This application is based on Japanese Patent Application (No. 2016-174969) filed on Sep. 7, 2016, the contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to a lever-type connector.
2. Description of the Related Art
Conventionally, a lever-type connector is known that can perform a connector fitting with a low insertion force due to a rotational force by rotating a lever pivotally mounted on a housing so that the connector is fitted to a mating housing of a mating connector (see, for example, JP-A-2012-69415).
In this lever-type connector, the housing is fitted into the mating housing, and thereafter the lever is pivoted from a fitting start position to a fitting completion position, and by engaging and locking to a lock portion of the housing, and thereby the housing maintains a state in which the connector is fitted to the mating housing.
When an external force such as a vibration or shock is applied to the mating connector, the lever rattles with respect to the housing, and an abnormal noise may be generated or the engagement of the lever by the lock portion of the housing may loosen, and the reliability of the fitting with the mating connector may deteriorate.
The present invention has been made in view of the above circumstances, and its objective is to provide a lever-type connector capable of suppressing backlash of the lever with respect to the housing and achieving high reliability in fitting with a mating connector.
In order to achieve the above objective, the lever-type connector according to the present invention is characterized by (1) to (6) below.
(1) A lever-type connector, including:
(2) The lever-type connector (10) according to (1), wherein inner surfaces of the lever-disengagement prevention portions respectively contact with vibration-suppressing protrusions provided on the side plates of the lever when the lever positioned at the fitting completion position.
(3) The lever-connector according to (1) or (2) above, wherein the housing has a pair of walls that are provided at both sides of the lock portion for locking the operating portion of the lever;
wherein recessed portions that externally fit the pair of walls of the housing are formed on the operating portion of the lever; and
wherein inner surfaces of the recessed portions contact outer surfaces of the pair of walls facing the inner surfaces respectively when the lever is positioned at the fitting completion position.
(4) The lever-type connector according to (3), wherein a backlash-eliminating protrusion is provided on either the inner surfaces of the recess portions or the outer surfaces of the pair of walls.
(5) The lever-type connector according to any one of (1) to (4), wherein locking protrusions are formed on inner surfaces of the side plates of the lever so as to lock the lever to the temporary locking position with respect to the housing;
wherein escape grooves are formed on both side surfaces of the housing so that the locking protrusions are in a non-contact state with the housing when the lever is rotated; and
wherein ends of the escape grooves have final locking surfaces respectively on which the locking protrusions ride and are engaged when the lever is moved to the fitting completion position.
(6) The lever-type connector according to any one of (1) to (5), wherein locking pieces are provided at tip ends of the support shafts, projecting from both sides of the housing, to pivotally support the lever, the locking pieces extending in directions intersecting axes of the support shafts;
wherein each of pivot holes through which the locking piece is inserted and having an opening shape corresponding to outer shape of the locking piece is provided in respective one of the side plates to pivotally support the support shafts; and
wherein pressed protrusions, configured to be pressed by inner surfaces of the locking pieces when the lever is moved to the fitting completion position, are provided adjacent to the pivot holes of the lever.
In the lever-type connector of the above configuration, when the housing is fitted into the mating housing and the lever at the fitting start position is rotated and moved to the fitting completion position, the housing is fitted to the mating housing and the lever is engaged and locked to the lock portion.
In this state, since the vibration suppressing protrusions, which are a part of the side plates of the lever, are covered from the outside by the lever-disengagement prevention portions provided on both sides of the housing, disengagement of the side plate from the housing is prevented in the lever that is engaged and locked to the lock portion in the fitting completion position. As a result, even if an external force such as vibration or shock is applied to the lever, the lever can be engaged and locked by the lock portion, thus high fitting reliability with the mating connector can be achieved.
In the lever-type connector having the above configuration, when the lever is moved to the fitting completion position, the inner surface of the lever-disengagement prevention portion is pressed against the vibration suppressing protrusions provided on the side plate of the lever (a state of no gaps or pressurized contact). Therefore, the lever, in which the side plates do not rattle with respect to the lever disengagement prevention portion, does not generate abnormal noise even when vibrations are applied.
In the lever-type connector having the above configuration, when the lever is moved to the fitting completion position, the recessed portions of the operating portion are externally fitted to the pair of the walls on both sides of the lock portion without any gaps (a state of no gaps or pressurized contact). Therefore, it is possible to further suppress backlash of the operating portion of the lever engaged and locked to the lock portion in the fitting completion position. As a result, even if an external force such as vibration or shock is applied, the lever can be engaged and locked by the lock portion, thus high fitting reliability with the mating connector can be achieved.
In the lever-type connector of the above configuration, when the lever is placed in the fitting completion position, the backlash-eliminating protrusions protruding from either the outer surfaces of the pair of walls or the inner surfaces of the recessed portions are compressed and deformed in a state where the recessed portions of the operating portion are pressed against the pair of walls. By backlash-eliminating protrusions which are easy to compress and deform, it is possible to easily suppress backlash of the operating portion of the lever engaged and locked to the lock portion in the fitting completion position.
In the lever-type connector having the above configuration, the locking protrusions on the inner surfaces of the side plates of the lever can lock the lever to the housing in the temporary locking position. Therefore, it is possible to prevent careless rotation of the lever before fitting to the mating connector and eliminate complicated operations in returning the carelessly rotated lever to the temporary locking position, thus, making it possible to smoothly perform the fitting to the mating connector.
When rotating the lever, by way of the locking projections on the inner surface of the side plates of the lever passing through the escape grooves formed in the side surfaces of the housing, the lever is smoothly pivoted in a predetermined direction without the locking protrusions coming in contact with the side surfaces of the housing. Then, when the lever is moved to the fitting completion position, the locking protrusion of the lever rides on the locking surface of the escape groove and suppresses backlash of the lever. As a result, even if an external force such as vibration or shock is applied, the lever can be engaged and locked by the lock portion more securely, thus high fitting reliability with the mating connector can be achieved.
In the lever-type connector of the above configuration, when at least the lever is moved to the fitting completion position, the inner surface of the locking piece formed on the support shaft protruding on both sides of the housing presses the pressed protrusion, formed in the vicinity of the pivot hole in the side plate, toward the side of the housing. Therefore, in the side plates of the lever, backlash of the support shaft of the housing is suppressed, and generation of noise from vibrations are prevented.
According to the present invention, it is possible to provide a lever-type connector that suppresses backlash of a lever and obtains a high fitting reliability with a mating connector.
The present invention has been briefly described above. Furthermore, details of the present invention will be further clarified by reading about the forms for carrying out the invention (hereinafter referred to as “embodiments”) described below with reference to the attached drawings.
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in
The lever 50 is rotated between a temporary locking position (see
The housing 20 is made of insulating synthetic resin, and a front part 20a of the housing 20 is fitted to the mating housing 2 of the mating connector 1. The housing 20 has a plurality of terminal accommodating chambers 21. These terminal accommodating chambers 21 are formed along a direction of fitting with the mating connector 1, and terminals (not shown) connected to electrical wires (not shown) are accommodated in the respective terminal accommodating chambers 21. Electrical wires connected to terminals accommodated in the terminal accommodating chambers 21 are pulled out from the rear part 20b of the housing 20. An electrical wire cover 28 is attached to the rear part 20b of the housing 20, and the electrical wires pulled out from the rear part 20b of the housing 20 are covered with the electrical wire cover 28 and are bundled and pulled out in one direction (lateral direction in this example). By fitting the lever-type connector 10 into mating connector 1, terminals accommodated in the terminal accommodating chambers 21 of the housing 20 are electrically connected to the terminals provided in the mating housing 2 of the mating connector 1.
As shown in
Also, in each of the side plates 51, the pivot hole 55 has a shape corresponding to the outer shape of the locking piece 26, the locking piece 26 can only be inserted through when the lever 50 is disposed between the temporary locking position and fitting completion stop position and the locking piece 26 is aligned with the shape of the pivot hole 55. The locking piece 26 inserted into the pivot hole 55 prevents the side plate 51 from coming off, when the locking piece 26 is in a range corresponding to a locking recess portion 57 that is formed in the outer surface of the side plate 51.
Further, as shown in
As shown in
As shown in
As shown in
On the inner surface of the side plate 51 of the lever 50, a locking protrusion 73 is formed for locking the lever 50 to the temporary locking position with respect to the housing 20. When the lever 50 is moved to the temporary locking position, the locking protrusion 73 is disposed in the guide groove 47 and is locked to the upper-edge portion of the guide groove 47 (see
On both sides 22 of the housing 20, there are escape grooves 43 in which the locking protrusions 73 are in a non-contact state when the lever 50 rotates. The escape groove 43 is formed in an arc shape with the support shaft 25 as its center. On one end (the upper end in
Therefore, when the lever 50 is rotated toward the fitting completion position, the locking protrusion 73 goes over the upper-edge portion of the guide groove 47, is guided into the escape groove 43, and moves through the escape groove 43. When the lever 50 is rotated, by way of the locking protrusion 73 on the inner surface of the side plate 51 of the lever 50 moving through the escape groove 43 on the side surface 22 of the housing 20, the lever 50 smoothly rotates in a predetermined direction without the locking protrusion 73 coming into contact with the side surface 22 of the housing 20.
When the lever 50 reaches the fitting completion stop position, the locking protrusion 73 of the side plate 51 rides on the final locking surface 44 having a tapered surface and suppresses backlash of the lever 50 (see
A locking protrusion 73 and an escape groove 43 do not need to be provided on both side plates 51 and both sides 22; they may be provided only on one of the side plates 51 and sides 22.
As shown in
In a state where the lever 50 is moved to the temporary locking position, the upper-edge portion 61 of the side plate 51 facing the lever-disengagement prevention portion 35 goes inside the lever-disengagement prevention portion 35 (see
In a state where the lever 50 is moved to the fitting completion position, the vibration-suppressing protrusion 62 goes inside the lever disengagement prevention portion 35 (see
As shown in
A pair of walls 41 stand upright on the upper surface 23 of the housing 20 and are arranged on both sides of the lock portion 24 for locking the operating portion 52. Further, on the upper edge of each wall 41, an arm protection wall 40 extends inward so as to cover both sides of the flexible arm portion 27. Accordingly, since the lock portion 24 is surrounded by the pair of walls 41 and the arm protection wall 40, the flexible arm portion 27 is prevented from deformation due to being undesirably pressed on before fitting the connector.
Furthermore, as shown in
Furthermore, there are recessed portions 71 which can externally fit the pair of walls 41 in the operating portion 52 of the lever 50. When the lever 50 is moved to the fitting completion position, the inner surfaces 71a of the recessed portions 71 contact the opposing outer surfaces 41a of the pair of walls 41, respectively. That is, the recessed portions 71 of the operating portion 52 are externally fitted to the pair of walls 41 without gaps (a state of no gaps or pressurized contact). With backlash-eliminating protrusions 72 protruding inward and being provided on the inner surfaces 71a of the recessed portions 71 of the present embodiment, the backlash-eliminating protrusions 72 are compressed and deformed and the recessed portions 71 of the operating portion 52 are brought into pressurized contact with the pair of walls 41 (see
Therefore, the operating portion 52 of the lever 50 that is engaged and locked to the lock portion 24 in the fitting completion position is restrained from backlash against the upper surface 23 of the housing 20. As a result, even if an external force such as vibration or shock is applied to the lever, the operating portion 52 can be engaged and locked by the lock portion 24, thus high fitting reliability with the mating connector 1 can be achieved.
Next, a case where the lever-type connector 10 is fitted to the mating connector 1 will be described.
First, the lever 50, temporarily engaged in the temporary locking position, is pivoted toward the fitting start position so that the lever 50, disposed so as to overlap the lever-protection wall 30, separates from the lever-protection wall 30.
As shown in
Then, as shown in
When the lever 50 is moved to the fitting completion position, the lock portion 53 of the operation portion 52 is engaged and locked to the engaging portion 29 of the lock portion 24, and the rotation of the lever 50 relative to the housing 20 is restricted in the locked state. In addition, in the lock portion 24, the outer surfaces 41a of the pair of walls 41 compress and deform the backlash-eliminating protrusions 72 protruding from the outer surfaces 71a of the recessed portions 71 so as to be externally fitted without gaps (see
When the lever 50 is moved to the fitting completion position, the vibration-suppressing protrusion 62 of the side plate 51 enters the inside of the lever-disengagement prevention portion 35. Consequently, the vibration-suppressing protrusion 62 of the side plate 51 is covered from the outside by the lever-disengagement prevention portion 35 and the inner surface of the lever disengagement prevention portion 35 is brought into pressurized contact with the vibration-suppressing protrusion 62 (see
Further, when the lever 50 is rotated to the fitting completion position, the locking protrusion 73 protruding from the inner surface of each of the side plates 51 passes through the corresponding one of the escape grooves 43 and rides on the corresponding final locking surface 44 having a tapered surface. As a result, backlash of the side plate 51 with respect to the side surface 22 of the housing 20 is suppressed in the lever 50.
When the lever 50 is rotated to the fitting completion position, the pressed protrusion 56 projecting from the outer surface of the side plate 51 is pressed toward the side surface 22 by the inner surface of the locking piece 26 of the support shaft 25, backlash of the side plate 51 with respect to the support shaft 25 of the housing 20 is suppressed in the lever 50 (see
In this way, in the lever-type connector 10 of the present embodiment, the operating portion 52 of the lever 50 is held and the lever 50 is rotated by the operator, thereby the insertion force of the housing 20 applied to the mating housing 2 is assisted through the cam mechanism constituted by the cam groove 77 and cam boss 5.
As described above, in the lever-type connector 10 according to the present embodiment, when the housing 20 is fitted into the mating housing 2 and the lever 50 at the fitting start position is rotated and moved to the fitting completion position, the housing 20 is fitted to the mating housing 2 and the lever 50 is engaged and locked to the lock portion 24.
In this state, since the vibration suppressing protrusions 62, which are a part of the side plates 51 of the lever 50, are covered from the outside by the lever-disengagement prevention portions 35 provided on both sides of the housing 20, disengagement of the side plate 51 from the housing 20 is prevented in the lever 50 that is engaged and locked to the lock portion 24 in the fitting completion position. As a result, even if an external force such as vibration or shock is applied to the lever 50, the lever 50 can be engaged and locked by the lock portion 24, thus high fitting reliability with the mating connector 1 can be achieved.
When the lever 50 is moved to the fitting completion position, the inner surface of the lever-disengagement prevention portion 35 is pressed against the vibration suppressing protrusions 62 provided on the side plate 51 of the lever 50. The lever 50, in which the side plates 51 do not rattle with respect to the lever disengagement prevention portion 35, does not generate abnormal noise even when vibrations are applied.
Moreover, when the lever 50 is moved to the fitting completion position, the recessed portions 71 of the lever 50 are externally fitted to the walls 41 on both sides of the lock portion 24 without any gaps. Therefore, backlash of the operating portion 52 of the lever 50 that is engaged and locked to the lock portion 24 in the fitting completion position can be further suppressed. As a result, even if an external force such as vibration or shock is applied, the lever 50 can be engaged and locked by the lock portion 24, thus high fitting reliability with the mating connector 1 can be achieved. Furthermore, there are backlash-eliminating protrusions 72 projected from the inner surfaces 71a of the recessed portions 71. When the lever 50 is placed in the fitting completion position, the backlash-eliminating protrusions 72 protruding from the inner surfaces 71a of the recessed portions 71 are compressed and deformed in a state where the recessed portions 71 of the operating portion 52 are pressed against the pair of walls 41. Therefore, with the simple backlash-eliminating protrusions 72 that are easily compressed and deformed, backlash of the operating portion 52 of the lever 50 that is engaged and locked to the lock portion 24 in the fitting completion position can be easily suppressed.
Furthermore, in the lever-type connector 10 according to the present embodiment, the locking protrusions 73 on the inner surfaces of the side plates 51 of the lever 50 can lock the lever 50 to the housing 20 in the temporary locking position. Therefore, it is possible to prevent careless rotation of the lever 50 before fitting to the mating connector 1 and eliminate complicated operations in returning the carelessly rotated lever 50 to the temporary locking position, thus, making it possible to smoothly perform the fitting to the mating connector 1.
When rotating the lever 50, by way of the locking projection 73 on the inner surface of the side plate 51 of the lever 50 passing through the escape groove 43 formed in the side surface 22 of the housing 20, the lever 50 is smoothly pivoted in a predetermined direction without the locking protrusion 73 coming in contact with the side surface 22 of the housing 20. Then, when the lever 50 is moved to the fitting completion position, the locking protrusion 73 of the lever rides on the locking surface 44 of the escape groove 43 and suppresses backlash of the lever 50. As a result, even if an external force such as vibration or shock is applied, the lever 50 can be engaged and locked by the lock portion 24 more securely, thus high fitting reliability with the mating connector 1 can be achieved.
Further, when the lever 50 is moved to the fitting completion position, the inner surface of the locking piece 26 of the support shaft 25, projecting from both sides 22 of the housing 20, presses the pressed protrusion 56, protruding from the bottom surface of the locking recess portion 57 in the vicinity of the pivot hole 55 in the side plate 51 of the lever 50, against the side surface 22. Therefore, in the side plates 51 of the lever 50, backlash of the support shaft 25 of the housing 20 is suppressed, and generation of noise from vibrations are prevented.
Since the locking protrusion 73 of the lever 50 is disposed inside the escape groove 43 when the lever 50 is in the middle of a rotation, the locking projection 73 does not receive the counter force from the side surface 22 of the housing 20. Therefore, the side plate 51 cannot float away. Also, when the opening of the pivot hole 55 in the middle rotation of the lever 50 overlaps and is aligned with the locking piece 26 of the support shaft 25, it is not possible for the support shaft 25 to come out of the pivot hole 55.
The present invention is not limited to the embodiment described above, and suitable modifications, improvements and so on can be made. Furthermore, the material, shape, dimensions, number, disposition, etc. of each component in the above embodiment is not limited as long as it can achieve the present invention.
Here, characteristics of the embodiment of the lever-type connector according to the present invention described above will be briefly summarized below in [1] to [6].
[1] A lever-type connector (10), including:
[2] The lever-type connector (10) according to [1], wherein inner surfaces of the lever-disengagement prevention portions (35) respectively contact with the vibration-suppressing protrusions (62) provided on the side plates (51) of the lever when the lever (50) is positioned at the fitting completion position.
[3] The lever-type connector (10) according to [1] or [2], wherein the housing (20) has a pair of walls (41) that are provided at both sides of the lock portion (24) for engaging and locking the operating portion (51) of the lever;
wherein recessed portions (71) that externally fit the pair of walls of the housing are formed on the operating portion (51) of the lever; and
wherein the inner surfaces (71a) of the recessed portions contact outer surfaces (41a) of the pair of walls facing the inner surfaces, respectively when the lever (50) is positioned at the fitting completion position.
[4] The lever-type connector (10) according to [3], wherein a backlash-eliminating protrusion (71, 42) is provided on either the inner surface (71a) of the recessed portion (71) or the outer surface (41a) of the pair of walls (41).
[5] The lever-type connector (10) according to any one of [1] to [4], wherein locking protrusions (73) are formed on inner surfaces of the side plates of the lever so as to lock the lever to the temporary locking position with respect to the housing (20);
wherein escape grooves (43) are formed on both sides (22) of the housing so that the locking protrusions are in a non-contact state with the housing when the lever is rotated; and
wherein ends of the escape grooves have final locking surfaces (44) respectively on which the locking protrusions ride and are engaged when the lever is moved to the fitting completion position.
[6] The lever-type connector according to any one of [1] to [5], wherein locking pieces (26) are provided at tip ends of the support shafts (25), projecting from both sides (22) of the housing (20), to pivotally support the lever (50), the locking pieces extending in directions intersecting axes of the support shafts;
wherein each of a pivot holes (55) through which the locking piece is inserted and having an opening shape corresponding to outer shape of the locking piece is provided in respective one of the side plates to pivotally support the support shafts; and
wherein pressed protrusions, configured to be pressed by inner surfaces of the locking pieces (56) when the lever is moved to the fitting completion position, are provided adjacent to the pivot holes of the lever.
Number | Date | Country | Kind |
---|---|---|---|
2016-174969 | Sep 2016 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5230635 | Takenouchi et al. | Jul 1993 | A |
5474462 | Yamanashi | Dec 1995 | A |
5509816 | Katsuma | Apr 1996 | A |
5551885 | Yamanashi et al. | Sep 1996 | A |
5611703 | Okamoto | Mar 1997 | A |
6217354 | Fencl | Apr 2001 | B1 |
6413105 | Noro | Jul 2002 | B2 |
6447312 | Takata | Sep 2002 | B1 |
6679711 | Takahashi | Jan 2004 | B2 |
7004769 | Putnam | Feb 2006 | B1 |
7559780 | Mizoguchi | Jul 2009 | B2 |
7959452 | Komiyama | Jun 2011 | B2 |
20060040534 | Flowers | Feb 2006 | A1 |
20120129381 | Makino | May 2012 | A1 |
20130230994 | Kamiya | Sep 2013 | A1 |
20150037089 | Kamiya | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
5-129048 | May 1993 | JP |
2008-226535 | Sep 2008 | JP |
2012-69415 | Apr 2012 | JP |
2012-89302 | May 2012 | JP |
Entry |
---|
Office Action dated Jul. 24, 2018 by the Japanese Patent Office in counterpart Japanese Patent Application No. 2016-174969. |
Number | Date | Country | |
---|---|---|---|
20180069346 A1 | Mar 2018 | US |