The object of the present invention is a magnetic levitation actuator and notably a micro-actuator which may be made by microtechnology techniques.
These magnetic actuators have a mobile magnetic portion and a fixed magnetic portion. The mobile magnetic portion is in levitation when it is not stuck to the fixed magnetic portion. Such actuators are very promising and in the future they may very well compete with transistor systems for performing switching.
A magnetic actuator which includes as in
As compared with transistor switches, such magnetic levitation switches and generally mechanical contactors have a drawback which is that their switching time is not insignificant, it is of at least a few microseconds. Another drawback exhibited by these actuators is that the quality of the electric contact may very well deteriorate after a large number of switchings.
Another drawback of these magnetic levitation switches is that they consume significant current upon switching.
On the other hand, they have the advantage that when they are in a stable position, their mobile magnetic portion being stuck against the fixed magnetic portion, they do not consume any electric power. This is not the case for transistors which when they are at rest, consume a little power and need to be continually supplied with power.
The object of the present invention is to provide a magnetic levitation actuator which has reduced switching time and/or actuating current zs compared with actuators of the prior art.
Another object of the invention is to provide a magnetic actuator with reduced current consumption during switching.
Another object of the invention is to provide a magnetic actuator with an improved and durable contact quality.
Another object of the invention is to provide a magnetic actuator, the mobile magnetic portion of which has increased angular stability.
In order to achieve these objects, the present invention is a magnetic actuator including a mobile magnetic portion, a fixed magnetic portion, provided with at least two attraction areas for the mobile magnetic portion, and means for triggering the displacement of the mobile magnetic portion, the mobile magnetic portion being in levitation when it is not in contact with an attraction area. The mobile magnetic portion includes a magnet-based part with reduced magnet weight, this part having an overall volume, and a mass which is less than the one it would have if its overall volume was totally occupied by the magnet.
Thus, by means of the part with reduced magnet weight, the mass of the mobile magnetic portion is reduced, the latter is switched more rapidly for a given actuating force or else a reduced actuating current is required for actuation for a given switching time. It is possible to act both on the switching time and on the actuating current.
The part with reduced magnet weight may be formed with one or several magnets provided at least with one recess.
The recess may be a through-hole. It may be filled with solid material having lesser density, less than that of the magnet.
The solid material with lesser density may be selected from semiconducting material, plastic material, dielectric material, soft magnetic material, according to the configuration.
In one alternative, the recess may be empty of solid material.
The part with reduced magnet weight may be a substantially rectangular plate.
It is possible that it includes a magnet frame.
In an alternative with which the current required for displacement may be reduced, the part with reduced magnet weight may include, in the direction of the displacement, a succession of magnets spaced apart from each other, these magnets having a same direction of magnetization.
For the same purpose, the part with reduced magnet weight may include, in the direction of the displacement, an alternating succession of magnets, and of at least one solid portion of lesser density.
The magnets may be in the form of orientated bars substantially normal to the displacement.
In order to maximize the contact force, it is advantageous if the succession includes a magnet at each end. However, depending on the applications or on the magnetic characteristics of the magnets, it may also be of interest to have at each end of the succession, a material other than the one used for the magnets of the succession.
In order to reduce the total current required for the displacement, the means for triggering the displacement may include at least one conductor arranged as a meander formed with sections of successive conductors in which a current is able to flow in opposite directions, each of the magnets of the succession working together, when the mobile magnetic portion is stuck on an attraction area, with one of the sections, the current flowing in the same direction in these sections.
In order to simplify the bidirectional control, it is preferable if the end magnets have a dimension, in the sense of the displacement, substantially equal to the displacement.
In another particularly stable alternative, the part with reduced magnet weight includes at least one central magnet at least partially surrounded by at least a portion of lesser density, this central magnet being in the form of a substantially rounded or ovoid pad.
In order to enhance the contact force, when the mobile magnetic portion is stuck on an attraction area, the mobile magnetic portion may include at least one face, which should stick onto the attraction area, this face being curved.
Instead of being curved, this face may be zigzagged.
In these configurations, each attraction area has a geometry conjugate to that of the face of the mobile magnetic portion which should come into contact with it.
It is possible to provide, notably in the case of RF contactors, that at least one of the attraction areas includes a dielectric portion so as to achieve capacitive contact when the mobile magnetic portion is stuck on said attraction area.
With the same purpose, the part with reduced magnet weight may include a dielectric portion so as to achieve capacitive contact when the mobile magnetic portion is stuck on one of the attraction areas.
The present invention also relates to a method for making a magnetic actuator of this type. It includes the following steps:
on a first substrate, making cases able to receive magnets from a fixed magnetic portion and from a part with reduced magnet weight of a mobile magnetic portion, this part with reduced magnet weight, having an overall volume, and a mass which is less than that it would have if its overall volume was totally occupied by the magnet, ‘depositing magnets in the cases,
depositing a dielectric layer and etching the latter in order to expose the part with reduced magnet weight of the mobile magnetic portion, and its surroundings up to the fixed magnetic portion,
on the second substrate, making at least one case capable of receiving a conductor for triggering a displacement of the mobile magnetic portion,
depositing the conductor in the case,
assembling both substrates by placing them face to face,
totally or partially removing the first substrate so as to release the part with reduced magnet weight from the mobile magnetic portion.
It may also include a step for magnetizing the magnet of the part with reduced magnet weight of the mobile magnetic portion and possibly of the fixed magnetic portion before releasing the part with reduced magnet weight.
The step for etching the dielectric layer of the first substrate may aim at achieving at least one aperture for accessing at least one electric contact for supplying power to the conductor.
The step for etching the dielectric layer may be followed by a step for etching the first substrate around the part with reduced magnet weight and at the level of at least one portion of lesser density with which the part with reduced magnet weight is provided.
In one alternative, the step for etching the dielectric layer may be followed by a step for etching the first substrate around the part with reduced magnet weight by masking at least one portion of lesser density with which the part with reduced magnet weight is provided, this portion of lesser density being full of the material of the substrate.
The method may include a step for achieving at least one electric contact for supplying power to the conductor on the second substrate after depositing the conductor and before assembling both substrates.
A step for depositing a dielectric material on the surface of the second substrate before assembling both substrates may be provided. This dielectric material may be used for protecting the conductor.
The substrates may be massive or SOI type semiconductor substrates.
The present invention will be better understood upon reading the description of exemplary embodiments given as purely indicative and by no means limiting, with reference to the appended drawings wherein:
Identical, similar or equivalent portions of the different figures described hereafter, bear the same numerical references so as to facilitate, passing from one figure to another.
The different portions in the figures are not necessarily illustrated according to a uniform scale, in order to make the figures more legible.
These different alternatives should be understood as not excluding each other.
Reference is made to
The switching time of a magnetic for a given magnetic force applied on the mobile magnetic portion, is proportional to the mass of the mobile magnetic portion. In order that the mobile magnetic portion translationally moves between two attraction areas without being submitted to a side shift, its dimension in the direction of displacement should be large relatively to its two other dimensions. This is why the mobile magnetic portion generally is a rectangular magnet plate, the length of which is directed in the direction of the displacement. These considerations cause such a mobile magnetic portion to have a relatively significant volume and therefore a relatively significant mass (the densities of the magnets generally are high).
But in fact, only the volumes of magnets found facing the attraction areas of the fixed magnetic portion, are involved in the bistability of the actuator. Bistability refers to the two stable positions of the mobile magnetic portion against the attraction areas of the fixed magnetic portion. On the other hand, triggering of the displacement is caused by the assembly of magnets plus displacement triggering means (these means will be described in detail later on). The central portion of the mobile magnetic portion does not need to be a magnet (if there is no conductor of the displacement triggering means at this central portion). The invention therefore consists of making the mobile magnetic portion as a part with reduced magnet volume so that it has a mass which is less than the one it would have if its overall-volume was totally occupied by the magnet. Thus, for a same force and same pressure, applied on the mobile magnetic portion, its mass is reduced and the switching time and/or the required actuating current are reduced.
The fixed magnetic portion may be made in a material selected from the group of soft magnetic materials, hard magnetic materials, hysteretic materials, these materials either being taken alone, or in combination with each other, or with supraconducting materials, diamagnetic materials. Soft magnetic materials such as iron, nickel, alloys based on iron-nickel, iron-cobalt, iron-silicon, etc., become magnetized depending on an inducting field to which they are submitted. Hard magnetic materials correspond to magnets such as ferrite magnets, magnets based on samarium-cobalt, magnets based on neodymium-iron-boron, magnets based on platinum-cobalt, iron-platinum, for example. Their magnetization is little dependent on the external magnetic field. Hysteretic materials for example of the aluminium-nickel-cobalt type (AlNiCo), have properties which are located between those of soft magnetic materials and those of hard magnetic materials. They are sensitive to the magnetic field in which they are found. As for diamagnetic materials, such as bismuth or pyrolitic graphite, their magnetization is collinear with the inducting magnetic field but of opposite direction. Supraconducting materials may be alloys based on niobium-titanium (NbTi), yttrium-barium-copper-oxygen (YBaCuO) for example.
The mobile magnetic portion 20 illustrated in this example, is located between attraction areas 11, 12 and therefore is in levitation. It includes a part 200 with reduced magnet weight which is formed with at least one magnet 22 provided with recesses 21. These recesses 21 may be through-holes or blind holes. The holes 21 are directed in the direction of the thickness of the magnet 22. This illustration is not limitative, the recesses 21 may assume another direction. The part 200 with reduced magnet weight and therefore also the magnet 22 are in the form of a substantially parallelepipedous plate.
The recesses 21 are preferably concentrated in the central portion of the magnet 22 and they spare its edges 23 which are facing both attraction areas 11, 12 of the fixed magnetic portion 10. These edges 23 are full and their dimension in the direction of the displacement is substantially equal to the distance travelled by the mobile magnetic portion 20 when it leaves one of the two attraction areas, for example 11, and will stick onto the other attraction area 12. This distance is subsequently called a gap and is referenced as e in
The magnet 22 may be made in ferrite, be based on samarium-cobalt, neodymium-iron-boron, platinum-cobalt, iron-platinum, for example.
The recesses 21 have been distributed in a substantially regular way in the magnet 22 but this is not mandatory. In the same way, they do not all have the same dimension necessarily.
Instead of having several recesses, the magnet may only have a single one. Instead of the recesses being empty of solid material, they may be filled with a material, the density of which is less than that of the magnet as in
Importantly, it is the part 200 with reduced magnet weight which has a mass less than that it would have if its overall volume was made in massive magnet. Overall volume means the total volume which includes the volume of the recesses when they are empty of solid material. With this principle, it is possible to gain up to about 90% on the mass of the mobile magnetic portion and therefore to divide the switching time by about 10 as compared with a conventional configuration with a mobile magnetic portion made out of massive magnet.
The means 30 for triggering the displacement of the mobile magnetic portion 20 have been illustrated as a coil 30 with one or more turns placed under the assembly consisting of the mobile magnetic portion 20 and of the fixed magnetic portion 10.
Contacts between the mobile magnetic portion 20 and the attraction areas 11, 12 have been illustrated as resistive, i.e., ohmic or dry contacts. The magnet 22 comes into direct electric contact with either one of the pairs of magnetic blocks 11.1 and 11.2, 12.1 and 12.2.
In
The part 200 with reduced magnet weight of the mobile magnetic portion 20 is a substantially rectangular plate and includes a magnet 24 in the form of a frame delimiting a single through-hole 21 filled with material 25, the density of which is less than that of the magnet. The frame is substantially rectangular with bars, two of which (referenced as 24.1) are facing the attraction areas 11, 12. Of course the single through-hole 21 might be empty of solid material, as those of
The means 30 for triggering the displacement of the mobile magnetic portion 20 are illustrated by a conductor configured as a meander placed under the mobile magnetic portion 20. They will be described in more detail later on, notably with reference to
In
The part 200 with reduced magnet weight of the mobile magnetic portion 20 includes two magnets 26 with a lesser density portion 27 sandwiched between them. The lesser density portion 27 is a substantially square plate. The part 200 has the shape of a substantially rectangular plate. The magnets 26, in the form of bars, are located facing the attraction areas 11, 12 of the fixed magnetic portion 10. As in the previous examples, the material of the lesser density portion 27 may for example be plastic material, dielectric material, silicon, or even soft magnetic material.
In
In
The end magnets 26 have a width in the sense of the displacement which is substantially equal to that of the gap.
In the example illustrated in
In
The lesser density portions 29 are used for completing the magnet 28 so that the faces of the part 200 with reduced magnet weight, facing the attraction areas 11, 12, are adapted to the geometry of said attraction areas 11, 12 so as to achieve optimum contact.
In the example of
If the material of the lesser density portions 29 is dielectric, provision may be made so that the magnet 28 (which itself may be electrically conducting) comes into direct contact with the attraction areas 11, 12 insofar that they are also conducting and that it is desired to achieve ohmic contact as in
One might have as a mobile magnetic portion, a substantially ovoid solid magnet pad therefore without any materialized edge. It would have corners with reduced magnet weight, empty as compared with configurations of the prior art with a rectangular mobile magnetic portion. Now, if for having angular stability, the mobile magnetic portion includes a substantially ovoid magnet solid pad cooperating with edges, the latter will be in an electrically conducting or dielectric amagnetic material.
In
The faces 201a of the mobile magnetic portion 20 which are intended to come and stick on the attraction areas 11, 12 of the fixed magnetic portion 10, are also curved. The attraction areas 11, 12 each include a face 11a, 11b, with a shape conjugate to that of the part 200 with reduced magnet weight. The mobile magnetic portion 20 may come and be partially embedded into the attraction areas 11, 12. Thus, for a given section of the part 200 with reduced magnet weight, transverse to the displacement, the contact surface between the fixed magnetic portion and the mobile magnetic portion is increased as compared with the case when the contact faces are planar and perpendicular to the displacement as in
Instead of the faces of the part 200 with reduced magnet weight, intended to come and stick on the attraction areas 11, 12, being curved, they may also be jagged as in
The part 200 with reduced magnet weight is formed with a magnet 203 with recesses 204 (which are supposed to be non-throughgoing). The magnet 203 is plate-shaped and the recesses may be found at one of its main faces or at both main faces.
The part 200 with reduced magnet weight is therefore plate-shaped with zigzagged faces 205 which should stick to the attraction areas 11, 12. Each attraction area 11, 12 has a face with a conjugate shape onto which the mobile magnetic portion 20 should come and stick. Such a shape with one or several jags or at least substantially V-shaped also allows the contact force and/or surface to be increased as compared with the case when the edges are straight, normal to the displacement.
We will now refer back to the means for triggering the displacement of the mobile magnetic portion. In
In this configuration, cooperation as regards the magnetic field between the looped conductor 30 and the part 200 with reduced magnetic weight, is not optimum. The main magnetic field created by the magnet 22 is orientated in the direction of the displacement (along x), it is used for achieving magnetic guiding of the mobile magnetic portion 20 when it is in levitation and for achieving bistability. Magnetic field leakage from the magnet 22 which combines with the electric current flowing in both conductor sections 30.1 located facing the attraction areas 11, 12, is utilized to initiate displacement.
The extraction force which is used for initiating displacement is proportional to the vector product of the intensity of the current in the conductor section 30.1 facing the attraction area 11 or 12 on which is stuck the part 200 with reduced magnet weight, and of the magnetic field exclusively created by the mobile magnetic portion and prevailing at said conductor section 30.1, according to Laplace's law. Now the magnetic field at this conductor section 30.1 is not optimum, as not all the magnetic field created by the magnet 22 of the part 200 with reduced magnet weight is used but only leakage. The sections (referenced as 30.2) of the conductor 30 which are not facing the attraction areas 11, 12 are not involved in the triggering of the displacement. In order that the force be sufficient for disengaging the part 200 with reduced magnet weight, significant current must flow in the conductor 30.
On the other hand, in
At the lesser density portion 25, a magnetic field is also established which is of an opposite direction to the one generated by the magnet bars 24.1. This magnetic field stems from the leakage fields of the neighboring bars 24.1. This lesser density portion 25, which may be described as virtual as the frame is empty of any solid material, also cooperates with a conductor section 31.2 in order to initiate the triggering of the displacement when the mobile magnetic portion is stuck against an attraction area. The magnetic field in the lesser density portion 25 reinforces the one created by the conductor section 31.2 with which it cooperates. A given extraction force may be obtained with a weaker current than in the configuration of
When the mobile magnetic portion 20 is stuck against the attraction area 11, there will be an end conductor section 31.2 (the right one) which does not cooperate with a part of the mobile magnetic portion 20. This conductor section 31.2 is found at the gap e. However, when the mobile magnetic portion 20 has switched and is again found stuck onto the attraction area 12, this conductor section 31.2 finds its utility in the other direction since the current flows therein in the reverse direction and it is the other end conductor section 31.1 (located on the side of the attraction area 12) which does not participate in the triggering. Thus, with current pulses always in the same direction, triggering of the displacement towards either one of the attraction areas is achieved, regardless of the initial position of the mobile magnetic portion at rest.
Thus, regardless of the position of the mobile magnetic portion 20 in contact with an attraction area 11, 12, there is strong cooperation between the whole mobile magnetic portion 20 and the conductor 30. The obtained force is substantially proportional to the number of meanders. For a given force, capable of extracting the mobile magnetic portion 20 from an attraction area 11, 12, it is possible to reduce the intensity of the current flowing in the conductor 30.
Different steps will now be examined, for making an actuator according to the invention with microtechnology, this actuator being called microactuator subsequently. Several actuators may be made at the same time. In the figures, only one actuator is seen. These steps repeat the ones described in French Patent Application FR-A1-2 828 000 mentioned earlier.
In
On a first substrate, either a conventional massive substrate 91 in semiconducting material, or of the SOI type 93, micromagnets 3-1 and 24 will be made for the fixed magnetic portion and for the mobile magnetic portion, respectively. This making is described in
One starts with the first substrate 91, 93. The geometry of the magnets is delimited by photolithography. These magnets are those of the fixed magnetic portion and the one or those of the part with reduced magnet weight of the mobile magnetic portion. For this, a resin 50-1 (
Cases 51 for the magnets are etched in the first substrate 91, 93. These cases are molds for the portions which will be filled with magnet. The first substrate 91, 93 is not etched at the solid portion 50-2 of the mask. Etching may be dry etching. In the SOI substrate 93, etching stops on the oxide layer 93-1. The resin 50-1 is removed. A conducting adhesive sublayer is deposited on the substrate 91, 93. In fact, this alternative is only found in
In
The area for depositing the magnets is defined by photolithography. The resin layer used bears reference 50-2. The magnets 3-1, 24 are deposited electrolytically. The material used may be cobalt-platinum (
After a step for removing the resin 50-2, a planarization step for the magnets is carried out followed by a step for removing the sublayer 52 at the surface (
Next, a conducting surface layer 53 may be deposited for achieving electric contacts C1, C2 on the magnets 3-1 of the fixed magnetic portion and C on the frame 24 of the mobile magnetic portion.
The geometry of the contacts C1, C2, C is defined by photolithography. The resin bears reference 50-3 (
The following step is a step for etching the conducting layer 53 in order to delimit the contacts C1, C2, C. In
The resin 50-3 is then removed. An insulating layer 54 in SiO2 for example, is deposited at the surface and then a planarization step is carried out (
Next, at least one aperture 46 for providing access to the contacts for supplying power to the conductor(s) to be made on the second substrate will be defined, as well as the geometry of a front free space 58 surrounding the part 200 with reduced magnet weight of the mobile magnetic portion so as to allow its displacement. This step is a photolithographic step and the resin used bears reference 50-4 (
Next, the insulating layer 54 will be etched where there is no resin 50-4. The resin 50-4 is removed (
Dry etching of the substrate 93 is then carried out at the space 58 around the part 200 with reduced magnet weight, at the aperture 46, this etching stops on the insulating layer in the case of the SOI substrate 93 (
In
It is assumed that the means 30 for triggering the displacement are similar to those of
On the second substrate 92, the geometry of the conductor 4-1 and its ends 45 which should bear the power supply contacts, are defined by photolithography. The resin used bears reference 50-5 (
Etching of a case 55 which should receive the conductor 4-1 is carried out. In an SOI substrate, etching of the case 55 stops on the insulating layer. The depth of the case 55 corresponds to the thickness of the conductor 4-1. After removing the resin 50-5, a conducting adhesive sublayer 56 (
The area for depositing the conductor is defined by photolithography. The resin used bears reference 50-6. The conductor 4-1 is deposited electrolytically, its referenced ends 45 are well visible (
The resin 50-6 is removed, the conducting coat is planarized. The conducting sublayer 56 is etched at the surface in order to remove it (
A conducting layer 57 is then deposited at the surface, for making contacts 47 for supplying power to the conductor 4-1, these contacts 47 covering the ends 45 of the conductor 4-1. The geometry of the contacts 47 is defined by photolithography, the resin used for this bearing reference 50-7 (
Next, the conducting layer 57 is etched so as to remove it everywhere it is not protected by the resin 50-7. After removing the resin 50-7, an insulating layer 59 is deposited at the surface. It may be made in silicon oxide SiO2. It will insulate the conductor 4-1 from the magnets 3-1, 24 during assembly of the first substrate 91, 93 and of the second substrate 92 (
Surface planarization is achieved and the contacts 47 (
The substrate of
Now, it should be ensured that the magnets 3-1, 24 are magnetized as otherwise, upon releasing the part 200 with reduced magnet weight, it would not be attracted by the fixed magnets 3-1 which themselves remain firmly attached to the substrate by the adhesive sublayer.
The first substrate 91, 93 will be removed totally or partially. This may be by mechanical thinning and/or chemical etching. In
Although several embodiments of the present invention were illustrated and described in detail, it will be understood that different changes and alterations may be made without departing from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
03 50347 | Jul 2003 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR04/50331 | 7/15/2004 | WO | 12/29/2005 |