1. Field of the Invention
The present invention relates to Li-ion battery packs and more particularly, to such a Li-ion battery pack that can be installed in a power hand tool that has only a positive contact terminal and a negative contact terminal for power input. The present invention also relates to the method of outputting DC power supply from the lithium-ion battery to the power hand tool connected to the battery.
2. Description of the Related Art
At early stage, a regular portable power hand tool uses a nickel-cadmium battery to provide the necessary working voltage. However, due to the limitation of the material characteristics, nickel-cadmium cells have only a nominal cell potential of 1.2V. Further, self-discharging reaction lowers the utilization rate of nickel-cadmium batteries. During output of DC power supply, internal cells of a nickel-cadmium battery charge each other, thereby affecting stability of output power. When a nickel-cadmium battery is not in use for a long period, the internal electrolyte solution may be oxidized and crystallized to cause dendritic shorting. In addition, incomplete discharging or overcharging will result in lowering of the internal oxidation-reduction reaction that causes the so-called memory effect. When memory effect occurs, the discharging time and the working life of the battery will be shortened.
To eliminate the aforesaid drawbacks, Li-ion battery is developed. The energy density per unit of a Li-ion battery is about 50% higher than an equivalent nickel-cadmium battery. Li-ion cells have a nominal cell potential of 4V. Li-ion batteries are currently one of the most popular types of battery for portable electronics, with one of the best energy-to-weight ratios, no memory effect and slow loss of charge when not in use. However, the structural design of a Li-ion battery is unlike a nickel-cadmium battery. A Li-ion battery has a protective circuit chip that maintains normal charging and discharging voltage and working temperature of the battery. When using a Li-ion battery in a power hand tool, the power hand tool must match the functioning of the protective circuit chip of the Li-ion battery.
Therefore, when the user wishes to use a Li-ion battery for the aforesaid power hand tool, the battery holder of the power hand tool must be re-constructed. It is quite expensive to change the structure of the battery holder of the power hand tool for fitting a Li-ion battery.
The present invention has been accomplished under the circumstances in view. It is one objective of the present invention to provide a lithium-ion battery pack and method of outputting DC power supply from the lithium-ion battery pack to a power hand tool, which allows direct installation of a lithium-ion battery in a power hand tool to provide DC power supply to the power hand tool without change of the body of the power hand tool that is compatible of using the conventional nickel-cadmium battery.
To achieve this objective of the present invention, the lithium-ion battery pack of the present invention comprises a battery box and a conductive contact holder mounted on the battery box. The battery box comprises a lithium-ion battery and a protection circuit. The lithium-ion battery has a positive pole and a negative pole, and a capacitance at a specific voltage level between the positive pole and the negative pole. The protection circuit has a switching terminal set, a high-level terminal set, and a low-level terminal set. The low-level terminal set is electrically connected to the negative pole of the lithium-ion battery. The conductive contact holder comprises a first plug, a second plug, and a third plug. The first plug comprises a positive-pole contact piece and a signal contact piece respectively electrically connected to the positive pole of the lithium-ion battery and the high-level terminal set of the protection circuit. The second plug comprises a charging contact piece electrically connected to the negative pole of the lithium-ion battery. The third plug comprises a negative-pole contact piece electrically connected to the switching terminal set of the protection circuit. When the lithium-ion battery pack is attached to a power hand tool, the positive contact terminal for DC power input of the power hand tool is connected to the signal contact piece and the positive-pole contact piece of the first plug, therefore the positive contact terminal of the power hand tool is electrically connected to the positive pole of the lithium-ion battery, and the positive-pole contact piece and the signal contact piece are short-circuited. At the same time, the negative contact terminal of the power hand tool is connected to the negative-pole contact piece of the third plug, so that the negative contact terminal of the power hand tool is electrically connected to the switching terminal set of the protection circuit.
The present invention also provides a method of outputting DC power supply from the aforesaid lithium-ion battery to the power hand tool having the positive contact terminal and the negative contact terminal for DC power input. The method comprises the steps of a) connecting the positive contact terminal of the power hand tool to the positive-pole contact piece and the signal contact piece of the first plug of the lithium-ion battery pack such that the positive contact terminal of the power hand tool is electrically connected to the positive pole of the lithium-ion battery of the lithium-ion battery pack and the positive-pole contact piece and the signal contact piece of the first plug of the lithium-ion battery pack are short-circuited with each other, b) connecting the negative contact terminal of the power hand tool to the negative-pole contact piece of the third plug of the lithium-ion battery pack, and c) electrically connecting the negative contact terminal of the power hand tool to the negative pole of the lithium-ion battery by means of the enablement of the electrical connection of the switching terminal set of the protection circuit to the low-level terminal set of the protection circuit when a potential difference between the positive pole and the negative pole of the lithium-ion battery surpasses a predetermined voltage level, such that the positive contact terminal and the negative contact terminal of the power hand tool obtains DC power supply from the positive pole and the negative pole of the lithium-ion battery.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
As shown in
As shown in
Referring to
Because the high-level terminal set 321 and low-level terminal set 322 of the protection circuit 32 respectively obtain a potential from the positive pole 311 and negative pole 312 of the lithium-ion battery 31, the protection circuit 32 is driven on. When started, the protection circuit 32 determines the potential difference between the positive pole 311 and the negative pole 312.
When the lithium-ion battery 31 is well charged such that the potential difference between the positive pole 311 and the negative pole 312 surpasses the low voltage level defined by the protection circuit 32, the switching circuit of the internal chip of the protection circuit 32 switches to enable the connection between the low-level terminal set 322 and the switching terminal set 320 to have the negative contact terminal 22 of the power hand tool 2 be electrically connected to the negative pole 312 of the lithium-ion battery 31, and therefore the positive contact terminal 21 and negative contact terminal 22 of the power hand tool 2 obtain DC power supply from the potential difference between the positive pole 311 and the negative pole 312 of the lithium-ion battery 31.
When the potential difference between the positive pole 311 and the negative pole 312 dropped below the low voltage level defined by the protection circuit 32 after a period of use of the lithium-ion battery 31, the switching circuit of the internal chip of the protection circuit 32 switches off the connection between the low-level terminal set 322 and the switching terminal set 320 to interrupt the internal electric current loop of the battery box 30, thereby stopping the lithium-ion battery 31 from outputting DC power supply to the power hand tool 2.
The lithium-ion battery pack of the present invention is adapted for connection to a power hand tool having a positive contact terminal and a negative contact terminal for power input. The conductive contact holder 40 of the lithium-ion battery pack 3 is not limited to the arrangement of the contact pieces of the aforesaid plugs 41-43, i.e., the invention allows output of battery power supply through the five contact terminals of the lithium-ion battery pack to the positive contact terminal and negative contact terminal of a power hand tool.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.