of the outer tube 120 includes a fill valve 170, such as a gas fill valve of any suitable type, including for example a Schrader valve or a Presta valve.


In one embodiment, the inner tube 110 includes a thick wall section 180 in a first plane and a thin wall section 190 in a second plane where the result is a substantially oval inner space cross section. The selectively tailored wall section results in adequate strength and reduced overall weight. The lower end of the inner tube 110 includes one or more upper holes 195 and one or more lower holes 175 radially extending through the wall thickness. The upper and lower holes 195, 175 may be axially and/or radially offset relative to each other about the outer diameter of the inner tube 110. A plurality of keyways 185 are also included on an exterior of the inner tube 110 above the upper and lower holes 195, 175.


The outer tube 120 includes an upper snap ring recess 121 and a lower snap ring recess 122 for receiving one or more snap rings. Section A-A as illustrated in FIG. 3B shows some interior features of one embodiment of the outer tube 120, including an upper ball lock recess 125, an intermediate ball lock recess 126, and a lower ball lock recess 127, which correspond to an extended or upper seat post position, an intermediate seat post position, and a compressed or lower seat post position, respectively. Also shown are axial ball tracks 128 for guiding one or more locking members, such as ball members, from the upper seat post position to the intermediate seat post position.


In one embodiment, the inner tube 110 and/or the outer tube 120 may be formed from solid, forged structures. The inner tube 110 and the seat retainer 130 may be formed integrally as a single piece of material. One or more of the other seat post assembly 100 components may be formed integrally with the inner tube 110 and/or the outer tube 120 reduce the number of parts of the assembly. The components of the seat post assembly 100 may be forged as solid, single piece of material structures to optimize wall thicknesses to achieve desired and/or necessary weight and strength.



FIGS. 4A-4C illustrate one embodiment of the seat post assembly 100 locked in the extended or upper seat post position. FIGS. 5A-5H illustrate cross sectional views of the seat post assembly of FIGS. 4A-4C. In all positions, the inner tube 110 is received in the outer tube 120 through a sliding seal head/wiper assembly 5. The seal head/wiper assembly 5 provides a seal and a debris barrier against the relatively smooth (e.g. 32 or 16 rms) outer surface of the inner tube 110. The seal head/wiper assembly 5 may include one or more o-rings or seals for sealing between the inner tube 110 and the outer tube 120, one or more wiper rings for protecting against or occluding debris, and/or one or more snap rings for securing the components within the outer tube 120. The seal head/wiper assembly 5 may also provide a seal for a spring chamber 10 disposed within the outer tube 120.


Referring to FIG. 5E for example, the extended seat post assembly 100 is held in position by one or more ball members 20 that are engaged with the inner tube 110 through the one or more lower holes 175, and the outer tube 120 in the upper ball lock recess 125. The one or more ball members 20 are retained in a radially extended position, corresponding to a locked seat post position, by a large diameter portion 30 of a sleeve 35. The sleeve 35 is coupled to and axially movable with and by an actuator 34, such as a rod member, which retains the sleeve 35 between a biasing member, such as spring 152, and a retainer 37. The sleeve 35 is slidable in relation to the actuator 34 but against compression in the spring 152.


The actuator 34 is axially movable by means of the lever 140, which pivots about the pin 150, and specifically in one embodiment because fork arm 145 engages a roll pin 146 that extends through and to either side of the actuator 34. When the lever 140 is pulled toward the cable guide 160, by a cable installed there through and attached to the lever 140, the fork arm 145 moves in a direction opposite the lever 140 and pulls on the roll pin 146. While one end of the cable passes through the cable guide 160 and attaches to the lever 140, another end of the cable according to one embodiment is attached to and operated by a manual lever having an index system for positively corresponding to the extended or upper, intermediate, and compressed or lower seat post positions. As the roll pin 146 is forced upward, so too is the actuator 34, thereby compressing a biasing member, such as spring 151, which may be positioned between a retainer coupled to the actuator and a shoulder of the inner tube 110. Thus when tension on the cable and corresponding force on the lever 140 is released, the lever 140 and the actuator 34 return to the previous position. Further, as the actuator 34 is moved upward, so too is the sleeve 35 moved upward, thereby moving the large diameter portion 30 up and out from under the one or more ball members 20. The actuator 34 may extend outside of the sealed spring chamber 10 and is sealed through a chamber bulkhead 36 comprising one or more seals 33, such as o-rings, as shown in FIG. 5F for example, and is held from “falling into” the spring chamber 10 by a stop ring 32. A plurality of keys 38 mounted to the inner tube 110 in the keyways 185 travel in axial slots 39 formed in the outer tube 120 to maintain relative rotational orientation of the inner tube 110 and the outer tube 120 and to maintain axial travel limits of the inner tube 110 within the outer tube 120.



FIGS. 6A-6C illustrate one embodiment of the seat post assembly 100 when actuated for movement into the intermediate seat post position. FIGS. 7A-7H illustrate cross sectional views of the seat post assembly of FIGS. 6A-6C. FIG. 7E shows that the lever 140 has been pulled by a cable for example to an intermediate position, and the fork arm 145 has raised the roll pin 146 and thus the actuator 34 to a position where the large diameter portion 30 of the sleeve 35 is removed from supporting the one or more ball members 20, while the one or more ball members 21 remain supported by the large diameter portion 30. As such, the one or more ball members 20 are free to move from the upper ball lock recess 125 of the outer tube 120, and the one or more ball members 21 are free to travel downward along and within the axial ball tracks 128 of the outer tube 120. A compressive or downward force (e.g. the weight of a rider) must be applied to a saddle or seat mounted on the seat post assembly 100 to cause contraction of the seat post assembly 100 while the actuator 34 is in the intermediate position. This is because a spring gas pressure (e.g. 25 psi or 15 to 50 psi) within the spring chamber 10 exerts a force tending to extend the seat post assembly 100, which is how it is extended when actuated.



FIGS. 8A-8C illustrate one embodiment of the seat post assembly 100 when locked in the intermediate seat post position. FIGS. 9A-9H illustrate cross sectional views of the seat post assembly of FIGS. 8A-8C. When locked in the intermediate position, the one or more ball members 20 extend into the intermediate ball lock recess 126 and are supported by the large diameter portion 30 of the sleeve 35. The sleeve 35 has been re-positioned with the large diameter portion 30 under or behind both of the one or more ball members 20, 21 because the lever 140 has been released and the compression force of the spring 151 has returned the actuator 34 and the sleeve 35 to the lower position relative to the inner tube 110. The one or more ball members 21 traveled axially downward in the axial ball tracks 128 and abut a shoulder or the ends 129 of the axial ball tracks 128. Such abutment serves as a downward limiter thereby providing a positive location and stop for the intermediate seat post position, so long as the lever 140 and the actuator 34 are initially positioned for intermediate travel only. According to one embodiment, the intermediate seat post position cannot be passed while compressing the seat post assembly 100 so long as the lever 140 is positioned for intermediate travel (e.g. when an operating lever is for example indexed in the intermediate travel mode). When the one or more ball members 21 are abutting the shoulder or the ends 129 of the axial ball tracks 128, the one or more ball members 20 are aligned with the intermediate ball locking recess 126.



FIGS. 10A-10C illustrate one embodiment of the seat post assembly 100 when actuated for movement into the compressed or lower seat post position. FIGS. 11A-11G illustrate cross sectional views of the seat post assembly of FIGS. 10A-10C. FIG. 11D shows the lever 140 actuated to full travel whereby the spring 151 is correspondingly compressed, the large diameter portion 30 of the sleeve 35 is removed from beneath or behind both of the one or more ball members 20, 21, and the inner tube 110 is traveling downward within the outer tube 120 by virtue of applied rider weight and while compressing gas in the spring chamber 10. When the large diameter portion 30 of the sleeve 35 moved from beneath or behind the one or more ball members 20, 21, this allows the one or more ball members 20 to retract from engagement with the intermediate ball locking recess 126, and allows the one or more ball members 21 to retract from engagement with the shoulder or ends 129 of the axial ball tracks 128 to enable the inner tube 110 to move to the compressed or lower seat post position using applied rider weight to the inner tube 110.



FIGS. 12A-12C illustrate one embodiment of the seat post assembly 100 when locked in the compressed or lower seat post position. FIGS. 13A-13C and 14A-14D illustrate cross sectional views of the seat post assembly of FIGS. 12A-12C. FIGS. 13B and 14B illustrate the inner tube 110 fully compressed into the outer tube 120, and the seat post assembly 100 locked in its lowest position. The lever 140 has been released and the spring 151 has returned the actuator 34 relatively downward and the large diameter portion 30 of the sleeve 35 to a position under or behind both the one or more ball members 20, 21. With the seat post assembly 100 in the lower position, it may be raised by pulling downward on the lever 140 to full travel at which point the large diameter portion 30 of the sleeve 35 is removed from under or behind the one or more ball members 20, 21 and the inner tube 110 is pushed upwardly relative to the outer tube 120 by gas pressure within the spring chamber 10.



FIGS. 15A-15E illustrates the seat post assembly 100 during the transition from the intermediate seat post position to the lower or compressed seat post position, and after release of the lever 140. As illustrated in FIG. 15E for example, the propensity against the spring 152 leaves a gap 153 until the one or more ball members 20, 21 move radially outward into the lower ball locking recess 127 upon arrival at the lower position, as described above with respect to FIGS. 12A-14D. When the one or more ball members 20, 21 arrive at the lower ball locking recess 127, they move radially outward therein with the large diameter portion 30 of the sleeve 35 underneath or behind the one or more ball members 20, 21 to thereby lock the seat post assembly 100 in the compressed or lower seat post position.



FIGS. 16A-16J illustrate a seat post assembly 200 for a vehicle, such as a bicycle. The embodiments of the seat post assembly 100 illustrated in FIGS. 1A-15G and described herein may be used with the embodiments of the seat post assembly 200 illustrated in FIGS. 16A-21E, and vice versa. The components of the seat post assembly 200 that are similar to those of the seat post assembly 100 may include the same reference numeral ending but with at “200” series designation. Although referenced in the drawings, a full description of each component will not be repeated herein for brevity.


The seat post assembly 200 illustrated in FIGS. 16A-16J is locked in the extended or upper seat post position. The seat post assembly 200 includes the inner tube 210 telescopically movable within the outer tube 220. The upper end of the inner tube 210 includes the seat retainer 233 for retaining a selected riding saddle or bicycle seat. The inner tube 210 further includes the cable guide 260, and the lever 240 coupled thereto and pivotable about the pin 250. The lower end of the outer tube 220 includes the fill valve 270, such as a gas fill valve of any suitable type, including for example a Schrader valve or a Presta valve.


One difference of the seat post assembly 200 with respect to the seat post assembly 100 is the form of the lower end of the inner tube 210. As illustrated in FIG. 16F for example, the lower end of the inner tube 210 includes a plurality of lower holes 275 disposed through the wall of the inner tube 210 for supporting one or more first ball members 219 and one or more second ball members 221, which are axially and symmetrically positioned adjacent to each other about the inner tube 210. The axial ball tracks 228 are provided along the inner surface of the outer tube 220 for guiding the one or more second ball members 221 from the upper seat post position to the intermediate seat post position. The lower end of the inner tube further includes two sets of upper holes 295 axially spaced apart and disposed through the wall of the inner tube 210 for supporting one or more third ball members 223.


Another difference is a second sleeve 231 that is disposed adjacent to the sleeve 235 having the large diameter portion 230 for urging the first and/or second ball members 219, 221 into the upper, intermediate, and/or lower ball lock recesses 225, 226, 227, respectively, which are spaced axially along the length of the outer tube 220. The second sleeve 231 is disposed around the actuator 234 and is moveable with the sleeve 235 relative to the inner tube 210 and the third ball members 223. The second sleeve 231 includes large diameter portions 241 for urging the third ball members 223 radially outward into engagement with the keys 238, which travel along axial slots 239 formed in the inner surface of the outer tube 220. The third ball members 223 are urged into the keys 238, which are urged into the axial slots 239 to secure and ensure that the inner tube 210 is rotationally locked with the outer tube 220. The second sleeve 231 also includes smaller diameter or tapered portions 242 for relieving the engagement between the third ball members 223 and the keys 238 during axial transition of the seat post assembly between seat post positions. The plurality of keyways 285 are also included on the exterior of the inner tube 210 for supporting the keys 238.


Finally, in addition to the spring 252 that biases the sleeve 235 toward the end of the actuator 234, another biasing member, such as spring 254, is positioned between an inner shoulder of the second sleeve 231 and a retainer 256 coupled to the actuator 234 to bias the second sleeve 231 toward the sleeve 235 and the end of the actuator 234. The springs 252, 254 maintain the sleeves 235, 231 in an initial position with respect to the first, second, and third ball members 219, 221, 223 when the actuator 234 is not being actuated by the lever 240 and/or when the seat post assembly 200 is in one of the upper, intermediate, and/or lower seat post positions. When in the initial position, the large diameter portions 230, 241 of the sleeves 235, 231 are positioned underneath or behind the first, second, and third ball members 219, 221 and 223, respectively.


As illustrated in FIG. 16E for example, the inner tube 210 is received in the outer tube 220 through the sliding seal head/wiper assembly 205, which may provide a seal for the spring chamber 215 disposed within the outer tube 220. The seat post assembly 100 is locked in the extended or upper seat post position by the first ball members 219 that are engaged with the inner tube 210 through the one or more lower holes 275, and the outer tube 220 in the upper ball lock recess 225. The first ball members 219 are retained in a radially extended position, corresponding to the locked seat post position, by the large diameter portion 230 of the sleeve 235, which is axially movable with and by the actuator 234.


The actuator 234 is axially movable by means of the lever 240, which pivots about the pin 250, and specifically in one embodiment because the fork arm 245 engages the roll pin 246 that extends through and to either side of the actuator 234. When the lever 240 is pulled toward the cable guide 260, by a cable installed there through and attached to the lever 240, the fork arm 245 moves in a direction opposite the lever 240 and pulls on the roll pin 246. While one end of the cable passes through the cable guide 260 and attaches to the lever 240, another end of the cable according to one embodiment is attached to and operated by a lever assembly 300 (illustrated in FIGS. 21A-21E for example) having an index system for positively corresponding to the extended or upper, intermediate, and compressed or lower seat post positions. As the roll pin 246 is forced upward, so too is the actuator 234, thereby compressing the spring 251. Thus when tension on the cable and corresponding force on the lever 240 is released, the lever 240 and the actuator 234 return to the previous initial position. Further, as the actuator 234 is moved upward, so too are the sleeve 235 and the second sleeve 231 moved upward, thereby moving the large diameter portions 230, 241, respectively, up and out from under or behind the first, second, and third ball members 219, 221 and 223, respectively. The actuator 234 may extend outside of the sealed spring chamber 215 and is sealed through the chamber bulkhead 236 comprising one or more seals, and is held from “falling into” the spring chamber 215 by the stop ring 232.


The plurality of keys 238 mounted to the inner tube 210 in the keyways 285 travel in axial slots 239 formed in the outer tube 220 to maintain relative rotational orientation of the inner tube 210 and the outer tube 220 and to maintain axial travel limits of the inner tube 210 within the outer tube 220. The third ball members 223 may also be urged into contact with the keys 238 by the large diameter portions 241 of the second sleeve 231 when the actuator 234 is in the relaxed or initial position. When the actuator 234 is actuated, the large diameter portions 241 of the second sleeve 231 may be removed from underneath or behind the third ball members 223 so that they may retract radially inward from rigid engagement with the keys 238 to facilitate uninhibited and smooth travel of the inner tube 220 to the different seat post positions.



FIGS. 17A-17D illustrate one embodiment of the seat post assembly 200 when actuated for movement into the intermediate seat post position. FIGS. 17E-17J illustrate cross sectional views of the seat post assembly of FIGS. 17A-D. FIG. 17F shows that the lever 240 has been pulled or actuated to an intermediate position, and the fork arm 245 has raised the roll pin 246 and thus the actuator 234 to a position where the large diameter portion 230 of the sleeve 235 is removed from supporting the first ball members 219, while the second ball members 221 remain supported by the large diameter portion 230 but are positioned within the axial ball tracks 228. As such, the first ball members 219 are free to move out of engagement from the upper ball lock recess 225 of the outer tube 220, and the second ball members 221 are free to travel downward along and within the axial ball tracks 228 of the outer tube 220. In addition, the large diameter portions 241 of the second sleeve 231 are removed from urging the third ball members 223 into contact with the keys 238 to facilitate the transition of the seat post assembly 200 from the upper seat post position to the intermediate seat post position. A compressive or downward force (e.g. the weight of a rider) must be applied to the saddle or seat mounted on the seat post assembly 200 to cause contraction of the seat post assembly 200 while the actuator 234 is in the actuated intermediate position. This is because the spring gas pressure (e.g. 25 psi or 15 to 50 psi) within the spring chamber 215 exerts a force tending to extend the seat post assembly 200, which is how it is extended when actuated.



FIGS. 18A-18D illustrate one embodiment of the seat post assembly 200 when locked in the intermediate seat post position. FIGS. 18E-18J illustrate cross sectional views of the seat post assembly of FIGS. 18A-D. When locked in the intermediate position, the first and second ball members 219, 221 extend into the intermediate ball lock recess 226 and are supported by the large diameter portion 230 of the sleeve 235. The sleeve 235 has been re-positioned with the large diameter portion 230 under or behind both of the first and second ball members 219, 221 because the lever 240 has been released and the compression force of the spring 251 has returned the actuator 234 and the sleeve 235 to the lower initial position relative to the inner tube 210. The second ball members 221 traveled axially downward in the axial ball tracks 228, which end in the intermediate ball lock recess 226, thereby providing a positive location and stop for the intermediate seat post position, so long as the lever 240 and the actuator 234 are initially positioned for intermediate travel only. According to one embodiment, the intermediate seat post position cannot be passed while compressing the seat post assembly 200 so long as the lever 240 is positioned for intermediate travel (e.g. when an operating lever is for example indexed in the intermediate travel mode). When the second ball members 221 exit the axial ball tracks 228, they are aligned with the intermediate ball locking recess 226.



FIGS. 19A-19D illustrate one embodiment of the seat post assembly 200 when actuated for movement into the compressed or lower seat post position. FIGS. 19E-19J illustrate cross sectional views of the seat post assembly of FIGS. 19A-D. FIG. 17F shows the lever 240 actuated to full travel whereby the spring 251 is correspondingly compressed, the large diameter portions 230, 241 of the sleeves 235, 231 are removed from beneath or behind the first, second, and third ball members 219, 221, 223, and the inner tube 210 is traveling downward within the outer tube 220 by virtue of applied rider weight and while compressing gas in the spring chamber 215.



FIGS. 20A-20D illustrate one embodiment of the seat post assembly 200 when locked in the compressed or lower seat post position. FIGS. 20E-20J illustrate cross sectional views of the seat post assembly of FIGS. 20A-D. FIG. 20F shows that the lever 240 has been released and the spring 251 has returned the actuator 234 relatively downward and the large diameter portions 230, 241 of the sleeves 235, 231 to a position under or behind both the first, second, and third ball members 219, 221, 223. When the first and second ball members 219, 221 arrive at the lower ball lock recess 227, they move radially outward therein with the large diameter portion 230 of the sleeve 235 underneath or behind the first and second ball members 219, 221 to thereby lock the seat post assembly 200 in the lower seat post position.


With the seat post assembly 200 in the compressed or lower seat post position, it may be raised by pulling downward on the lever 240 to full travel at which point the large diameter portions 230, 241 of the sleeves 235, 231 are removed from under or behind the first, second, and third ball members 219, 221, 223 and the inner tube 210 is pushed upwardly relative to the outer tube 220 by gas pressure within the spring chamber 215.



FIGS. 21A-21E illustrate one embodiment of a lever assembly 300 that can be coupled to the levers 140, 240 by a single cable 309 or at least one cable 309 for operating the seat post assemblies 100, 200 as described herein. The lever assembly 300 may be coupled to the handlebar of a bicycle for manual operation by the user. The lever assembly 300 may include a support member 310 for supporting a housing 320, which rotatably supports a first lever 330 and a second lever 340. Single cable 309 or at least one cable 309 may be attached to at least the first lever 330. One or more fasteners 311, 312 may be used to easily and quickly connect and disconnect the lever assembly 300 to the bicycle. In one embodiment, the handlebar of a bicycle may be disposed through an opening 315 of the support member 310 at a desired position, and the housing 320 may be adjustably secured to the support member 310 at one or more locations 317 depending on user preference. As illustrated in FIGS. 21A and 21B, the lever assembly 300 is adjustable for operation with both right-handed and left-handed users. The lever assembly 300, and in particular the housing 320 can be flipped, inverted or turned upside down from an upright position with respect to the support member 310 to easily convert the lever assembly 300 for use on the right or left hand side of the bicycle handlebar, and for use above or below the bicycle handlebar, using a single fastener.


As illustrated in FIGS. 21C-21E, the first and second levers 330, 340 are rotatably coupled to the housing 320 and are movable to one or more preset positions that correspond to the extended or upper, intermediate, and compressed or lower seat post positions. The first lever 330 may be longer than the second lever 340, and a portion of the second lever 340 overlaps a portion of the first lever 330. The first lever 330 (or primary lever) may be configured to rotate through a first angular distance to pull the full amount of cable (e.g. compare FIG. 21C to FIG. 21E) to actuate the actuators 34, 234 as described above to their full travel to move the seat post assemblies 100, 200 to the compressed or lower seat post position, or to release from the lowest position to move the seat post assemblies 100, 200 to the extended or upper seat post position. The second lever 340 (or secondary lever) may only move or rotate through a portion such as one-half of the first angular distance and pulls one-half of the cable (e.g. compare FIG. 21C to FIGS. 21D, E). FIG. 21C illustrates the lever assembly 300 in the normal position. The second lever 340 may be pushed or moved halfway through the first angular distance from the position in FIG. 21C to the position in FIG. 21D until it reaches a hard-stop (such as a portion of the housing 320); in this way the second lever 340 is only able to travel a smaller angular distance than the first lever 330. By virtue of the aforementioned overlap between the two levers 330, 340, a force applied to the second lever 340 in one direction causes the first lever 330 to move in the same direction at the same time, and therefore pull the cable to effect seat post adjustment. Following that the user may locate (e.g. with the thumb) another part of the first lever 330, such as the longer part of the first lever 330 projecting beyond the end of the second lever 340 and then the first lever 330 may be pushed or moved further through the first angular distance to the full position in FIG. 21E to go to full travel. The lever assembly 300 may therefore allow the user to easily find the intermediate position by pushing the second lever 340 until it contacts its hardstop halfway through the rotational travel of the first lever 330. This action will cause the movement of the first lever 330 halfway through its rotational travel, ensuring that the correct amount of cable is pulled to actuate the lever 140 for example as described above to move the seat post assemblies 100, 200 to the intermediate seat post position. As described above, following that the first lever 330 may be pushed beyond the angular range of the second lever 340 to move the seat post assemblies 100, 200 to the fully extended and/or compressed positions. When the seat post assemblies 100, 200 are in the extended or upper seat post position, the first and second levers 330, 340 may be in the position illustrated in FIG. 21C, which position is ready for operation to adjust seat post assemblies 100, 200 to the intermediate and/or lower seat post positions. In the other direction, the first lever 330 may be pulled back (such as by the user and/or by spring/cable return) until the overlapping portions come into abutment with one another, signaling to the user that the correct position has been reached to adjust the seat post assemblies 100, 200 back to the intermediate seat post position. If the user desires the seat post to be returned to the fully compressed position the first lever 330 can simply be pulled all the way back to the position shown in FIG. 21D. In doing so, and by virtue of the lever overlap, the second lever 340 is also returned to the initial position shown in that Figure, ready for the next seat post adjustment. This arrangement ensures that the first lever 330 cannot be moved back to the initial position (FIG. 21D) without moving the second lever 340 back at the same time. Although described herein for use with the seat post assemblies 100, 200, the lever assembly 300 may be used with other vehicle systems, such as a vehicle suspension system. In one embodiment, the lever assembly 300 may be operable to control the actuation and/or adjustment of a bicycle suspension system.


In one embodiment, a seat post assembly may comprise an inner tube; an outer tube telescopically receiving the inner tube; a locking member engaging the inner tube with the outer tube in at least a first position, a second position and a third position; and a stop positively arresting relative motion between the tubes at the at least the second position and optionally at the first and third positions.


In one embodiment, a method for lowering a seat post assembly may comprise positioning a controller in an intermediate position; applying a compressive force to the seat post assembly; and stopping a compression of the seat post at a seat post intermediate position without relieving the compressive force.


In one embodiment, a method of adjusting a seat post assembly that has an inner tube axially movable within an outer tube, includes: locking the inner tube to the outer tube at a first location using a locking member that is coupled to the tube; securing the locking member into engagement with the outer tube using an actuator to lock the inner tube to the outer tube; moving the actuator against the bias of a biasing member to release the locking member from engagement with the outer tube at the first location; and moving the inner tube from the first location to a second location after releasing the locking member.


The method may comprise biasing a sleeve coupled to the actuator to a position beneath or behind the locking member to secure the locking member into engagement with the outer tube. The method may further comprise moving the actuator against the bias of the biasing member to release the locking member from engagement with the outer tube at the second location, and moving the inner tube from the second location to a third location after releasing the locking member.


The locking member may comprise a first plurality of ball members and a second plurality of ball members, and further comprising urging the first plurality of ball members into engagement with the outer tube while preventing the second plurality of ball members from engaging the outer tube at the first location. The method may further comprise stopping axial movement of the inner tube relative to the outer tube using the second plurality of ball members at a position where the first plurality of ball members engage the outer tube at the second location.


The method may further comprise urging a third plurality of ball members into engagement with the outer tube to rotationally secure the inner tube to the outer tube. The method may further comprise controlling actuation of the actuator using a lever assembly comprising a first lever rotatable through a first angular distance, and a second lever rotatable through half of the first angular distance together with the first lever. The method may further comprise rotating the first lever through half of the first angular rotation and into contact with the second lever to thereby actuate the actuator to release the locking member for movement from the first location to the second location on the outer tube. The method may further comprise rotation of the first and second levers together through the other half of the first angular distance to thereby actuate the actuator to release the locking member for movement from the second location to a third location on the outer tube.


While the foregoing is directed to embodiments of the invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A lever assembly to control actuation of an actuator of a seat post for a vehicle, which lever assembly comprises: a housing;a first lever coupled to said housing and rotatable through a first angular distance with respect to said housing, said first lever at least partially controlling said actuation of said actuator of said seat post; anda second lever coupled to said housing, said second lever restricted to a degree of rotation which is no more than half of said first angular distance with respect to said housing, said second lever at least partially controlling said actuation of said actuator of said seat post.
  • 2. The lever assembly of claim 1, wherein said second lever is rotatable through said no more than half of said first angular distance and into contact with said first lever to thereby actuate said actuator to release a first locking member for movement from a first relative position to a second relative position on an outer tube.
  • 3. The lever assembly of claim 1, wherein said lever assembly further comprises: a support member for supporting said housing and said first and second levers; andwherein said housing is configured to be operatively coupled to said support member in an upright position and in an upside down position with respect to said support member, while said first and second levers are operable to control actuation of said actuator.
  • 4. The lever assembly of claim 1, wherein said lever assembly is coupled to a bicycle.
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application is a continuation application of and claims the benefit of co-pending U.S. patent application Ser. No. 16/147,010, filed Sep. 28, 2018, entitled, “LEVER ASSEMBLY FOR POSITIVE LOCK ADJUSTABLE SEATPOST”, by Laird et al., assigned to the assignee of the present application, which is incorporated herein in its entirety by reference thereto. The patent application Ser. No. 16/147,010 is a continuation application of and claims the benefit of U.S. patent application Ser. No. 15/593,020, filed May 11, 2017, now U.S. Pat. No. 10,086,892, entitled, “LEVER ASSEMBLY FOR POSITIVE LOCK ADJUSTABLE SEATPOST”, by Laird et al., assigned to the assignee of the present application, which is incorporated herein in its entirety by reference thereto. The patent application Ser. No. 15/593,020 is a continuation application of and claims the benefit of U.S. patent application Ser. No. 14/330,996, filed Jul. 14, 2014, now U.S. Pat. No. 9,650,094, entitled, “LEVER ASSEMBLY FOR POSITIVE LOCK ADJUSTABLE SEATPOST”, by Laird et al., assigned to the assignee of the present application, which is incorporated herein in its entirety by reference thereto. The patent application Ser. No. 14/330,996 is a divisional application of and claims the benefit of U.S. patent application Ser. No. 13/176,336, filed Jul. 5, 2011, now U.S. Pat. No. 8,814,109, entitled, “POSITIVE LOCK ADJUSTABLE SEAT POST”, by Laird et al., assigned to the assignee of the present application, which is incorporated herein in its entirety by reference thereto. The U.S. patent application Ser. No. 13/176,336 claims priority to and benefit of U.S. provisional patent application 61/361,376, filed Jul. 2, 2010, entitled “POSITIVE LOCK ADJUSTABLE SEAT POST”, by Laird et al., assigned to the assignee of the present application, which is incorporated herein in its entirety by reference thereto.

US Referenced Citations (780)
Number Name Date Kind
435995 Dunlop Sep 1890 A
1492731 Kerr May 1924 A
1575973 Coleman Mar 1926 A
1655786 Guerritore et al. Jan 1928 A
1923011 Moulton Aug 1933 A
1948600 Templeton Feb 1934 A
2018312 Moulton Oct 1935 A
2115072 Hunt et al. Apr 1938 A
2186266 Henry Jan 1940 A
2259437 Dean Oct 1941 A
2492331 Spring Dec 1949 A
2540525 Howarth et al. Feb 1951 A
2559633 Maurice et al. Jul 1951 A
2588520 Halgren et al. Mar 1952 A
2697600 Gregoire Dec 1954 A
2705119 Ingwer Mar 1955 A
2725076 Hansen et al. Nov 1955 A
2729308 Koski et al. Jan 1956 A
2784962 Sherburne Mar 1957 A
2809722 Smith Oct 1957 A
2838140 Rasmusson et al. Jun 1958 A
2846028 Gunther Aug 1958 A
2879971 Demay Mar 1959 A
2883181 Hogan et al. Apr 1959 A
2897613 Davidson et al. Aug 1959 A
2941629 Etienne et al. Jun 1960 A
2967065 Schwendner Jan 1961 A
2991804 Merkle Jul 1961 A
3003595 Patriquin et al. Oct 1961 A
3056598 Sutton et al. Oct 1962 A
3071394 John Jan 1963 A
3073586 Hartel et al. Jan 1963 A
3074709 Ellis et al. Jan 1963 A
3085530 Williamson Apr 1963 A
3087583 Bruns Apr 1963 A
3202413 Colmerauer Aug 1965 A
3206153 Burke Sep 1965 A
3284076 Gibson Nov 1966 A
3286797 Leibfritz Nov 1966 A
3405625 Carlson et al. Oct 1968 A
3419849 Anderson et al. Dec 1968 A
3420493 Kraft et al. Jan 1969 A
3528700 Janu et al. Sep 1970 A
3537722 Moulton Nov 1970 A
3556137 Billeter et al. Jan 1971 A
3559027 Arsem Jan 1971 A
3560033 Barkus Feb 1971 A
3575442 Elliott et al. Apr 1971 A
3584331 Richard et al. Jun 1971 A
3603575 Arlasky et al. Sep 1971 A
3605960 Singer Sep 1971 A
3621950 Lutz Nov 1971 A
3650033 Behne et al. Mar 1972 A
3701544 Stankovich Oct 1972 A
3714953 Solvang Feb 1973 A
3750856 Kenworthy et al. Aug 1973 A
3784228 Hoffmann et al. Jan 1974 A
3791408 Saitou et al. Feb 1974 A
3830482 Norris Aug 1974 A
3842753 Ross et al. Oct 1974 A
3861487 Gill Jan 1975 A
3903613 Bisberg Sep 1975 A
3941402 Yankowski et al. Mar 1976 A
3981204 Starbard et al. Sep 1976 A
3981479 Foster et al. Sep 1976 A
3986118 Madigan Oct 1976 A
4022113 Blatt et al. May 1977 A
4032829 Schenavar et al. Jun 1977 A
4036335 Thompson et al. Jul 1977 A
4072087 Mueller et al. Feb 1978 A
4103881 Simich Aug 1978 A
4121610 Harms et al. Oct 1978 A
4131657 Ball et al. Dec 1978 A
4139186 Postema et al. Feb 1979 A
4153237 Supalla May 1979 A
4159106 Nyman et al. Jun 1979 A
4174098 Baker et al. Nov 1979 A
4183509 Nishikawa et al. Jan 1980 A
4287812 Iizumi Sep 1981 A
4291850 Sharples Sep 1981 A
4305566 Grawunde Dec 1981 A
4333668 Hendrickson et al. Jun 1982 A
4334711 Mazur et al. Jun 1982 A
4337850 Shimokura et al. Jul 1982 A
4348016 Milly Sep 1982 A
4351515 Yoshida Sep 1982 A
4366969 Benya et al. Jan 1983 A
4387781 Ezell et al. Jun 1983 A
4437548 Ashiba et al. Mar 1984 A
4465299 Stone et al. Aug 1984 A
4474363 Numazawa et al. Oct 1984 A
4491207 Boonchanta et al. Jan 1985 A
4500827 Merritt et al. Feb 1985 A
4502673 Clark et al. Mar 1985 A
4529180 Hill Jul 1985 A
4546959 Tanno Oct 1985 A
4548233 Wolfges Oct 1985 A
4550899 Holley Nov 1985 A
4570851 Cirillo et al. Feb 1986 A
4572317 Isono et al. Feb 1986 A
4620619 Emura et al. Nov 1986 A
4624346 Katz et al. Nov 1986 A
4630818 Saarinen Dec 1986 A
4634142 Woods et al. Jan 1987 A
4647068 Asami et al. Mar 1987 A
4655440 Eckert Apr 1987 A
4657280 Ohmori et al. Apr 1987 A
4659104 Tanaka et al. Apr 1987 A
4660689 Hayashi et al. Apr 1987 A
4662616 Hennells May 1987 A
4673194 Sugasawa Jun 1987 A
4709779 Takehara Dec 1987 A
4729459 Inagaki et al. Mar 1988 A
4732244 Verkuylen Mar 1988 A
4743000 Karnopp May 1988 A
4744444 Gillingham May 1988 A
4750735 Furgerson et al. Jun 1988 A
4765648 Mander et al. Aug 1988 A
4773671 Inagaki Sep 1988 A
4786034 Heess et al. Nov 1988 A
4815575 Murty et al. Mar 1989 A
4821852 Yokoya Apr 1989 A
4826207 Yoshioka et al. May 1989 A
4830395 Foley May 1989 A
4836578 Soltis Jun 1989 A
4838306 Horn et al. Jun 1989 A
4838394 Lemme et al. Jun 1989 A
4838527 Holley Jun 1989 A
4846317 Hudgens Jul 1989 A
4858733 Noguchi et al. Aug 1989 A
4919166 Sims et al. Apr 1990 A
4936423 Karnopp Jun 1990 A
4936424 Costa Jun 1990 A
4938228 Righter Jul 1990 A
4949262 Buma et al. Aug 1990 A
4949989 Kakizaki et al. Aug 1990 A
4958706 Richardson et al. Sep 1990 A
4975849 Ema et al. Dec 1990 A
4984819 Kakizaki et al. Jan 1991 A
4986393 Preukschat et al. Jan 1991 A
5027303 Witte Jun 1991 A
5031455 Cline Jul 1991 A
5036934 Nishina et al. Aug 1991 A
5040381 Hazen Aug 1991 A
5044614 Rau Sep 1991 A
5060959 Davis et al. Oct 1991 A
5072812 Imaizumi Dec 1991 A
5074624 Stauble et al. Dec 1991 A
5076404 Gustafsson Dec 1991 A
5080392 Bazergui Jan 1992 A
5094325 Smith Mar 1992 A
5105918 Hagiwara et al. Apr 1992 A
5113980 Furrer et al. May 1992 A
5152547 Davis Oct 1992 A
5161653 Hare Nov 1992 A
5161817 Daum et al. Nov 1992 A
5163742 Topfer et al. Nov 1992 A
5178242 Nakamura et al. Jan 1993 A
5186481 Turner Feb 1993 A
5203584 Butsuen et al. Apr 1993 A
5207774 Wolfe et al. May 1993 A
5230364 Leng et al. Jul 1993 A
5236169 Johnsen et al. Aug 1993 A
5248014 Ashiba Sep 1993 A
5259487 Petek et al. Nov 1993 A
5263559 Mettner Nov 1993 A
5265902 Lewis Nov 1993 A
5266065 Ancarani Nov 1993 A
5277283 Yamaoka et al. Jan 1994 A
5283733 Colley Feb 1994 A
5284330 Carlson et al. Feb 1994 A
5293971 Kanari Mar 1994 A
5295916 Chattin Mar 1994 A
5307907 Nakamura et al. May 1994 A
5318066 Burgorf et al. Jun 1994 A
5328004 Fannin et al. Jul 1994 A
5347186 Konotchick et al. Sep 1994 A
5348112 Vaillancourt Sep 1994 A
5372223 Dekock et al. Dec 1994 A
5372224 Samonil et al. Dec 1994 A
5381952 Duprez Jan 1995 A
5390949 Naganathan et al. Feb 1995 A
5392885 Patzenhauer et al. Feb 1995 A
5396973 Schwemmer et al. Mar 1995 A
5398787 Woessner et al. Mar 1995 A
5413196 Forster May 1995 A
5467280 Kimura Nov 1995 A
5480011 Nagai et al. Jan 1996 A
5487006 Kakizaki et al. Jan 1996 A
5503258 Clarke et al. Apr 1996 A
5542150 Tu Aug 1996 A
5551674 Johnsen Sep 1996 A
5553836 Ericson Sep 1996 A
5578877 Tiemann Nov 1996 A
5588510 Wilke Dec 1996 A
5592401 Kramer Jan 1997 A
5597180 Ganzel et al. Jan 1997 A
5598337 Butsuen et al. Jan 1997 A
5599244 Ethington Feb 1997 A
5601164 Ohsaki et al. Feb 1997 A
5611413 Feigel Mar 1997 A
5651433 Wirth et al. Jul 1997 A
5657840 Lizell Aug 1997 A
5687575 Keville et al. Nov 1997 A
5697477 Hiramoto et al. Dec 1997 A
5699885 Forster Dec 1997 A
5722645 Reitter Mar 1998 A
5803443 Chang Sep 1998 A
5806159 Ohnishi et al. Sep 1998 A
5810128 Eriksson et al. Sep 1998 A
5813456 Milner et al. Sep 1998 A
5813731 Newman et al. Sep 1998 A
5816281 Mixon Oct 1998 A
5818132 Konotchick et al. Oct 1998 A
5826935 Defreitas et al. Oct 1998 A
5828843 Samuel et al. Oct 1998 A
5829733 Becker Nov 1998 A
5850352 Moezzi et al. Dec 1998 A
5853071 Robinson Dec 1998 A
5872418 Wischnewskiy Feb 1999 A
5884921 Katsuda et al. Mar 1999 A
5937975 Forster Aug 1999 A
5947238 Jolly et al. Sep 1999 A
5952823 Sprecher et al. Sep 1999 A
5954318 Kluhsman Sep 1999 A
5956951 O″Callaghan Sep 1999 A
5957252 Berthold Sep 1999 A
5971116 Franklin Oct 1999 A
5988655 Sakai et al. Nov 1999 A
5992450 Parker et al. Nov 1999 A
5996745 Jones et al. Dec 1999 A
5996746 Turner et al. Dec 1999 A
5999868 Beno et al. Dec 1999 A
6000702 Streiter Dec 1999 A
6013007 Root et al. Jan 2000 A
6017047 Hoose Jan 2000 A
6035979 Forster Mar 2000 A
6050583 Bohn Apr 2000 A
6058340 Uchiyama et al. May 2000 A
6067490 Ichimaru et al. May 2000 A
6073536 Campbell Jun 2000 A
6073700 Tsuji et al. Jun 2000 A
6073736 Franklin Jun 2000 A
6092011 Hiramoto et al. Jul 2000 A
6092816 Sekine et al. Jul 2000 A
6105988 Turner et al. Aug 2000 A
6131709 Jolly et al. Oct 2000 A
6135434 Marking Oct 2000 A
6141969 Launchbury et al. Nov 2000 A
6151930 Carlson Nov 2000 A
6152856 Studor et al. Nov 2000 A
6179098 Hayakawa et al. Jan 2001 B1
6196555 Gaibler Mar 2001 B1
6199669 Huang et al. Mar 2001 B1
6203026 Jones Mar 2001 B1
6213263 De Frenne Apr 2001 B1
6215217 Kurosawa et al. Apr 2001 B1
6216078 Jinbo Apr 2001 B1
6217049 Becker Apr 2001 B1
6219045 Leahy et al. Apr 2001 B1
6244398 Girvin et al. Jun 2001 B1
6254067 Yih Jul 2001 B1
6279702 Koh Aug 2001 B1
6293530 Delorenzis et al. Sep 2001 B1
6296092 Marking et al. Oct 2001 B1
6311962 Marking Nov 2001 B1
6318525 Vignocchi et al. Nov 2001 B1
6321888 Reybrouck et al. Nov 2001 B1
6322468 Wing et al. Nov 2001 B1
6336648 Bohn Jan 2002 B1
6343807 Rathbun Feb 2002 B1
6359837 Tsukamoto et al. Mar 2002 B1
6360857 Fox et al. Mar 2002 B1
6371262 Katou et al. Apr 2002 B1
6371267 Kao et al. Apr 2002 B1
6378816 Pfister Apr 2002 B1
6378885 Ellsworth et al. Apr 2002 B1
6382370 Girvin May 2002 B1
6389341 Davis May 2002 B1
6390747 Commins May 2002 B1
6394238 Rogala May 2002 B1
6401883 Nyce et al. Jun 2002 B1
6412788 Ichimaru Jul 2002 B1
6415895 Marking et al. Jul 2002 B2
6418360 Spivey et al. Jul 2002 B1
6427812 Crawley et al. Aug 2002 B2
6431573 Erman et al. Aug 2002 B1
6434460 Uchino et al. Aug 2002 B1
6446771 Sintorn et al. Sep 2002 B1
6458060 Watterson et al. Oct 2002 B1
6467593 Corradini et al. Oct 2002 B1
6474454 Matsumoto et al. Nov 2002 B2
6474753 Rieth et al. Nov 2002 B1
6501554 Hackney et al. Dec 2002 B1
6502837 Hamilton et al. Jan 2003 B1
6510929 Gordaninejad et al. Jan 2003 B1
6520297 Lumpkin et al. Feb 2003 B1
6527093 Oliver et al. Mar 2003 B2
6539336 Vock et al. Mar 2003 B1
6592136 Becker et al. Jul 2003 B2
6609686 Malizia Aug 2003 B2
6619615 Mayr et al. Sep 2003 B1
6623389 Campagnolo Sep 2003 B1
6648109 Farr et al. Nov 2003 B2
6659240 Dernebo Dec 2003 B2
6659241 Sendrea Dec 2003 B2
6672687 Nishio Jan 2004 B2
6701234 Vogelsang et al. Mar 2004 B1
6732033 LaPlante et al. May 2004 B2
6755113 Shih Jun 2004 B2
6782980 Nakadate Aug 2004 B2
6817454 Nezu et al. Nov 2004 B2
6837827 Lee et al. Jan 2005 B1
6840257 Dario et al. Jan 2005 B2
6853955 Burrell et al. Feb 2005 B1
6857625 Löser et al. Feb 2005 B2
6863291 Miyoshi Mar 2005 B2
6902513 McClure et al. Jun 2005 B1
6905203 Kremers et al. Jun 2005 B2
6920951 Song et al. Jul 2005 B2
6921351 Hickman et al. Jul 2005 B1
6923853 Kremers et al. Aug 2005 B2
6931958 Takeda Aug 2005 B2
6935157 Miller Aug 2005 B2
6952060 Goldner et al. Oct 2005 B2
6959906 Hoenig et al. Nov 2005 B2
6959921 Rose Nov 2005 B2
6966412 Braswell et al. Nov 2005 B2
6978871 Holiviers Dec 2005 B2
6978872 Turner Dec 2005 B2
6991076 McAndrews Jan 2006 B2
7025367 McKinnon et al. Apr 2006 B2
7076351 Hamilton et al. Jul 2006 B2
7128192 Fox Oct 2006 B2
7128693 Brown et al. Oct 2006 B2
7135794 Kühnel Nov 2006 B2
7147207 Jordan et al. Dec 2006 B2
7163222 Becker et al. Jan 2007 B2
7166062 Watterson et al. Jan 2007 B1
7166064 Ashby et al. Jan 2007 B2
7204466 Hsieh Apr 2007 B2
7207912 Takeda et al. Apr 2007 B2
7208845 Schaefer et al. Apr 2007 B2
7217224 Thomas May 2007 B2
7234575 Anderfaas et al. Jun 2007 B2
7234680 Hull et al. Jun 2007 B2
7243763 Carlson Jul 2007 B2
7255210 Larsson et al. Aug 2007 B2
7270221 McAndrews Sep 2007 B2
7287760 Quick et al. Oct 2007 B1
7288038 Takeda et al. Oct 2007 B2
7289138 Foote et al. Oct 2007 B2
7292867 Werner et al. Nov 2007 B2
7293764 Fang Nov 2007 B2
7299112 Aplante et al. Nov 2007 B2
7306206 Turner Dec 2007 B2
7316406 Kimura et al. Jan 2008 B2
7325660 Norgaard et al. Feb 2008 B2
7363129 Barnicle et al. Apr 2008 B1
7373232 Guderzo May 2008 B2
7374028 Fox May 2008 B2
7397355 Tracy Jul 2008 B2
7413062 Vandewal Aug 2008 B2
7413063 Davis Aug 2008 B1
7415336 Burch et al. Aug 2008 B1
7422092 Hitchcock et al. Sep 2008 B2
7441638 Hanawa Oct 2008 B2
7469910 Münster et al. Dec 2008 B2
7484603 Fox Feb 2009 B2
7490705 Fox Feb 2009 B2
7523617 Colpitts et al. Apr 2009 B2
7558313 Feher Jul 2009 B2
7558574 Feher et al. Jul 2009 B2
7566290 Lee et al. Jul 2009 B2
7569952 Bono et al. Aug 2009 B1
7581743 Graney et al. Sep 2009 B2
7591352 Hanawa Sep 2009 B2
7600616 Anderfaas et al. Oct 2009 B2
7628259 Norgaard et al. Dec 2009 B2
7631882 Hirao et al. Dec 2009 B2
7654369 Murray et al. Feb 2010 B2
7673936 Hsu et al. Mar 2010 B2
7684911 Seifert et al. Mar 2010 B2
7694785 Nakadate Apr 2010 B2
7694987 McAndrews Apr 2010 B2
7699753 Daikeler et al. Apr 2010 B2
7703585 Fox Apr 2010 B2
7722056 Inoue et al. May 2010 B2
7722069 Shirai May 2010 B2
7726042 Meschan Jun 2010 B2
7730906 Kleinert et al. Jun 2010 B2
7736272 Martens Jun 2010 B2
7764990 Martikka et al. Jul 2010 B2
7766794 Oliver et al. Aug 2010 B2
7770701 Davis Aug 2010 B1
7775128 Roessingh et al. Aug 2010 B2
7779974 Timoney et al. Aug 2010 B2
7795711 Sauciuc et al. Sep 2010 B2
7837213 Colegrove et al. Nov 2010 B2
7840346 Huhtala et al. Nov 2010 B2
7841258 Komatsu et al. Nov 2010 B2
7845602 Young et al. Dec 2010 B1
7857325 Copsey et al. Dec 2010 B2
7872764 Higgins-Luthman et al. Jan 2011 B2
7874567 Ichida et al. Jan 2011 B2
7901292 Uhlir et al. Mar 2011 B1
7909348 Klieber et al. Mar 2011 B2
7927253 Dibenedetto et al. Apr 2011 B2
7931132 Braun Apr 2011 B2
7931563 Shaw et al. Apr 2011 B2
7946163 Gartner May 2011 B2
7975814 Soederdahl Jul 2011 B2
8016349 Mouri et al. Sep 2011 B2
8021270 D'Eredita Sep 2011 B2
8042427 Kawakami et al. Oct 2011 B2
8056392 Ryan et al. Nov 2011 B2
8069964 Deferme et al. Dec 2011 B2
8087676 McIntyre Jan 2012 B2
8091910 Hara et al. Jan 2012 B2
8104591 Barefoot et al. Jan 2012 B2
8121757 Extance et al. Feb 2012 B2
8121785 Swisher et al. Feb 2012 B2
8127900 Inoue Mar 2012 B2
8136877 Walsh et al. Mar 2012 B2
8141438 Roessingh et al. Mar 2012 B2
8151952 Lenz et al. Apr 2012 B2
8191964 Hsu et al. Jun 2012 B2
8201476 Tsumiyama Jun 2012 B2
8210106 Tai et al. Jul 2012 B2
8210330 Vandewal Jul 2012 B2
8246065 Kodama Aug 2012 B1
8256587 Bakke et al. Sep 2012 B2
8256732 Young et al. Sep 2012 B1
8262058 Kot Sep 2012 B2
8262062 Kamo et al. Sep 2012 B2
8262100 Thomas Sep 2012 B2
8285447 Bennett et al. Oct 2012 B2
8286982 Plantet et al. Oct 2012 B2
8291889 Shafer et al. Oct 2012 B2
8292274 Adoline et al. Oct 2012 B2
8307965 Föster et al. Nov 2012 B2
8308124 Hsu Nov 2012 B2
8317261 Walsh et al. Nov 2012 B2
8328454 McAndrews et al. Dec 2012 B2
8336683 McAndrews et al. Dec 2012 B2
8364389 Dorogusker et al. Jan 2013 B2
8393446 Haugen Mar 2013 B2
8413773 Anderfaas et al. Apr 2013 B2
8423244 Proemm et al. Apr 2013 B2
8430770 Dugan et al. Apr 2013 B2
8458080 Shirai Jun 2013 B2
8480064 Talavasek Jul 2013 B2
8550551 Shirai Oct 2013 B2
8556048 Maeda et al. Oct 2013 B2
8556049 Jee Oct 2013 B2
8596663 Shirai et al. Dec 2013 B2
8622180 Wootten et al. Jan 2014 B2
8627932 Marking Jan 2014 B2
8641073 Lee et al. Feb 2014 B2
8651251 Preukschat et al. Feb 2014 B2
8655548 Ichida et al. Feb 2014 B2
8727947 Tagliabue May 2014 B2
8744699 Yamaguchi et al. Jun 2014 B2
8752682 Park et al. Jun 2014 B2
8763770 Marking Jul 2014 B2
8770357 Sims et al. Jul 2014 B2
8781680 Ichida et al. Jul 2014 B2
8781690 Hara Jul 2014 B2
8814109 Calendrille et al. Aug 2014 B2
8833786 Camp et al. Sep 2014 B2
8838335 Bass et al. Sep 2014 B2
8845496 Arrasvuori et al. Sep 2014 B2
8857580 Marking Oct 2014 B2
8868253 Hashimoto et al. Oct 2014 B2
8888115 Chubbuck et al. Nov 2014 B2
8909424 Jordan et al. Dec 2014 B2
8936139 Galasso et al. Jan 2015 B2
8950771 Felsl et al. Feb 2015 B2
8955653 Marking Feb 2015 B2
8967343 Battlogg et al. Mar 2015 B2
8991571 Murakami Mar 2015 B2
9033122 Ericksen et al. May 2015 B2
9038791 Marking May 2015 B2
9057416 Talavasek Jun 2015 B2
9073592 Hsu Jul 2015 B2
9103400 Becker Aug 2015 B2
9108098 Galasso et al. Aug 2015 B2
9120362 Marking Sep 2015 B2
9126647 Kuo Sep 2015 B2
9140325 Cox et al. Sep 2015 B2
9157523 Miki et al. Oct 2015 B2
9186949 Galasso et al. Nov 2015 B2
9194456 Laird et al. Nov 2015 B2
9199690 Watarai Dec 2015 B2
9229712 Takamoto et al. Jan 2016 B2
9239090 Marking et al. Jan 2016 B2
9278598 Galasso et al. Mar 2016 B2
9353818 Marking May 2016 B2
9366307 Marking Jun 2016 B2
9422018 Pelot et al. Aug 2016 B2
9452654 Ericksen et al. Sep 2016 B2
9523406 Galasso et al. Dec 2016 B2
9550405 Marking et al. Jan 2017 B2
9556925 Marking Jan 2017 B2
9616728 Marking Apr 2017 B2
9650094 Laird et al. May 2017 B2
9663181 Ericksen et al. May 2017 B2
9682604 Cox et al. Jun 2017 B2
9784333 Marking Oct 2017 B2
9975598 Bender et al. May 2018 B2
10029172 Galasso et al. Jul 2018 B2
10036443 Galasso et al. Jul 2018 B2
10040329 Ericksen et al. Aug 2018 B2
10072724 Haugen et al. Sep 2018 B2
10086670 Galasso et al. Oct 2018 B2
10094443 Marking Oct 2018 B2
10145435 Galasso et al. Dec 2018 B2
10330171 Cox et al. Jun 2019 B2
10336148 Ericksen et al. Jul 2019 B2
10336149 Ericksen et al. Jul 2019 B2
10933936 Sonderegger et al. Mar 2021 B2
11473644 Hansson Oct 2022 B2
20010017334 Vincent Aug 2001 A1
20010022621 Squibbs Sep 2001 A1
20010030408 Miyoshi et al. Oct 2001 A1
20010042663 Marking et al. Nov 2001 A1
20010055373 Yamashita Dec 2001 A1
20020000352 Matsumoto et al. Jan 2002 A1
20020032508 Uchino et al. Mar 2002 A1
20020045987 Ohata et al. Apr 2002 A1
20020050112 Koch et al. May 2002 A1
20020050518 Roustaei May 2002 A1
20020055422 Airmet et al. May 2002 A1
20020063469 Nishio May 2002 A1
20020089107 Koh Jul 2002 A1
20020113347 Robbins et al. Aug 2002 A1
20020121416 Katayama et al. Sep 2002 A1
20020130000 Lisenker et al. Sep 2002 A1
20020130003 Lisenker et al. Sep 2002 A1
20020185581 Trask et al. Dec 2002 A1
20020187867 Ichida et al. Dec 2002 A1
20030001346 Hamilton et al. Jan 2003 A1
20030001358 Becker et al. Jan 2003 A1
20030034697 Goldner et al. Feb 2003 A1
20030040348 Martens et al. Feb 2003 A1
20030051954 Sendrea Mar 2003 A1
20030054327 Evensen et al. Mar 2003 A1
20030065430 Lu et al. Apr 2003 A1
20030075403 Dernebo Apr 2003 A1
20030103651 Novak Jun 2003 A1
20030128275 Maguire Jul 2003 A1
20030160369 LaPlante et al. Aug 2003 A1
20030191567 Gentilcore Oct 2003 A1
20030216845 Williston Nov 2003 A1
20040004659 Foote et al. Jan 2004 A1
20040017455 Kremers et al. Jan 2004 A1
20040021754 Kremers et al. Feb 2004 A1
20040075350 Kuhnel Apr 2004 A1
20040091111 Levy et al. May 2004 A1
20040099312 Boyer et al. May 2004 A1
20040103146 Park May 2004 A1
20040172178 Takeda et al. Sep 2004 A1
20040208687 Sicz et al. Oct 2004 A1
20040220708 Owen et al. Nov 2004 A1
20040220712 Takeda et al. Nov 2004 A1
20040222056 Fox Nov 2004 A1
20040256778 Verriet Dec 2004 A1
20050008992 Westergaard et al. Jan 2005 A1
20050055156 Maltagliati et al. Mar 2005 A1
20050077131 Russell Apr 2005 A1
20050098401 Hamilton et al. May 2005 A1
20050107216 Lee et al. May 2005 A1
20050110229 Kimura et al. May 2005 A1
20050121269 Namuduri Jun 2005 A1
20050173849 Vandewal Aug 2005 A1
20050195094 White Sep 2005 A1
20050199455 Browne et al. Sep 2005 A1
20050216186 Dorfman et al. Sep 2005 A1
20050227798 Ichida et al. Oct 2005 A1
20050239601 Thomas Oct 2005 A1
20050288154 Lee et al. Dec 2005 A1
20060040793 Martens et al. Feb 2006 A1
20060064223 Voss Mar 2006 A1
20060065496 Fox Mar 2006 A1
20060066074 Turner et al. Mar 2006 A1
20060076757 Bromley Apr 2006 A1
20060081431 Breese et al. Apr 2006 A1
20060096817 Norgaard et al. May 2006 A1
20060113834 Hanawa Jun 2006 A1
20060124414 Hanawa Jun 2006 A1
20060136173 Case et al. Jun 2006 A1
20060137934 Kurth Jun 2006 A1
20060163551 Coenen et al. Jul 2006 A1
20060163787 Munster et al. Jul 2006 A1
20060175792 Sicz et al. Aug 2006 A1
20060176216 Hipskind Aug 2006 A1
20060185951 Tanaka Aug 2006 A1
20060213082 Meschan Sep 2006 A1
20060219503 Kim Oct 2006 A1
20060225976 Nakadate Oct 2006 A1
20060237272 Huang Oct 2006 A1
20060253210 Rosenberg Nov 2006 A1
20060289258 Fox Dec 2006 A1
20070006489 Case et al. Jan 2007 A1
20070007743 Becker et al. Jan 2007 A1
20070008096 Tracy Jan 2007 A1
20070021885 Soehren Jan 2007 A1
20070032981 Merkel et al. Feb 2007 A1
20070034464 Barefoot Feb 2007 A1
20070039790 Timoney et al. Feb 2007 A1
20070051573 Norgaard et al. Mar 2007 A1
20070070069 Samarasekera et al. Mar 2007 A1
20070080515 McAndrews et al. Apr 2007 A1
20070088475 Nordgren et al. Apr 2007 A1
20070090518 Sauciuc et al. Apr 2007 A1
20070119669 Anderfaas et al. May 2007 A1
20070170688 Watson Jul 2007 A1
20070199401 Kawakami Aug 2007 A1
20070213126 Deutsch et al. Sep 2007 A1
20070213150 Chattin et al. Sep 2007 A1
20070239479 Arrasvuori et al. Oct 2007 A1
20070272458 Taniguchi et al. Nov 2007 A1
20080006494 Vandewal Jan 2008 A1
20080009992 Izawa et al. Jan 2008 A1
20080015089 Hurwitz et al. Jan 2008 A1
20080018065 Hirao et al. Jan 2008 A1
20080029730 Kamo et al. Feb 2008 A1
20080041677 Namuduri Feb 2008 A1
20080059025 Furuichi et al. Mar 2008 A1
20080067019 Jensen et al. Mar 2008 A1
20080093820 McAndrews Apr 2008 A1
20080096726 Riley et al. Apr 2008 A1
20080099968 Schroeder May 2008 A1
20080108465 Ichida May 2008 A1
20080109158 Huhtala et al. May 2008 A1
20080116622 Fox May 2008 A1
20080119330 Chiang et al. May 2008 A1
20080163718 Chiang Jul 2008 A1
20080170130 Ollila et al. Jul 2008 A1
20080185244 Maeda et al. Aug 2008 A1
20080200310 Tagliabue Aug 2008 A1
20080250844 Gartner Oct 2008 A1
20080254944 Muri et al. Oct 2008 A1
20080303320 Schranz et al. Dec 2008 A1
20080312799 Miglioranza Dec 2008 A1
20080314706 Un et al. Dec 2008 A1
20090001684 McAndrews et al. Jan 2009 A1
20090020382 Van Weelden et al. Jan 2009 A1
20090038427 Watarai Feb 2009 A1
20090038897 Murakami Feb 2009 A1
20090048070 Vincent et al. Feb 2009 A1
20090069972 Templeton et al. Mar 2009 A1
20090070037 Templeton et al. Mar 2009 A1
20090071773 Lun Mar 2009 A1
20090098981 Del et al. Apr 2009 A1
20090118100 Oliver et al. May 2009 A1
20090121398 Inoue May 2009 A1
20090131224 Yuen May 2009 A1
20090138157 Hagglund et al. May 2009 A1
20090171532 Ryan et al. Jul 2009 A1
20090192673 Song et al. Jul 2009 A1
20090200126 Kondo et al. Aug 2009 A1
20090236807 Wootten et al. Sep 2009 A1
20090258710 Quatrochi et al. Oct 2009 A1
20090261542 McIntyre Oct 2009 A1
20090277736 McAndrews et al. Nov 2009 A1
20090288924 Murray et al. Nov 2009 A1
20090294231 Carlson et al. Dec 2009 A1
20090302558 Shirai Dec 2009 A1
20090324327 McAndrews et al. Dec 2009 A1
20100004097 D'Eredita Jan 2010 A1
20100010709 Song Jan 2010 A1
20100032254 Anderfaas et al. Feb 2010 A1
20100044975 Yablon et al. Feb 2010 A1
20100059964 Morris Mar 2010 A1
20100066051 Haugen Mar 2010 A1
20100109277 Furrer May 2010 A1
20100133764 Greaves Jun 2010 A1
20100139442 Tsumiyama Jun 2010 A1
20100147640 Jones et al. Jun 2010 A1
20100160014 Galasso et al. Jun 2010 A1
20100170760 Marking Jul 2010 A1
20100186836 Yoshihiro et al. Jul 2010 A1
20100198453 Dorogusker et al. Aug 2010 A1
20100207351 Klieber et al. Aug 2010 A1
20100224454 Chen et al. Sep 2010 A1
20100244340 Wootten et al. Sep 2010 A1
20100252972 Cox et al. Oct 2010 A1
20100276238 Crasset Nov 2010 A1
20100276906 Galasso et al. Nov 2010 A1
20100308628 Hsu et al. Dec 2010 A1
20100314917 Hsieh et al. Dec 2010 A1
20100327542 Hara Dec 2010 A1
20110067965 McAndrews Mar 2011 A1
20110086686 Avent et al. Apr 2011 A1
20110095507 Plantet et al. Apr 2011 A1
20110097139 Hsu et al. Apr 2011 A1
20110109060 Earle et al. May 2011 A1
20110127706 Sims et al. Jun 2011 A1
20110154939 Watarai Jun 2011 A1
20110174582 Wootten et al. Jul 2011 A1
20110202236 Galasso et al. Aug 2011 A1
20110204201 Kodama Aug 2011 A1
20110214956 Marking Sep 2011 A1
20110257848 Shirai Oct 2011 A1
20110284333 Krog et al. Nov 2011 A1
20110315494 Marking Dec 2011 A1
20120006949 Laird et al. Jan 2012 A1
20120007327 Talavasek Jan 2012 A1
20120018263 Marking Jan 2012 A1
20120018264 King Jan 2012 A1
20120048665 Marking Mar 2012 A1
20120080279 Galasso et al. Apr 2012 A1
20120181126 De Kock Jul 2012 A1
20120222927 Marking Sep 2012 A1
20120228906 McAndrews et al. Sep 2012 A1
20120253599 Shirai Oct 2012 A1
20120253600 Ichida et al. Oct 2012 A1
20120265414 Cheng Oct 2012 A1
20120274043 Lee et al. Nov 2012 A1
20120305350 Ericksen et al. Dec 2012 A1
20120312648 Yu et al. Dec 2012 A1
20130001030 Goldasz et al. Jan 2013 A1
20130037361 Park et al. Feb 2013 A1
20130090195 Yamaguchi et al. Apr 2013 A1
20130119634 Camp et al. May 2013 A1
20130144489 Galasso et al. Jun 2013 A1
20130168195 Park et al. Jul 2013 A1
20130221713 Pelot et al. Aug 2013 A1
20130292218 Ericksen et al. Nov 2013 A1
20130333993 Yu Dec 2013 A1
20140008160 Marking et al. Jan 2014 A1
20140027219 Marking et al. Jan 2014 A1
20140048365 Kim Feb 2014 A1
20140061419 Wehage et al. Mar 2014 A1
20150073656 Takamoto et al. Mar 2015 A1
20150081171 Ericksen et al. Mar 2015 A1
20150197308 Butora et al. Jul 2015 A1
20150291248 Fukao Oct 2015 A1
20160031506 Lloyd et al. Feb 2016 A1
20160153516 Marking Jun 2016 A1
20160185178 Galasso et al. Jun 2016 A1
20160265615 Marking Sep 2016 A1
20160290431 Marking Oct 2016 A1
20160319899 Franklin et al. Nov 2016 A1
20160355226 Pelot et al. Dec 2016 A1
20170008363 Ericksen et al. Jan 2017 A1
20170088234 Komada Mar 2017 A1
20170136843 Marking May 2017 A1
20170184174 Marking Jun 2017 A1
20170247072 Laird et al. Aug 2017 A1
20170259876 Ericksen et al. Sep 2017 A1
20170282669 Cox et al. Oct 2017 A1
20170291466 Tong Oct 2017 A1
20180010666 Marking Jan 2018 A1
20180031071 Marking Feb 2018 A1
20180118302 Fukao et al. May 2018 A1
20180222541 Madau et al. Aug 2018 A1
20180304149 Galasso et al. Oct 2018 A1
20180326808 Ericksen et al. Nov 2018 A1
20180328442 Galasso et al. Nov 2018 A1
20180328446 Ericksen et al. Nov 2018 A1
20180334007 Ericksen et al. Nov 2018 A1
20180334008 Ericksen et al. Nov 2018 A1
20180335102 Haugen Nov 2018 A1
20180339565 Ericksen et al. Nov 2018 A1
20180339566 Ericksen et al. Nov 2018 A1
20180339567 Ericksen et al. Nov 2018 A1
20180355946 Ericksen et al. Dec 2018 A1
20190030975 Galasso et al. Jan 2019 A1
20190031264 Laird et al. Jan 2019 A1
20190032745 Marking Jan 2019 A1
20190176557 Marking et al. Jun 2019 A1
20190203798 Cox et al. Jul 2019 A1
20190247744 Galasso et al. Aug 2019 A1
20190249769 Hamed Aug 2019 A1
20190263474 Hamed Aug 2019 A1
20190301598 Sonenthal Oct 2019 A1
20200191227 Laird Jun 2020 A1
20210139102 Komada May 2021 A1
Foreign Referenced Citations (69)
Number Date Country
2006222732 Oct 2006 AU
3532292 Mar 1987 DE
3709447 Oct 1988 DE
3711442 Oct 1988 DE
3738048 May 1989 DE
3924166 Feb 1991 DE
4029090 Mar 1992 DE
4406918 Sep 1994 DE
202004005229 Aug 2004 DE
10326675 Dec 2004 DE
102005025811 Dec 2006 DE
102007063365 Jul 2009 DE
202008015968 Apr 2010 DE
202010012738 Dec 2010 DE
207409 Jan 1987 EP
304801 Mar 1989 EP
552568 Jul 1993 EP
1050696 Nov 2000 EP
1138530 Oct 2001 EP
1188661 Mar 2002 EP
1241087 Sep 2002 EP
1355209 Oct 2003 EP
1394439 Mar 2004 EP
1449688 Aug 2004 EP
1623856 Feb 2006 EP
1757473 Feb 2007 EP
1825220 Aug 2007 EP
2103512 Sep 2009 EP
2189191 May 2010 EP
2248691 Nov 2010 EP
2357098 Aug 2011 EP
2410203 Jan 2012 EP
2479095 Jul 2012 EP
2495472 Sep 2012 EP
2357098 Oct 2014 EP
2848582 Mar 2015 EP
2432424 Feb 1980 FR
2529002 Dec 1983 FR
2617928 Jan 1989 FR
2952031 May 2011 FR
2104183 Mar 1983 GB
2159604 Dec 1985 GB
2180320 Mar 1987 GB
2289111 Nov 1995 GB
57173632 Oct 1982 JP
57173632 Nov 1982 JP
57182506 Nov 1982 JP
01106721 Apr 1989 JP
H0193637 Apr 1989 JP
H02168038 Jun 1990 JP
H03113139 May 1991 JP
04203540 Jul 1992 JP
05149364 Jun 1993 JP
06101735 Apr 1994 JP
06185562 Jul 1994 JP
H084818 Jan 1996 JP
2005119548 May 2005 JP
2005119549 May 2005 JP
2007302211 Nov 2007 JP
2008238921 Oct 2008 JP
20070076226 Jul 2007 KR
9840231 Sep 1998 WO
9906231 Feb 1999 WO
0027658 May 2000 WO
03070546 Aug 2003 WO
2007017739 Feb 2007 WO
2007117884 Oct 2007 WO
2008086605 Jul 2008 WO
2008114445 Sep 2008 WO
Non-Patent Literature Citations (46)
Entry
Electronic Translation of DE3709447A1.
Fachkunde Fahrradtechnik 4 Auflage, Gressmann_Inhaltv und S, 2011, 206-207.
Statement of Grounds of Appeal, EP App. No. 11153607.4, May 28, 2018, 88 Pages.
Grounds of Appeal, EP App. No. 11153607.4, Jun. 1, 2018, 28 Pages.
“European Patent Office Final Decision dated Mar. 21, 2013”, European Patent Application No. 10161906.2.
“European Search Report for European Application No. 09177128, 4 pages, dated Aug. 25, 2010 (dated Aug. 25, 2010)”.
“European Search Report for European Application No. 10161906 , 3 pages, dated Sep. 15, 2010 (dated Sep. 15, 2010)”.
“European Search Report for European Application No. 11153607, 3 pages, dated Aug. 10, 2012 (dated Aug. 10, 2012))”.
“European Search Report for European Application No. 12184150, 10 pages, dated Dec. 12, 2017 (dated Dec. 12, 2017)”.
“European Search Report for European Application No. 13158034 , 4 pages, dated Jun. 28, 2013 (Jun. 28, 2013))”.
“European Search Report for European Application No. 131859574, 2 pages, dated Feb. 19, 2014 (dated Feb. 19, 2014)”.
“European Search Report for European Application No. 15167426 , 4 pages, dated Sep. 18, 2015 (dated Sep. 18, 2015))”.
“European Search Report for European Application No. 16167306 , 2 pages, dated Mar. 23, 2017 (Mar. 23, 2017)”.
“European Search Report for European Application No. 17154191, 2 pages, dated Jun. 28, 2017 (dated Jun. 28, 2017)”.
“European Search Report and Written Opinion, European Patent Application No. 13165362.8”, dated Sep. 24, 2014, 6 Pages.
“Office Action for European Application No. 13158034.2, 5 pages, dated May 22, 2014”.
Puhn, “How To Make Your Car Handle”, HPBooks, 1981, 7 Pages.
Smith, ““The Bump Stop” in Engineer to win—Chapter 13: Springs and Shock Absorbers”, MBI Publishing Company and Motor books, USA XP055430818, ISBN: 978-0-87938-186-8, Dec. 31, 1984, 207.
English language abstract for EP 0207409 (no date).
European Search Report for European Application No. 19155995 , 11 pages, dated Aug. 28, 2019.
European Search Report for European Application No. 19157965.5, 7 pages, dated Mar. 24, 2020 (dated Mar. 24, 2020).
European Search Report for European Application No. 19157767, dated Oct. 16, 2019, 9 Pages.
European Search Report, European Patent Application No. 14189773.6, dated May 4, 2015, 4 Pages.
EP Search Report for European Application No. 15163428.4, dated Jul. 3, 2017, 7 Pages.
“17 Years of Innovation and Still Evolving”, https://www.powertap.com/post/blog-15-17-years-of-innovation-and-still-evolving, Nov. 28, 2018, 8 Pages.
“ANT Message Protocol and Usage”, Dynastream Innovations, Inc., Jul. 2, 2007, 68 Pages.
“Basis For Claims Filed Jan. 23, 2015”, European Patent Application No. 14189773.6, 2 Pages.
“Communication Re Oral Proceedings for European Application No. 10161906, dated Feb. 15, 2013 (dated Feb. 15, 2013)”.
“European Search Report for European Application No. 10187320, 12 pages, dated Sep. 25, 2017 (dated Sep. 25, 2017)”.
“European Search Report for European Application No. 11172553, 2 pages, dated Sep. 25, 2017 (dated Sep. 25, 2017)”.
“European Search Report for European Application No. 11172612 , 2 pages, dated Oct. 6, 2011 (dated Oct. 1, 2011))”.
“European Search Report for European Application No. 11175126, 2 pages, dated Sep. 25, 2017 (dated Sep. 25, 2017)”.
“European Search Report for European Application No. 11275170 , 2 pages, dated Jan. 10, 2018 (dated Jan. 10, 2018)”.
“European Search Report for European Application No. 12170370 , 2 pages, dated Nov. 15, 2017 (dated Nov. 15, 2017)”.
“European Search Report for European Application No. 13174817.0, 13 pages, dated Jan. 8, 2018 (dated Jan. 8, 2018))”.
“European Search Report for European Application No. 17188022 , 9 pages, dated Feb. 1, 2018 (dated Feb. 1, 2018))”.
“European Search Report for EP Application No. 18154672, 3 pages, dated Aug. 28, 2018 (dated Aug. 28, 2018))”.
Healey, “The Tyre as Part of the Suspension System”, The Institution of Automobile Engineers, Nov. 1924, 26-128.
Kasprzak, “Understanding Your Dampers: A guide from Jim Kasprzak”, http://www.kaztechnologies.com/downloads/kaz-tech-tips/ Accessed: Oct. 24, 2018, 25 pages.
Litchfield, “Pneumatic Tires”, Transactions (Society of Automobile Engineers), vol. 8, Part II, 1913, 208-223.
Nilsson, “Opposition Letter Against EP-2357098”, Oct. 13, 2017, 7.
Shiozaki, et al., “SP-861-Vehicle Dynamics and Electronic Controlled Suspensions SAE Technical Paper Series No. 910661”, International Congress and Exposition, Detroit, Mich., Feb. 25-Mar. 1, 1991.
Thum, Notice of Opposition to a European Patent, EP App. No. 14189773.6, Dec. 13, 2018, 49 Pages.
Thum, “Oppostion Letter Against EP2357098”, Oct. 16, 2018, 39.
Thum, “Oppostion Letter Against EP2357098”, Dec. 17, 2019, 25 Pages.
Waechter, et al., “A Multibody Model for the Simulation of Bicycle Suspension Systems”, Vehicle System Dynamics, vol. 37, No. 1, 2002, 3-28.
Related Publications (1)
Number Date Country
20210070387 A1 Mar 2021 US
Provisional Applications (1)
Number Date Country
61361376 Jul 2010 US
Divisions (1)
Number Date Country
Parent 13176336 Jul 2011 US
Child 14330996 US
Continuations (3)
Number Date Country
Parent 16147010 Sep 2018 US
Child 17100061 US
Parent 15593020 May 2017 US
Child 16147010 US
Parent 14330996 Jul 2014 US
Child 15593020 US