The specification relates generally to wireless communications, and specifically to air-gap phased-array antenna assemblies.
The performance of wireless antenna elements is dependent, in part, on the precision of antenna geometry and on the characteristics and geometry of the antenna substrate—the material between the antenna elements and the ground layer, which is typically a dielectric material supporting the antenna elements. Certain substrate materials, as well as assembly configurations, may provide superior performance characteristics to others, but may also be costlier to fabricate, have larger physical footprints, or both.
An aspect of the specification provides a radio frequency module, comprising: a primary board including: an upper surface carrying a radio controller; and a lower surface carrying antenna control elements; a plurality of spacing elements affixed to the lower surface and having a predetermined height extending away from the lower surface; and a secondary board affixed to the primary board by the plurality of spacing elements, separated from the lower surface of the primary board by an air gap with the predetermined height; the secondary board supporting a phased array of antenna elements electromagnetically coupled with the antenna control elements.
Embodiments are described with reference to the following figures, in which:
Antenna assemblies configured to communicate via standards such as WiGig may be subject to competing constraints. A first example of such constraints includes strict fabrication tolerances to provide desired performance attributes such as antenna bandwidth (e.g. to cover all six of the above-mentioned channels). A second example constraint is a reduction in production complexity and cost. As will be apparent to those skilled in the art, the above constraints may be in conflict, in that fabricating wireless communications assemblies to satisfy strict tolerances tends to increase cost and complexity of fabrication. As will be discussed below, the wireless communications module 100 includes various features to enable the provision of certain desirable performance attributes (such as full spectrum coverage of the WiGig frequency band) while mitigating the impact on fabrication cost and complexity that would typically be associated with such performance attributes.
The module 100 can be integrated with a computing device, or in other examples, can be implemented as a discrete device that is removably connected to a computing device. In examples in which the module 100 is configured to be removably connected to a computing device, the module 100 includes a communications interface 104, such as a Universal Serial Bus (USB) port, configured to connect the remaining components of the module 100 to a host computing device (not shown).
The module 100 includes a primary board 108, which may also be referred to as a primary support. In the present example, the primary board 108 is a printed circuit board (PCB), for example fabricated with FR4 material, carrying either directly or via additional boards, the remaining components of the module 100. In particular, the primary board 108 carries, e.g. on an upper surface 110 thereof, the above-mentioned communications interface 104. The upper surface 110 is referred to as “upper” to distinguish from the opposing surface, to be discussed below, and does not indicate a required orientation of the module 100 in use.
The primary board 108 also carries, on the upper surface 110, a baseband controller 112. The baseband controller 112 is implemented as a discrete integrated circuit (IC) in the present example, such as a field-programmable gate array (FPGA). In other examples, the baseband controller 112 may be implemented as two or more discrete components. In further examples, the baseband controller 112 can be integrated within the primary board 108 (i.e. be defined within the conductive layers of the primary board 108) rather than carried on the upper surface 110.
In the present example, the baseband controller 112 is connected to the primary board 108 via any suitable surface-mount package, such as a ball-grid array (BGA) package that electrically couples the baseband controller 112 to signal paths (also referred to as leads, traces and the like) formed within the primary board 108 and connected to other components of the module 100. For example, the primary board 108 defines signal paths (not shown) between the baseband controller 112 and the communications interface 104. Via such signal paths, the baseband controller 112 transmits data received at the module 100 to the communications interface for delivery to a host computing device, and also receives data from the host computing device for wireless transmission by the module 100 to another computing device. Further, the primary board 108 defines additional signals paths extending between the baseband controller 112 and further components of the module 100, to be discussed below.
The module 100 further includes an interposer 120 carrying a radio controller 124. The interposer 120 is a discrete component mounted on the upper surface 110 via a suitable surface-mount package (e.g. BGA). The interposer 120 itself carries the radio controller 124, and contains signal paths (also referred to as feed lines) for connecting control ports of the radio controller 124 to the baseband controller 112, and for connecting further control ports of the radio controller 124 to antenna elements to be discussed in greater detail below. The radio controller 124 may, for example, be placed onto or into the interposer 120 via a pin grid array (PGA) or other suitable surface-mount package.
The module 100 may include a heatsink (not shown) placed over the baseband controller 112, the interposer 120 and the radio controller 124, and in contact with upper surfaces of those components, e.g. to exhaust heat generated by the components. In other examples, separate heat sinks may be placed over the baseband controller 112, and the combination of the interposer 120 and radio controller 124.
The radio controller 124 includes a transmitting port and a receiving port for connection, via the interposer 120 and traces defined by the primary board 108, to the baseband controller 112. The radio controller 124 also includes a plurality of antenna ports for connection, via the interposer 120, to corresponding radio control contacts on the upper surface 110 of the primary board 108. Those contacts, in turn, are connected to elements on the opposing lower surface of the primary board 108, to carry signals between the radio controller 124 and the above-mentioned antenna elements.
Turning to
The module 100 includes additional components coupling the secondary board 150 to the primary board 108, which are not illustrated in
Turning to
The conduits 216, also referred to as a feed network, convey signals from the radio controller 124 to a series of excitation patches or other antenna patch control elements 218 on the lower surface 128, which are electromagnetically coupled to a series of antenna elements 220 disposed on an inner surface 224 of the secondary board 150 (e.g. the above-mentioned 64-element array). In other examples, the antenna elements 220 can be disposed on the outer surface 154 of the secondary board 150. The conduits 216 therefore also carry signals from the antenna elements 220, via the excitation patches, to the radio controller 124. As will be discussed in greater detail herein, the conduits 216 may connect to first subset of contacts at the upper surface 110 with a larger subset of contacts (i.e. having a greater number of contacts than the first subset) at the lower surface 128 (e.g. sixty-four, corresponding to the number of excitation patches deployed to power the sixty-four-element antenna array on the secondary board 150).
The secondary board 150 is affixed to the lower surface 128 of the primary board 108 by a plurality of spacing elements 228 (the scale of which is exaggerated for visibility in
Turning to
In the illustrated example, the elements of the subsets 228a and 228b have different dimensions (in a plane parallel to the inner surface 224). In particular, the elements of the subset 228a may have a greater length (e.g., shown vertically in
In the examples illustrated in
As noted earlier, the conduits 216 allow the exchange of signals between the antenna elements 220 (via the excitation patches on the lower surface 128) and the radio controller 124, by subdividing a first set of contacts on the upper surface 110 into a larger second set of contacts on the lower surface 128. Turning to
The simplified feed networks in
A wide variety of other structures for the conduits 216 can also be deployed. In general, as seen in
As noted earlier, the secondary board 150 can also be affixed to the primary board 108 using BGA elements rather than LGA elements. While LGA elements provide a degree of flexibility in length and width, the height of the LGA elements may be relatively restricted (e.g., limited to about 100 microns). BGA elements, in contrast, may provide greater flexibility in terms of height, allowing further tuning of the depth of the air gap 232. For example,
Certain configurations of the module 100 for use in WiGig communications achieve reflection coefficients below −10 dB for frequencies between 56.5 GHz and 72 GHz (i.e. across substantially the entire WiGig spectrum). That is, all six WiGig channels may be employed by such an assembly. Further, the assembly configurations noted above may achieve gain up to 23 dBi. Still further, such an assembly may be steered over angles of 30 degrees to either side of a center orientation with a decrease in signal strength of less than about 4 dB.
The scope of the claims should not be limited by the embodiments set forth in the above examples, but should be given the broadest interpretation consistent with the description as a whole.
This application claims priority from U.S. provisional patent application No. 63/270,240, filed Oct. 21, 2021 and entitled “LGA- and BGA-Based Phased-Array Millimeter-Wave Antennas”, the contents of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63270240 | Oct 2021 | US |