Field of the Invention
Embodiments of the invention generally relate to a seat support assembly for a vehicle. More specifically, embodiments of the invention relate to a height adjustable seat support. Embodiments of the invention further relate to a height adjustable seat post for a bicycle.
Description of the Related Art
Most modern bicycles include a rigid seat post that may be moved relative to the bicycle frame and clamped at a desired height relative to the frame for accommodating different sizes of riders and different rider styles. Generally, adjusting the seat post height in the frame requires that the rider be off the bicycle and/or may requires a significant amount of time and manipulation of the bicycle to achieve the desired seat height.
Therefore, there is a need for new and improved adjustable seat post designs and methods of use.
In one embodiment, a seat post assembly may comprise an first or outer tube; a second or inner tube axially movable within the outer tube; a locking member coupled to the inner tube and operable to lock the inner tube to the outer tube at a first location and at a second location spaced apart along the axial length of the outer tube; and an actuator operable to secure the locking member into engagement with the outer tube at the first and second locations, and operable to release the locking member from engagement with the outer tube to move the locking member from the first location to the second location.
In one embodiment, a method of adjusting a seat post assembly that has an inner tube axially movable within an outer tube may comprise locking the inner tube to the outer tube at a first location using a locking member that is coupled to the tube; securing the locking member into engagement with the outer tube using an actuator to lock the inner tube to the outer tube; moving the actuator against the bias of a biasing member to release the locking member from engagement with the outer tube at the first location; and moving the inner tube from the first location to a second location after releasing the locking member.
So that the manner in which the above recited features can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
In one embodiment, the inner tube 110 includes a thick wall section 180 in a first plane and a thin wall section 190 in a second plane where the result is a substantially oval inner space cross section. The selectively tailored wall section results in adequate strength and reduced overall weight. The lower end of the inner tube 110 includes one or more upper holes 195 and one or more lower holes 175 radially extending through the wall thickness. The upper and lower holes 195, 175 may be axially and/or radially offset relative to each other about the outer diameter of the inner tube 110. A plurality of keyways 185 are also included on an exterior of the inner tube 110 above the upper and lower holes 195, 175.
The outer tube 120 includes an upper snap ring recess 121 and a lower snap ring recess 122 for receiving one or more snap rings. Section A-A as illustrated in
In one embodiment, the inner tube 110 and/or the outer tube 120 may be formed from solid, forged structures. The inner tube 110 and the seat retainer 130 may be formed integrally as a single piece of material. One or more of the other seat post assembly 100 components may be formed integrally with the inner tube 110 and/or the outer tube 120 reduce the number of parts of the assembly. The components of the seat post assembly 100 may be forged as solid, single piece of material structures to optimize wall thicknesses to achieve desired and/or necessary weight and strength.
Referring to
The actuator 34 is axially movable by means of the lever 140, which pivots about the pin 150, and specifically in one embodiment because fork arm 145 engages a roll pin 146 that extends through and to either side of the actuator 34. When the lever 140 is pulled toward the cable guide 160, by a cable installed there through and attached to the lever 140, the fork arm 145 moves in a direction opposite the lever 140 and pulls on the roll pin 146. While one end of the cable passes through the cable guide 160 and attaches to the lever 140, another end of the cable according to one embodiment is attached to and operated by a manual lever having an index system for positively corresponding to the extended or upper, intermediate, and compressed or lower seat post positions. As the roll pin 146 is forced upward, so too is the actuator 34, thereby compressing a biasing member, such as spring 151, which may be positioned between a retainer coupled to the actuator and a shoulder of the inner tube 110. Thus when tension on the cable and corresponding force on the lever 140 is released, the lever 140 and the actuator 34 return to the previous position. Further, as the actuator 34 is moved upward, so too is the sleeve 35 moved upward, thereby moving the large diameter portion 30 up and out from under the one or more ball members 20. The actuator 34 may extend outside of the sealed spring chamber 10 and is sealed through a chamber bulkhead 36 comprising one or more seals 33, such as o-rings, as shown in
The seat post assembly 200 illustrated in
One difference of the seat post assembly 200 with respect to the seat post assembly 100 is the form of the lower end of the inner tube 210. As illustrated in
Another difference is a second sleeve 231 that is disposed adjacent to the sleeve 235 having the large diameter portion 230 for urging the first and/or second ball members 219, 221 into the upper, intermediate, and/or lower ball lock recesses 225, 226, 227, respectively, which are spaced axially along the length of the outer tube 220. The second sleeve 231 is disposed around the actuator 234 and is moveable with the sleeve 235 relative to the inner tube 210 and the third ball members 223. The second sleeve 231 includes large diameter portions 241 for urging the third ball members 223 radially outward into engagement with the keys 238, which travel along axial slots 239 formed in the inner surface of the outer tube 220. The third ball members 223 are urged into the keys 238, which are urged into the axial slots 239 to secure and ensure that the inner tube 210 is rotationally locked with the outer tube 220. The second sleeve 231 also includes smaller diameter or tapered portions 242 for relieving the engagement between the third ball members 223 and the keys 238 during axial transition of the seat post assembly between seat post positions. The plurality of keyways 285 are also included on the exterior of the inner tube 210 for supporting the keys 238.
Finally, in addition to the spring 252 that biases the sleeve 235 toward the end of the actuator 234, another biasing member, such as spring 254, is positioned between an inner shoulder of the second sleeve 231 and a retainer 256 coupled to the actuator 234 to bias the second sleeve 231 toward the sleeve 235 and the end of the actuator 234. The springs 252, 254 maintain the sleeves 235, 231 in an initial position with respect to the first, second, and third ball members 219, 221, 223 when the actuator 234 is not being actuated by the lever 240 and/or when the seat post assembly 200 is in one of the upper, intermediate, and/or lower seat post positions. When in the initial position, the large diameter portions 230, 241 of the sleeves 235, 231 are positioned underneath or behind the first, second, and third ball members 219, 221 and 223, respectively.
As illustrated in
The actuator 234 is axially movable by means of the lever 240, which pivots about the pin 250, and specifically in one embodiment because the fork arm 245 engages the roll pin 246 that extends through and to either side of the actuator 234. When the lever 240 is pulled toward the cable guide 260, by a cable installed there through and attached to the lever 240, the fork arm 245 moves in a direction opposite the lever 240 and pulls on the roll pin 246. While one end of the cable passes through the cable guide 260 and attaches to the lever 240, another end of the cable according to one embodiment is attached to and operated by a lever assembly 300 (illustrated in
The plurality of keys 238 mounted to the inner tube 210 in the keyways 285 travel in axial slots 239 formed in the outer tube 220 to maintain relative rotational orientation of the inner tube 210 and the outer tube 220 and to maintain axial travel limits of the inner tube 210 within the outer tube 220. The third ball members 223 may also be urged into contact with the keys 238 by the large diameter portions 241 of the second sleeve 231 when the actuator 234 is in the relaxed or initial position. When the actuator 234 is actuated, the large diameter portions 241 of the second sleeve 231 may be removed from underneath or behind the third ball members 223 so that they may retract radially inward from rigid engagement with the keys 238 to facilitate uninhibited and smooth travel of the inner tube 220 to the different seat post positions.
With the seat post assembly 200 in the compressed or lower seat post position, it may be raised by pulling downward on the lever 240 to full travel at which point the large diameter portions 230, 241 of the sleeves 235, 231 are removed from under or behind the first, second, and third ball members 219, 221, 223 and the inner tube 210 is pushed upwardly relative to the outer tube 220 by gas pressure within the spring chamber 215.
As illustrated in
In one embodiment, a seat post assembly may comprise an inner tube; an outer tube telescopically receiving the inner tube; a locking member engaging the inner tube with the outer tube in at least a first position, a second position and a third position; and a stop positively arresting relative motion between the tubes at the at least the second position and optionally at the first and third positions.
In one embodiment, a method for lowering a seat post assembly may comprise positioning a controller in an intermediate position; applying a compressive force to the seat post assembly; and stopping a compression of the seat post at a seat post intermediate position without relieving the compressive force.
In one embodiment, a method of adjusting a seat post assembly that has an inner tube axially movable within an outer tube, includes: locking the inner tube to the outer tube at a first location using a locking member that is coupled to the tube; securing the locking member into engagement with the outer tube using an actuator to lock the inner tube to the outer tube; moving the actuator against the bias of a biasing member to release the locking member from engagement with the outer tube at the first location; and moving the inner tube from the first location to a second location after releasing the locking member.
The method may comprise biasing a sleeve coupled to the actuator to a position beneath or behind the locking member to secure the locking member into engagement with the outer tube. The method may further comprise moving the actuator against the bias of the biasing member to release the locking member from engagement with the outer tube at the second location, and moving the inner tube from the second location to a third location after releasing the locking member.
The locking member may comprise a first plurality of ball members and a second plurality of ball members, and further comprising urging the first plurality of ball members into engagement with the outer tube while preventing the second plurality of ball members from engaging the outer tube at the first location. The method may further comprise stopping axial movement of the inner tube relative to the outer tube using the second plurality of ball members at a position where the first plurality of ball members engage the outer tube at the second location.
The method may further comprise urging a third plurality of ball members into engagement with the outer tube to rotationally secure the inner tube to the outer tube. The method may further comprise controlling actuation of the actuator using a lever assembly comprising a first lever rotatable through a first angular distance, and a second lever rotatable through half of the first angular distance together with the first lever. The method may further comprise rotating the first lever through half of the first angular rotation and into contact with the second lever to thereby actuate the actuator to release the locking member for movement from the first location to the second location on the outer tube. The method may further comprise rotation of the first and second levers together through the other half of the first angular distance to thereby actuate the actuator to release the locking member for movement from the second location to a third location on the outer tube.
While the foregoing is directed to embodiments of the invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This patent application is a continuation application of and claims the benefit of co-pending U.S. patent application Ser. No. 15/593,020, filed May 11, 2017, entitled, “LEVER ASSEMBLY FOR POSITIVE LOCK ADJUSTABLE SEATPOST”, by Laird et al., assigned to the assignee of the present application, which is incorporated herein in its entirety by reference thereto. The patent application Ser. No. 15/593,020 is a continuation application of and claims the benefit of U.S. patent application Ser. No. 14/330,996, filed Jul. 14, 2014, now U.S. Pat. No. 9,650,094, entitled, “LEVER ASSEMBLY FOR POSITIVE LOCK ADJUSTABLE SEATPOST”, by Laird et al., assigned to the assignee of the present application, which is incorporated herein in its entirety by reference thereto. The patent application Ser. No. 14/330,996 is a divisional application of and claims the benefit of U.S. patent application Ser. No. 13/176,336, filed Jul. 5, 2011, now U.S. Pat. No. 8,814,109, entitled, “POSITIVE LOCK ADJUSTABLE SEAT POST”, by Laird et al., assigned to the assignee of the present application, which is incorporated herein in its entirety by reference thereto. The U.S. patent application Ser. No. 13/176,336 claims priority to and benefit of U.S. provisional patent application 61/361,376, filed Jul. 2, 2010, entitled “POSITIVE LOCK ADJUSTABLE SEAT POST”, by Laird et al., assigned to the assignee of the present application, which is incorporated herein in its entirety by reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
1923011 | Moulton | Aug 1933 | A |
1948600 | Templeton | Feb 1934 | A |
2259437 | Dean | Oct 1941 | A |
2492331 | Spring | Dec 1949 | A |
2540525 | Howarth et al. | Feb 1951 | A |
2697600 | Gregoire | Dec 1954 | A |
2705119 | Ingwer | Mar 1955 | A |
2784962 | Sherburne | Mar 1957 | A |
2879971 | Demay | Mar 1959 | A |
2991804 | Merkle | Jul 1961 | A |
3085530 | Williamson | Apr 1963 | A |
3087583 | Bruns | Apr 1963 | A |
3206153 | Burke | Sep 1965 | A |
3284076 | Gibson | Nov 1966 | A |
3528700 | Janu et al. | Sep 1970 | A |
3560033 | Barkus | Feb 1971 | A |
3575442 | Elliott et al. | Apr 1971 | A |
3603575 | Arlasky et al. | Sep 1971 | A |
3650033 | Behne et al. | Mar 1972 | A |
3701544 | Stankovich | Oct 1972 | A |
3784228 | Hoffmann et al. | Jan 1974 | A |
3830482 | Norris | Aug 1974 | A |
3903613 | Bisberg | Sep 1975 | A |
4036335 | Thompson et al. | Jul 1977 | A |
4103881 | Simich | Aug 1978 | A |
4348016 | Milly | Sep 1982 | A |
4366969 | Benya et al. | Jan 1983 | A |
4474363 | Numazawa et al. | Oct 1984 | A |
4630818 | Saarinen | Dec 1986 | A |
4634142 | Woods et al. | Jan 1987 | A |
4647068 | Asami et al. | Mar 1987 | A |
4655440 | Eckert | Apr 1987 | A |
4657280 | Ohmori et al. | Apr 1987 | A |
4732244 | Verkuylen | Mar 1988 | A |
4744444 | Gillingham | May 1988 | A |
4773671 | Inagaki | Sep 1988 | A |
4830395 | Foley | May 1989 | A |
4836578 | Soltis | Jun 1989 | A |
4938228 | Righter | Jul 1990 | A |
4949262 | Buma et al. | Aug 1990 | A |
4949989 | Kakizaki et al. | Aug 1990 | A |
4984819 | Kakizaki et al. | Jan 1991 | A |
5027303 | Witte | Jun 1991 | A |
5031455 | Cline | Jul 1991 | A |
5044614 | Rau | Sep 1991 | A |
5060959 | Davis et al. | Oct 1991 | A |
5074624 | Stauble et al. | Dec 1991 | A |
5094325 | Smith | Mar 1992 | A |
5105918 | Hagiwara et al. | Apr 1992 | A |
5152547 | Davis | Oct 1992 | A |
5203584 | Butsuen et al. | Apr 1993 | A |
5236169 | Johnsen et al. | Aug 1993 | A |
5265902 | Lewis | Nov 1993 | A |
5283733 | Colley | Feb 1994 | A |
5348112 | Vaillancourt | Sep 1994 | A |
5390949 | Naganathan et al. | Feb 1995 | A |
5503258 | Clarke et al. | Apr 1996 | A |
5542150 | Tu | Aug 1996 | A |
5551674 | Johnsen | Sep 1996 | A |
5553836 | Ericson | Sep 1996 | A |
5592401 | Kramer | Jan 1997 | A |
5598337 | Butsuen et al. | Jan 1997 | A |
5697477 | Hiramoto et al. | Dec 1997 | A |
5722645 | Reitter | Mar 1998 | A |
5803443 | Chang | Sep 1998 | A |
5816281 | Mixon | Oct 1998 | A |
5826935 | Defreitas et al. | Oct 1998 | A |
5828843 | Samuel et al. | Oct 1998 | A |
5829733 | Becker | Nov 1998 | A |
5850352 | Moezzi et al. | Dec 1998 | A |
5853071 | Robinson | Dec 1998 | A |
5884921 | Katsuda et al. | Mar 1999 | A |
5954318 | Kluhsman | Sep 1999 | A |
5971116 | Franklin | Oct 1999 | A |
5999868 | Beno et al. | Dec 1999 | A |
6013007 | Root et al. | Jan 2000 | A |
6017047 | Hoose | Jan 2000 | A |
6035979 | Foerster | Mar 2000 | A |
6050583 | Bohn | Apr 2000 | A |
6058340 | Uchiyama et al. | May 2000 | A |
6073736 | Franklin | Jun 2000 | A |
6105988 | Turner et al. | Aug 2000 | A |
6135434 | Marking | Oct 2000 | A |
6152856 | Studor et al. | Nov 2000 | A |
6219045 | Leahy et al. | Apr 2001 | B1 |
6244398 | Girvin et al. | Jun 2001 | B1 |
6254067 | Yih | Jul 2001 | B1 |
6311962 | Marking | Nov 2001 | B1 |
6336648 | Bohn | Jan 2002 | B1 |
6343807 | Rathbun | Feb 2002 | B1 |
6359837 | Tsukamoto et al. | Mar 2002 | B1 |
6360857 | Fox et al. | Mar 2002 | B1 |
6378816 | Pfister | Apr 2002 | B1 |
6378885 | Ellsworth et al. | Apr 2002 | B1 |
6389341 | Davis | May 2002 | B1 |
6390747 | Commins | May 2002 | B1 |
6412788 | Ichimaru | Jul 2002 | B1 |
6418360 | Spivey et al. | Jul 2002 | B1 |
6427812 | Crawley et al. | Aug 2002 | B2 |
6434460 | Uchino et al. | Aug 2002 | B1 |
6458060 | Watterson et al. | Oct 2002 | B1 |
6592136 | Becker et al. | Jul 2003 | B2 |
6609686 | Malizia | Aug 2003 | B2 |
6623389 | Campagnolo | Sep 2003 | B1 |
6701234 | Vogelsang et al. | Mar 2004 | B1 |
6732033 | Laplante et al. | May 2004 | B2 |
6837827 | Lee et al. | Jan 2005 | B1 |
6853955 | Burrell et al. | Feb 2005 | B1 |
6857625 | Loser et al. | Feb 2005 | B2 |
6863291 | Miyoshi | Mar 2005 | B2 |
6902513 | McClure et al. | Jun 2005 | B1 |
6921351 | Hickman et al. | Jul 2005 | B1 |
6935157 | Miller | Aug 2005 | B2 |
6991076 | McAndrews | Jan 2006 | B2 |
7025367 | McKinnon et al. | Apr 2006 | B2 |
7076351 | Hamilton et al. | Jul 2006 | B2 |
7128192 | Fox | Oct 2006 | B2 |
7128693 | Brown et al. | Oct 2006 | B2 |
7135794 | Kuhnel | Nov 2006 | B2 |
7163222 | Becker et al. | Jan 2007 | B2 |
7166062 | Watterson et al. | Jan 2007 | B1 |
7166064 | Ashby et al. | Jan 2007 | B2 |
7204466 | Hsieh | Apr 2007 | B2 |
7217224 | Thomas | May 2007 | B2 |
7255210 | Larsson et al. | Aug 2007 | B2 |
7287760 | Quick et al. | Oct 2007 | B1 |
7289138 | Foote et al. | Oct 2007 | B2 |
7292867 | Werner et al. | Nov 2007 | B2 |
7293764 | Fang | Nov 2007 | B2 |
7306206 | Turner | Dec 2007 | B2 |
7316406 | Kimura et al. | Jan 2008 | B2 |
7363129 | Barnicle et al. | Apr 2008 | B1 |
7374028 | Fox | May 2008 | B2 |
7397355 | Tracy | Jul 2008 | B2 |
7415336 | Burch et al. | Aug 2008 | B1 |
7469910 | Münster et al. | Dec 2008 | B2 |
7484603 | Fox | Feb 2009 | B2 |
7490705 | Fox | Feb 2009 | B2 |
7558313 | Feher | Jul 2009 | B2 |
7558574 | Feher et al. | Jul 2009 | B2 |
7566290 | Lee | Jul 2009 | B2 |
7581743 | Graney et al. | Sep 2009 | B2 |
7631882 | Hirao et al. | Dec 2009 | B2 |
7673936 | Hsu et al. | Mar 2010 | B2 |
7684911 | Seifert et al. | Mar 2010 | B2 |
7694987 | McAndrews | Apr 2010 | B2 |
7699753 | Daikeler et al. | Apr 2010 | B2 |
7703585 | Fox | Apr 2010 | B2 |
7726042 | Meschan | Jun 2010 | B2 |
7736272 | Martens | Jun 2010 | B2 |
7764990 | Martikka et al. | Jul 2010 | B2 |
7766794 | Oliver et al. | Aug 2010 | B2 |
7775128 | Roessingh et al. | Aug 2010 | B2 |
7837213 | Colegrove et al. | Nov 2010 | B2 |
7840346 | Huhtala et al. | Nov 2010 | B2 |
7841258 | Komatsu et al. | Nov 2010 | B2 |
7845602 | Young et al. | Dec 2010 | B1 |
7857325 | Copsey et al. | Dec 2010 | B2 |
7872764 | Higgins-Luthman et al. | Jan 2011 | B2 |
7874567 | Ichida et al. | Jan 2011 | B2 |
7901292 | Uhlir et al. | Mar 2011 | B1 |
7909348 | Klieber et al. | Mar 2011 | B2 |
7927253 | Dibenedetto et al. | Apr 2011 | B2 |
7931563 | Shaw et al. | Apr 2011 | B2 |
8016349 | Mouri et al. | Sep 2011 | B2 |
8021270 | D'Eredita | Sep 2011 | B2 |
8042427 | Kawakami et al. | Oct 2011 | B2 |
8087676 | McIntyre | Jan 2012 | B2 |
8091910 | Hara et al. | Jan 2012 | B2 |
8121757 | Extance et al. | Feb 2012 | B2 |
8127900 | Inoue | Mar 2012 | B2 |
8136877 | Walsh et al. | Mar 2012 | B2 |
8141438 | Roessingh et al. | Mar 2012 | B2 |
8191964 | Hsu et al. | Jun 2012 | B2 |
8201476 | Tsumiyama | Jun 2012 | B2 |
8210106 | Tai et al. | Jul 2012 | B2 |
8246065 | Kodama | Aug 2012 | B1 |
8256732 | Young et al. | Sep 2012 | B1 |
8262100 | Thomas | Sep 2012 | B2 |
8285447 | Bennett et al. | Oct 2012 | B2 |
8286982 | Plantet et al. | Oct 2012 | B2 |
8292274 | Adoline et al. | Oct 2012 | B2 |
8308124 | Hsu | Nov 2012 | B2 |
8317261 | Walsh et al. | Nov 2012 | B2 |
8328454 | McAndrews et al. | Dec 2012 | B2 |
8336683 | McAndrews et al. | Dec 2012 | B2 |
8423244 | Proemm et al. | Apr 2013 | B2 |
8430770 | Dugan et al. | Apr 2013 | B2 |
8458080 | Shirai | Jun 2013 | B2 |
8480064 | Talavasek | Jul 2013 | B2 |
8550551 | Shirai | Oct 2013 | B2 |
8596663 | Shirai et al. | Dec 2013 | B2 |
8622180 | Wootten et al. | Jan 2014 | B2 |
8641073 | Lee et al. | Feb 2014 | B2 |
8655548 | Ichida et al. | Feb 2014 | B2 |
8727947 | Tagliabue | May 2014 | B2 |
8744699 | Yamaguchi et al. | Jun 2014 | B2 |
8763770 | Marking | Jul 2014 | B2 |
8781680 | Ichida et al. | Jul 2014 | B2 |
8781690 | Hara | Jul 2014 | B2 |
8814109 | Calendrille et al. | Aug 2014 | B2 |
8833786 | Camp et al. | Sep 2014 | B2 |
8838335 | Bass et al. | Sep 2014 | B2 |
8845496 | Arrasvuori et al. | Sep 2014 | B2 |
8868253 | Hashimoto et al. | Oct 2014 | B2 |
8888115 | Chubbuck et al. | Nov 2014 | B2 |
8936139 | Franklin et al. | Jan 2015 | B2 |
8950771 | Felsl et al. | Feb 2015 | B2 |
8967343 | Battlogg et al. | Mar 2015 | B2 |
9073592 | Hsu | Jul 2015 | B2 |
9103400 | Becker | Aug 2015 | B2 |
9108098 | Galasso et al. | Aug 2015 | B2 |
9126647 | Kuo | Sep 2015 | B2 |
9140325 | Cox et al. | Sep 2015 | B2 |
9157523 | Miki et al. | Oct 2015 | B2 |
9199690 | Watarai | Dec 2015 | B2 |
9229712 | Takamoto et al. | Jan 2016 | B2 |
9278598 | Galasso et al. | Mar 2016 | B2 |
9422018 | Pelot et al. | Aug 2016 | B2 |
9650094 | Laird et al. | May 2017 | B2 |
9682604 | Cox et al. | Jun 2017 | B2 |
10029172 | Galasso et al. | Jul 2018 | B2 |
10036443 | Galasso et al. | Jul 2018 | B2 |
20010022621 | Squibbs | Sep 2001 | A1 |
20010030408 | Miyoshi et al. | Oct 2001 | A1 |
20010055373 | Yamashita | Dec 2001 | A1 |
20020032508 | Uchino et al. | Mar 2002 | A1 |
20020045987 | Ohata et al. | Apr 2002 | A1 |
20020050112 | Koch et al. | May 2002 | A1 |
20020050518 | Roustaei | May 2002 | A1 |
20020055422 | Airmet et al. | May 2002 | A1 |
20020089107 | Koh | Jul 2002 | A1 |
20020113347 | Robbins et al. | Aug 2002 | A1 |
20020185581 | Trask | Dec 2002 | A1 |
20020187867 | Ichida et al. | Dec 2002 | A1 |
20030001358 | Becker et al. | Jan 2003 | A1 |
20030040348 | Martens et al. | Feb 2003 | A1 |
20030054327 | Evensen et al. | Mar 2003 | A1 |
20030065430 | Lu et al. | Apr 2003 | A1 |
20030128275 | Maguire | Jul 2003 | A1 |
20030160369 | Laplante et al. | Aug 2003 | A1 |
20040004659 | Foote et al. | Jan 2004 | A1 |
20040075350 | Kuhnel | Apr 2004 | A1 |
20040091111 | Levy et al. | May 2004 | A1 |
20040103146 | Park | May 2004 | A1 |
20040208687 | Sicz et al. | Oct 2004 | A1 |
20040220708 | Owen et al. | Nov 2004 | A1 |
20040222056 | Fox | Nov 2004 | A1 |
20040256778 | Verriet | Dec 2004 | A1 |
20050055156 | Maltagliati et al. | Mar 2005 | A1 |
20050107216 | Lee | May 2005 | A1 |
20050110229 | Kimura et al. | May 2005 | A1 |
20050216186 | Dorfman et al. | Sep 2005 | A1 |
20050227798 | Ichida et al. | Oct 2005 | A1 |
20050239601 | Thomas | Oct 2005 | A1 |
20050288154 | Lee | Dec 2005 | A1 |
20060040793 | Martens et al. | Feb 2006 | A1 |
20060064223 | Voss | Mar 2006 | A1 |
20060065496 | Fox | Mar 2006 | A1 |
20060066074 | Turner et al. | Mar 2006 | A1 |
20060136173 | Case et al. | Jun 2006 | A1 |
20060163787 | Munster et al. | Jul 2006 | A1 |
20060175792 | Sicz et al. | Aug 2006 | A1 |
20060176216 | Hipskind | Aug 2006 | A1 |
20060185951 | Tanaka | Aug 2006 | A1 |
20060213082 | Meschan | Sep 2006 | A1 |
20060253210 | Rosenberg | Nov 2006 | A1 |
20060289258 | Fox | Dec 2006 | A1 |
20070006489 | Case et al. | Jan 2007 | A1 |
20070008096 | Tracy | Jan 2007 | A1 |
20070032981 | Merkel et al. | Feb 2007 | A1 |
20070070069 | Samarasekera et al. | Mar 2007 | A1 |
20070199401 | Kawakami | Aug 2007 | A1 |
20070213126 | Deutsch et al. | Sep 2007 | A1 |
20070239479 | Arrasvuori et al. | Oct 2007 | A1 |
20070272458 | Taniguchi et al. | Nov 2007 | A1 |
20080009992 | Izawa et al. | Jan 2008 | A1 |
20080015089 | Hurwitz et al. | Jan 2008 | A1 |
20080018065 | Hirao et al. | Jan 2008 | A1 |
20080059025 | Furuichi et al. | Mar 2008 | A1 |
20080093820 | McAndrews | Apr 2008 | A1 |
20080096726 | Riley et al. | Apr 2008 | A1 |
20080099968 | Schroeder | May 2008 | A1 |
20080109158 | Huhtala et al. | May 2008 | A1 |
20080116622 | Fox | May 2008 | A1 |
20080163718 | Chiang | Jul 2008 | A1 |
20080200310 | Tagliabue | Aug 2008 | A1 |
20080254944 | Muri et al. | Oct 2008 | A1 |
20080303320 | Schranz et al. | Dec 2008 | A1 |
20080312799 | Miglioranza | Dec 2008 | A1 |
20090048070 | Vincent et al. | Feb 2009 | A1 |
20090069972 | Templeton et al. | Mar 2009 | A1 |
20090070037 | Templeton et al. | Mar 2009 | A1 |
20090098981 | Del et al. | Apr 2009 | A1 |
20090118100 | Oliver et al. | May 2009 | A1 |
20090121398 | Inoue | May 2009 | A1 |
20090131224 | Yuen | May 2009 | A1 |
20090192673 | Song et al. | Jul 2009 | A1 |
20090236807 | Wootten et al. | Sep 2009 | A1 |
20090258710 | Quatrochi et al. | Oct 2009 | A1 |
20090261542 | McIntyre | Oct 2009 | A1 |
20090277736 | McAndrews et al. | Nov 2009 | A1 |
20090324327 | McAndrews et al. | Dec 2009 | A1 |
20100004097 | D'Eredita | Jan 2010 | A1 |
20100010709 | Song | Jan 2010 | A1 |
20100044975 | Yablon et al. | Feb 2010 | A1 |
20100139442 | Tsumiyama | Jun 2010 | A1 |
20100160014 | Galasso et al. | Jun 2010 | A1 |
20100186836 | Yoshihiro et al. | Jul 2010 | A1 |
20100198453 | Dorogusker et al. | Aug 2010 | A1 |
20100207351 | Klieber et al. | Aug 2010 | A1 |
20100244340 | Wootten et al. | Sep 2010 | A1 |
20100252972 | Cox et al. | Oct 2010 | A1 |
20100276906 | Galasso et al. | Nov 2010 | A1 |
20100308628 | Hsu et al. | Dec 2010 | A1 |
20100314917 | Hsieh et al. | Dec 2010 | A1 |
20100327542 | Hara | Dec 2010 | A1 |
20110086686 | Avent et al. | Apr 2011 | A1 |
20110095507 | Plantet et al. | Apr 2011 | A1 |
20110097139 | Hsu et al. | Apr 2011 | A1 |
20110109060 | Earle et al. | May 2011 | A1 |
20110202236 | Galasso et al. | Aug 2011 | A1 |
20110204201 | Kodama | Aug 2011 | A1 |
20110257848 | Shirai | Oct 2011 | A1 |
20120006949 | Laird et al. | Jan 2012 | A1 |
20120007327 | Talavasek | Jan 2012 | A1 |
20120080279 | Galasso et al. | Apr 2012 | A1 |
20120228906 | McAndrews et al. | Sep 2012 | A1 |
20120253599 | Shirai | Oct 2012 | A1 |
20120253600 | Ichida et al. | Oct 2012 | A1 |
20120274043 | Lee et al. | Nov 2012 | A1 |
20130090195 | Yamaguchi et al. | Apr 2013 | A1 |
20130119634 | Camp et al. | May 2013 | A1 |
20130144489 | Galasso et al. | Jun 2013 | A1 |
20130221713 | Pelot et al. | Aug 2013 | A1 |
20140061419 | Wehage et al. | Mar 2014 | A1 |
20150197308 | Butora et al. | Jul 2015 | A1 |
20150291248 | Fukao | Oct 2015 | A1 |
20160355226 | Pelot et al. | Dec 2016 | A1 |
20170247072 | Laird et al. | Aug 2017 | A1 |
20170282669 | Cox et al. | Oct 2017 | A1 |
20180118302 | Fukao | May 2018 | A1 |
20180222541 | Madau et al. | Aug 2018 | A1 |
20200191227 | Laird | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
3738048 | May 1989 | DE |
10326675 | Dec 2004 | DE |
102005025811 | Dec 2006 | DE |
102007063365 | Jul 2009 | DE |
202008015968 | Apr 2010 | DE |
202010012738 | Dec 2010 | DE |
304801 | Mar 1989 | EP |
552568 | Jul 1993 | EP |
1138530 | Oct 2001 | EP |
1188661 | Mar 2002 | EP |
1241087 | Sep 2002 | EP |
1355209 | Oct 2003 | EP |
1394439 | Mar 2004 | EP |
1449688 | Aug 2004 | EP |
2103512 | Sep 2009 | EP |
2357098 | Aug 2011 | EP |
2479095 | Jul 2012 | EP |
2357098 | Oct 2014 | EP |
2432424 | Feb 1980 | FR |
2952031 | May 2011 | FR |
57173632 | Oct 1982 | JP |
57173632 | Nov 1982 | JP |
57182506 | Nov 1982 | JP |
01106721 | Apr 1989 | JP |
04203540 | Jul 1992 | JP |
05149364 | Jun 1993 | JP |
2005119548 | May 2005 | JP |
2007302211 | Nov 2007 | JP |
2008238921 | Oct 2008 | JP |
9840231 | Sep 1998 | WO |
9906231 | Feb 1999 | WO |
0027658 | May 2000 | WO |
03070546 | Aug 2003 | WO |
2007017739 | Feb 2007 | WO |
2007117884 | Oct 2007 | WO |
2008114445 | Sep 2008 | WO |
Entry |
---|
Smith, ““The Bump Stop” in Engineer to win—Chapter 13: Springs and Shock Absorbers”, MBI Publishing Company and Motorbooks, USA XP055430818, ISBN: 978-0-87938-186-8, Dec. 31, 1984, 207. |
Shiozaki, et al., “SP-861-Vehicle Dynamics and Electronic Controlled Suspensions SAE Technical Paper Series No. 910661”, International Congress and Exposition, Detroit, Mich., Feb. 25-Mar. 1, 1991. |
Puhn, “How to Make Your Car Handle”, HPBooks, 1981, 7 Pages. |
Nilsson, “Opposition Letter Against EP-2357098”, Oct. 13, 2017, 7 Pages. |
Fachkunde Fahrradtechnik 4 Auflage, Gressmann_Inhaltv und S, 2011, 206-207. |
Statement of Grounds of Appeal, EP App. No. 11153607.4, May 28, 2018, 88 Pages. |
European Search Report, European Patent Application No. 14189773.6, May 4, 2015, 4 Pages. |
Grounds of Appeal, EP App. No. 11153607.4, Jun. 1, 2018, 28 Pages. |
“Communication Re Oral Proceedings for European Application no. 10161906, dated Feb. 15, 2013 (dated Feb. 15, 2013)”. |
“European Patent Office Final Decision dated Mar. 21, 2013”, European Patent Application No. 10161906.2. |
“European Search Report for European Application No. 09177128, 4 pages, dated Aug. 25, 2010 (dated Aug. 25, 2010)”. |
“European Search Report for European Application No. 10161906 , 3 pages, dated Sep. 15, 2010 (dated Sep. 15, 2010)”. |
“European Search Report for European Application No. 11153607, 3 pages, dated Aug. 10, 2012 (dated Aug. 10, 2012))”. |
“European Search Report for European Application No. 11172612 , 2 pages, dated Oct. 6, 2011 (dated Oct. 6, 2011))”. |
“European Search Report for European Application No. 12184150, 10 pages, dated Dec. 12, 2017 (dated Dec. 12, 2017)”. |
“European Search Report for European Application No. 13158034 , 4 pages, dated Jun. 28, 2013 (dated Jun. 28, 2013))”. |
“European Search Report for European Application No. 13189574, 2 pages, dated Feb. 19, 2014 (dated Feb. 19, 2014)”. |
“European Search Report for European Application No. 15167426 , 4 pages, dated Sep. 18, 2015 (dated Sep. 18, 2015))”. |
“European Search Report for European Application No. 16167306 , 2 pages, dated Mar. 23, 2017 (dated Mar. 23, 2017)”. |
“European Search Report for European Application No. 17154191, 2 pages, dated Jun. 28, 2017 (dated Jun. 28, 2017)”. |
“European Search Report and Written Opinion, European Patent Application No. 13165362.8”, dated Sep. 24, 2014, 6 Pages. |
“Office Action for European Application No. 13158034.2, 5 pages, dated May 22, 2014”. |
Number | Date | Country | |
---|---|---|---|
20190031264 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
61361376 | Jul 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13176336 | Jul 2011 | US |
Child | 14330996 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15593020 | May 2017 | US |
Child | 16147010 | US | |
Parent | 14330996 | Jul 2014 | US |
Child | 15593020 | US |