The present disclosure relates generally to recommending products and/or services to customers and to enhancing social experiences for such customers.
Historically, when a customer desired to purchase a product, the customer traveled to a retail establishment to purchase the product. If the customer frequently purchased from the same retail establishment, the customer over time may develop a relationship with a salesperson. The salesperson, based on such frequent contact with the customer, may develop a sense of which products that the customer may like or have an interest in purchasing. The salesperson may then provide tailored recommendations for other products that the customer may like to purchase. The above conventional process may result in a very personal shopping experience for the customer. However, such process is also very dependent upon the salesperson and their knowledge gathered over long periods of time. If the salesperson leaves the retail establishment or is not on duty when the customer is on the premises, such knowledge base is lost and the retail establishment is unable to provide the customer with the same level of personalized recommendations.
Over the last decade or so, customers are making more and more purchases via the Internet from various online vendors. Such online vendors commonly track prior purchases of a customer. The online vendors may present customers with recommendations tailored based on their purchase history and/or other customer data. Thus, online vendors may provide personalized recommendations that do not rely upon the personal knowledge base of a particular salesperson. Online vendors may, therefore, provide a more consistent shopping experience.
With that said, there are still advantages of shopping in retail establishments which are commonly referred to as “brick and mortar” businesses in order to distinguish them from their online counterparts. One advantage of a brick and mortar business compared to its online counterpart is that a brick an mortar business may permit their customer to inspect, use, try, or otherwise test the product prior to purchase. For certain items (e.g., consumer electronics, clothing, etc.), the ability to try the product before purchasing is perceived as a big benefit by many customers.
Moreover, many customers still prefer the personal experience that a well-trained and helpful salesperson provides.
Given the different shopping experiences and advantages offered by brick and mortar businesses and online businesses, many vendors provided their customers with both brick and mortar and online options from which customers may purchase products. Such an organizational scheme permits catering to customers who primarily shop online, customers that primarily shop in a physical store, as well as customers that utilize both online and in-store shopping opportunities. The latter category, however, may present an issue to these vendors when trying to provide personalized recommendations. Since such customers split their purchases between online and in-store options, both the knowledgeable salesperson at the brick and mortar business and the online site are operating with incomplete purchase history even though such purchases are from the same organization. Such incomplete purchase history may negatively affect the effectiveness of product recommendations made by the salesperson and the online site.
Further limitations and disadvantages of conventional and traditional approaches will become apparent to one of skill in the art, through comparison of such systems with some aspects of the present invention as set forth in the remainder of the present application with reference to the drawings.
Systems and methods for leveraging a customer's in-store activity for online applications such as networking with other customers, generating recommendations, forming interest groups, and/or any other appropriate manners of enhancing the social experience of a customer are substantially shown in and/or described in connection with at least one of the figures, and are set forth more completely in the claims.
These and other advantages, aspects and novel features of the present invention, as well as details of an illustrated embodiment thereof, will be more fully understood from the following description and drawings.
As utilized herein, the term “e.g.” introduces a list of one or more non-limiting examples, instances, or illustration. Similarly, the term “embodiment” refers to a non-limiting example, instance, or illustration. The present disclosure may describe different embodiments having various features, aspects, elements, etc. It should be appreciated, however, that such features, aspects, elements, etc. of the described embodiments are not intended to be limiting. Other embodiments may have a different selection of the described features, aspects, elements while still falling within the scope of the appended claims. Therefore, it is intended that the present disclosure not be limited to the particular embodiment disclosed, but that the present disclosure will include all embodiments falling within the scope of the appended claims.
In currently known systems, information about a customer's in-store activity remains offline, and is not utilized in online applications such as social networking, generating recommendations, forming interest groups, and/or any other appropriate online application. The present disclosure relates generally to leveraging a customer's in-store activity for online applications such as networking with other customers, generating recommendations, forming interest groups, and/or any other appropriate means of enhancing the social experience of a customer. In particular, product recommendation systems and associated methods are disclosed, which recommend products and/or services to customers and which enhance social experiences of such customers.
Details regarding various aspects of the present disclosure are now discussed in regard to a product recommendation environment 2 depicted in
For example, the product recommendation system 10 may receive online and/or in-store activity data that includes a customer's purchase history, a customer's loyalty program profile, a customer's self-identifying information, a customer's address, a customers' shopping list, a customer's wish list and/or any appropriate other information about a customer. Moreover, besides data for the customer associated with the product recommendation 40, the activity data 20, 30 may also include in-store and online activity data for additional customers. The product recommendation system 10 may selected additional customers and their respective data based on whether the additional customers are in a customer's social network, the additional customers share a customer's geographic location, the additional customers have similar purchase histories, the additional customers have a similar loyalty rewards status, and/or any other appropriate manner of selection. Using a customer's online and offline activity data 20, 30, and the online and offline activity data of selected additional customers, the product recommendation system 10 may generate customized product recommendations 40 which may include suggestions, offers, promotions, advertisements etc. based on data received for a customer, and/or data received for other additional customers that are related to the customer.
In one embodiment, the product recommendation system 10, the database 15, and various sources of online activity data 20 and in-store activity data 30 may be implemented using one or more computing devices. Such computing devices may include personal data assistants, smart phones, tablets, laptops, in-store kiosks, point-of-sale terminals, desktops, workstations, servers, and/or or other computing devices.
Moreover, such computing devices may communicate with one another via one or more networks. Such networks may include a number of private and/or public networks such as, for example, wireless and/or wired LAN networks, cellular networks, and the Internet that collectively provide a communication path and/or paths between the online computing devices, in-store computing devices, the product recommendation system 10, and database 15. Moreover, the network and/or product recommendations system 10 may include one or more web servers, database servers, routers, load balancers, and/or other computing and/or networking devices.
Those skilled in the art readily appreciate that
As noted above, the sources of online activity data 20, the sources of in-store activity data 30, the product recommendation system 10, and/or the database 15 may be implemented using various types of computing devices.
The memory 53 may store instructions and/or data to be executed and/or otherwise accessed by the processor 51. In some embodiments, the memory 53 may be completely and/or partially integrated with the processor 51.
In general, the mass storage device 55 may store software and/or firmware instructions which may be loaded in memory 53 and executed by processor 51. The mass storage device 55 may further store various types of data which the processor 51 may access, modify, and/or otherwise manipulate in response to executing instructions from memory 53. To this end, the mass storage device 55 may comprise one or more redundant array of independent disks (RAID) devices, traditional hard disk drives (HDD), sold state device (SSD) drives, flash memory devices, read only memory (ROM) devices, etc.
The network interface 57 may enable the computing device 50 to communicate with other computing devices. To this end, the networking interface 57 may include a wired networking interface such as an Ethernet (IEEE 802.3) interface, a wireless networking interface such as a WiFi (IEEE 802.11) interface, a radio or mobile interface such as a cellular interface (GSM, CDMA, LTE, etc) or near field communication (NFC) interface, and/or some other type of networking interface capable of providing a communications link between the computing device 50 and a network and/or another computing device.
Finally, the I/O devices 59 may generally provide devices which enable a user to interact with the computing device 50 by either receiving information from the computing device 50 and/or providing information to the computing device 50. For example, the I/O devices 59 may include display screens, keyboards, mice, touch screens, microphones, audio speakers, digital cameras, optical scanners, etc.
While the above provides some general aspects of a computing device 50, those skilled in the art readily appreciate that there may be significant variation in actual implementations of a computing device. For example, a smart phone implementation of a computing device generally uses different components and may have a different architecture than a database server implementation of a computing device. However, despite such differences, computing devices still generally include processors that execute software and/or firmware instructions in order to implement various functionality. As such, the above described aspects of the computing device 50 are not presented from a limiting standpoint but from a generally illustrative standpoint. The present application envisions that aspects of the present application will find utility across a vast array of different computing devices and the intention is not to limit the scope of the present application to a specific computing device and/or computing platform beyond any such limits that may be found in the appended claims.
Referring now to
Regarding the data path 330, the recommendation system 10 may receive data regarding various online activities of the customer. For example, using a computing device such as a tablet, smart phone, laptop, etc., the customer at 312 may browse and/or otherwise research products at one or more e-commerce sites affiliated or otherwise associated with the product recommendation system 10. In particular, the product recommendation system 10 may provide the customer with product recommendations 40 during the online shopping session. More specifically, the product recommendation system 10 may provide such recommendation based on information received during the present online shopping session as well as information received during previous online shopping sessions and/or previous in-store shopping events.
Based on such product recommendations 40 and/or online research, the customer at 314 may purchase one or more products from one or more e-commerce sites associated with the product recommendation system 10. As a result of such online activity, the product recommendation system 10 may receive data regarding products researched, browsed, purchased, etc. The product recommendation system 10 may then use such online activity data to drive product recommendations when the customer later shops at a brick and mortar store affiliated or otherwise associated with the product recommendation system 10.
With respect to data path 310, in response to the customer later entering a physical store at 316, the product recommendation system 10 may utilize the previously received online activity data as well as other information associated with the customer in order to provide the customer with customized product recommendations 40. For example, the product recommendation system 10 may receive a notification that the customer has entered the associated physical store. Such a notification may be sent to the product recommendation system 10 via several techniques. In one embodiment, the product recommendation system 10 may receive such notification via a mobile application which may be executed by a mobile device (e.g., a smart phone, tablet, personal data assistant, etc.) owned by the customer or owned by the physical store and lent to the customer upon entering the store and/or otherwise checking-in with the store. In such an embodiment, the mobile device may transmit information to the product recommendation system 10 such as the customer's location, the customer's status, the product(s) and/or service(s) that the customer is seeking, and or any other appropriate information. Such information may also be provided to the product recommendation system 10 via a salesperson or store associate who has spoken with the customer and gathered such information from the customer. In such an embodiment, the salesperson may enter various information regarding the customer interaction into a computing device that in turn provides such information to the product recommendation system 10.
The product recommendation system 10 may then use the received information to provide a variety of different services. For example, the product recommendation system 10 may forward the information and/or provide customized recommendations 40 to a store associate or salesperson in order to enable such associate or salesperson to better assist the customer with locating products of interest. In another embodiment, the product recommendation system 10 may process such received information along with possible other previously received data in order to create and transmit product recommendations 40 to the customer. The product recommendation system 10 may provide such recommendations to the customer via a mobile device, an in-store kiosk, a store associate, a salesperson, etc.
The product recommendation system 10 may further store the received information in database 15 in order to drive and refine future recommendations 40. For example, the product recommendation system 10 may use such stored data to assist in generating recommendations 40 during further shopping events, whether such shopping events occur at the same brick and mortar store, another brick and mortar store, another brick and mortar location, and/or an online store associated with the product recommendation system 10.
At 318, the customer may purchase one or more items from the brick and mortar store. In response to such purchase activity, the product recommendation system 10 may receive information regarding the purchased product. For example, a point-of-sale terminal may provide the product recommendation system 10 with information regarding the customer, the products purchased, etc. The product recommendation system 10 at 322 may then store such information in order to refine future recommendations 40 presented during further in-store shopping events as depicted via data path 320 and/or during further online shopping events as depicted at data path 340.
Data paths 310, 320, 330, and 340 depict either online activity or in-store activity driving either online recommendations or in-store recommendations. One skilled in the art, however, should appreciate that each of such data paths 310, 320, 330, 340 may affect the other data paths since the product recommendation system 10 may store data received as a result of one data path and use such received data to refine and generate recommendations regarding another data path. Accordingly, the product recommendation environment 2 not only involves the simple data paths 310, 320, 330, 340, but also the various combinations of such data paths 310, 320, 330, 340.
From the above, one skilled in the art should readily appreciate that the product recommendation system 10 may generate product recommendations based on online activity and in-store activity of a customer and/or related customers (e.g., additional customers in the customers social network, general geographic vicinity, etc.) Besides using a variety of data sources to generate the product recommendations 40, the product recommendation system 10 may also provide and/or otherwise present product recommendations to the customer at various times or in response to various different triggering events. For example, the product recommendation system 10 may present or provide a customer with recommendations 40 when a customer enters a brick and mortar store, when a customer visits an in-store kiosk, and/or when a customer checks-in to a store via a mobile application, kiosk, store associate, or other mechanism. The product recommendation system 10 may further present or provide a customer with recommendation 40 when a customer visits a certain location in a store, when a customer logs onto a website serviced by the product recommendation system 10, when a customer accesses a mobile device, and/or when a customer accesses a mobile application or computer application associated with the product recommendation system 10. The product recommendation system 10 may also present or provide a customer with recommendations 40 when a customer purchases a product at a point-of-sale terminal, when a customer communicates with another customer, and/or when a customer engages in any other suitable in-store and/or online activity.
Besides providing recommendations 40 at different times and/or in response to different triggering events, the product recommendation system 10 may also provide product recommendations 40 in various different forms. For example, the product recommendation system 40 may provide product recommendations 40 that identify one or more products as being “recommended” products for the customer. The product recommendations 40 may also take more subtle forms. For example, the product recommendations 40 instead of identifying products as “recommended” may instead list discounts, promotions, or other reduced pricing techniques on products for which the system 10 identified as recommended for the customer. In some embodiments, the discounts, promotions, etc. may be tailored to the particular customer and/or loyalty program and may be discounts, promotions, etc. that are not generally available to other customers.
In some embodiments, the product recommendations 40 may be presented as one or more notifications 80 of other customers' activity as shown in
Besides providing recommendations 40 as notifications 80 of other customers' activity, the product recommendation system 10 may also provide such notifications 80 in relation to a map 90 as shown in
Moreover, the notifications 80 and/or map 90 may provide price information which gives the customer greater price visibility on the current state of the market for a product or product category of interest. In particular, the customer may assess whether a current price for a product is a fair price or a “good deal” based on actual price data provided by notifications 80 and/or map 90 for purchases of such product or similar products in their geographic vicinity.
Various embodiments of the invention have been described herein by way of example and not by way of limitation in the accompanying figures. For clarity of illustration, exemplary elements illustrated in the figures may not necessarily be drawn to scale. In this regard, for example, the dimensions of some of the elements may be exaggerated relative to other elements to provide clarity. Furthermore, where considered appropriate, reference labels have been repeated among the figures to indicate corresponding or analogous elements.
Moreover, certain embodiments may be implemented as a plurality of instructions on a tangible, computer readable storage medium such as, for example, flash memory devices, hard disk devices, compact disc media, DVD media, EEPROMs, etc. Such instructions, when executed by one or more computing devices, may result in the one or more computing devices providing one or more tasks associated generating and/or providing a product recommendations to a customer in a manner as described above.
While the present invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the present invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present invention without departing from its scope. Therefore, it is intended that the present invention not be limited to the particular embodiment disclosed, but that the present invention will include all embodiments falling within the scope of the appended claims.
This application claims the benefit of U.S Provisional Application No. 61/594,792, entitled “SYSTEMS AND METHODS FOR LEVERAGING STORE ACTIVITY FOR ONLINE RECOMMENDATIONS” which was filed Feb. 3, 2012, the disclosure of which is expressly hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61594792 | Feb 2012 | US |