Inokuchi et al, Bull. Chem. Soc. Jpn, vol. 62, 3739-3741, 1989.* |
Blechert (1989), “The Hetero-Cope Rearrangement in Organic Synthesis,” Synthesis 2:71-82. |
Corey et al. (1991), “Highly Enantioselective and Diastereoselective Ireland-Claisen Rearrangement of Achiral Allylic Esters,” J. Am. Chem. Soc. 113(10):4026-4028. |
Corey et al. (1995), “Enantioselective Total Synthesis of β-Elemene and Fuscol Based on Enantiocontrolled Ireland-Claisen Rearrangement,” J. Am. Chem. Soc. 117(1):193-196. |
Deur et al. (1996), “Photochemical Reaction Between Tertiary Allylic Amines and Chromium Carbene Complexes: Synthesis of Lactams via a Zwitterion Aza Cope Rearrangement,” J. Org. Chem. 61(8):2871-2876. |
Diederich et al. (1995), “Synthesis of Optically Active Nine-Membered Ring Lactams by a Zwitterionic Aza-Claisen Reaction,” Angew. Chem. Int. Ed. Engl. 34(9):1026-1028. |
Edstrom (1991), “New Methodology for the Synthesis of Functionalized Indolizidine and Quinolizidine Ring Systems,” J. Am. Chem. Soc. 113(17):6690-6692. |
Enders et al. (1996). “Asymmetric [3,3]-Sigmatropic Rearrangements in Organic Synthesis,” Tetrahedron: Asymmetry 7(7):1847-1882. |
Ishida et al. (1989), “A Convenient and Regioselective Synthesis of 4,6-Diaryl-2,3,4,7-Tetrahydrooxepin-2-ones and 1,4-Diphenyl-2,3,4,7-Tetrahydro-1H-Azepin-2-One,” Synthesis 7:562-564. |
Kallmerten et al. (1989), “Recent Applications of Sigmatropic Reactions to the Synthesis of Highly-Oxygenated Natural Products,” Stud. Nat. Prod. Chem. 3:233-285. |
Kunng et al. (1983), “A Novel Synthetic Approach to Reserpine Based Upon Amino-Claisen Rearrangements of Zwitterionic N-Vinylisoquinuclidenes,” J. Org. Chem. 48(23):4262-4266. |
Malherbe et al. (1978), “A New Type of Claisen Rearrangement Involving 1,3-Dipolar Intermediates,” Helvetica Chimica Acta 61(295):3096-3099. |
Malherbe et al. (1983), “Reactions of Haloketenes With Allyl Ethers and Thioethers: A New Type of Calisen Rearrangement,” J. Org. Chem. 48(6):860-869. |
Maruoka et al. (1990), “Asymmetric Claisen Rearrangement Catalyzed by Chiral Organoaluminum Reagent,” J. Am. Chem. Soc. 112(21):7791-7793. |
Maruoka et al. (1995), “Molecular Design of a Chiral Lewis Acid for the Asymmetric Claisen Rearrangement,” Am. Chem. Soc. 117(3):1165-1166. |
Maruya et al. (1992), “Some Unexpected Reactions Involving Diphenylketene,” J. Chem. Soc. Perkin Trans. 1:1617-1621. |
Moody (1987), “Claisen Rearrangements in Heteroaromatic Systems,” Advances in Heterocyclic Chemistry 42:203-244. |
Mori et al. (1984), “Organoaluminum Assisted Rearrangements of Five-Membered Ring Enol Ethers With Vinyl Substituents,” Tetrahedron 40(20):4013-4018. |
Rosini et al. (1981), “Reaction of Dichloroketene With Cyclic Thioketals of α,β-Cycloalkenones: Synthesis of 1,7-Dithiacycloalk-5-En-2-One Derivatives by a Four-Carbon Cycloenlargement,” J. Org. Chem. 46(11):2228-2230. |
Saito et al. (1996), Aluminum Tris(4-Bromo-2,6-Diphenylphenoxide)(ATPH-Br): An Effective Catalyst for Claisen Rearrangement, Synlett 8:720-722. |
Stevenson et al. (1982), “A 1,5-Diene Synthesis via Titanium and Aluminum Mediated Reactions,” Tetrahedron Letters 23(31):3143-3146. |
Takai et al. (1981), “Aliphatic Claisen Rearrangement Promoted by Organoaluminium Compounds,” Tetrahedron Letters 22(40):3985-3988. |
Vedejs et al. (1994), “Aza-Claisen Rearrangements Initiated by Acid-Catalyzed Michael Addition,” J. Am. Chem. Soc. 116(2):579-588. |
Yoon et al. (1999), “Development of a New Lewis Acid-Catalyzed Claisen Rearrangement,” J. Am. Chem. Soc. 121(41):9726-9727. |
Ziegler (1988), “The Thermal, Aliphatic Claisen Rearrangement,” Chemical Reviews 88(8):1423-1452. |