LIBRARIES OF DIVERSE MACROCYCLIC COMPOUNDS AND METHODS OF MAKING AND USING THE SAME

Information

  • Patent Application
  • 20190153620
  • Publication Number
    20190153620
  • Date Filed
    May 16, 2017
    7 years ago
  • Date Published
    May 23, 2019
    5 years ago
Abstract
The present disclosure relates to novel macrocyclic compounds and libraries thereof that are useful as research tools for drug discovery efforts. This disclosure also relates to methods of preparing these compounds and libraries and methods of using these libraries, such as in high throughput screening. In particular, these libraries are useful for evaluation of bioactivity at existing and newly identified pharmacologically relevant targets, including G protein-coupled receptors, nuclear receptors, enzymes, ion channels, transporters, transcription factors, protein-protein interactions and nucleic acid-protein interactions. As such, these libraries can be applied to the search for new pharmaceutical agents for the treatment and prevention of a range of medical conditions.
Description
FIELD OF THE DISCLOSURE

The present document relates to the field of medicinal chemistry. More particularly, it relates to novel macrocyclic compounds and libraries that are useful as research tools for drug discovery efforts. The present disclosure also relates to methods of preparing these compounds and libraries and methods of using these libraries, such as in high throughput screening. In particular, these libraries are useful for evaluation of bioactivity at existing and newly identified pharmacologically relevant targets, including G protein-coupled receptors, nuclear receptors, enzymes, ion channels, transporters, transcription factors, protein-protein interactions and nucleic acid-protein interactions. As such, these libraries can be applied to the search for new pharmaceutical agents for the treatment and prevention of a range of medical conditions.


BACKGROUND OF THE DISCLOSURE

From its start in the 1990's, high throughput screening (HTS) of chemical compound libraries has become an essential part of the drug discovery process with the successful generation of many lead molecules, clinical candidates and marketed pharmaceuticals (Curr. Opin. Chem. Biol. 2001, 5, 273-284; Curr. Opin. Chem. Biol. 2003, 7, 308-325; J. Biomol. Screen. 2006, 11, 864-869; Drug Disc. Today 2006, 11, 277-279; Nat. Rev. Drug Disc. 2011, 10, 188-195). Current collections of molecules for HTS, however, often are overpopulated by compounds related to known pharmaceutical agents, with a continuing need to expand chemical diversity and improve the content of screening collections (Curr. Opin. Chem. Biol. 2010, 14, 289-298; Drug Disc. Today 2013, 18, 298-304). Indeed, the diversity of molecular structures available in the library collections utilized for HTS has been identified as an area that needs to be dramatically improved (Biochem. Pharmacol. 2009, 78, 217-223; Curr. Med. Chem. 2009, 16, 4374-4381; Curr. Opin. Chem. Biol. 2010, 14, 289-298). Whereas the initial efforts at building screening libraries focused primarily on numbers of compounds, the focus has shifted to providing higher quality molecules (Fut. Med. Chem. 2014, 6, 497-502) that permit more complete sampling of “chemical space”. Fortunately, given the estimated vastness of this space (J. Chem. Info. Model. 2007, 47, 342-353), significant opportunity exists for creating and exploring new or underexplored compound classes for desirable biological activity.


As an additional consideration, HTS has traditionally varied considerably in success rate depending on the type of target being interrogated, with certain target classes identified as being particularly challenging, for example protein-protein interactions (PPI). To effectively address such intractable targets, a wider range of compounds and chemotypes will need to be explored. This situation has been exacerbated as advances in genomics and proteomics have led to the identification and characterization of large numbers of new potential pharmacological targets (Nat. Rev. Drug Disc. 2002, 1, 727-730; Drug Disc. Today 2005, 10, 1607-1610; Nat. Biotechnol. 2006, 24, 805-815), many of which fall into these difficult classes.


Recently, macrocycles have been identified as an underexplored class of biologically relevant synthetic molecules that possess properties considered to be amenable to these more difficult targets (Nat. Rev. Drug Disc. 2008, 7, 608-624; J. Med. Chem. 2011, 54, 1961-2004; Fut. Med. Chem. 2012, 4, 1409-1438; Molecules 2013, 18, 6230-6268; J. Med. Chem. 2014, 57, 278-295; Eur. J. Med. Chem. 2015, 94, 471-479; Curr. Pharm. Design 2016, 22, 4086-4093). Although macrocyclic structures are widespread in bioactive natural products, considerable challenges of synthetic accessibility have to date limited their presence in screening collections.


The interest in macrocycles originates in part from their ability to bridge the gap between traditional small molecules and biomolecules such as proteins, nucleotides and antibodies. They are considered to fill an intermediate chemical space between these two broad classes, but possessing favorable features of each: the high potency and exceptional selectivity of biomolecules with the ease of manufacturing and formulation, favorable drug-like properties and attractive cost-of-goods of small molecules. Hence, macrocycles provide a novel approach to addressing targets on which existing screening collections have not proven effective.


Indeed, macrocycles display dense functionality in a rather compact structural framework, but still occupy a sufficiently large topological surface area and have sufficient flexibility to enable interaction at the disparate binding sites often present in PPI and other difficult targets. In addition, macrocycles possess defined conformations, which can preorganize interacting functionality into appropriate regions of three-dimensional space, thereby permitting high selectivity and potency to be achieved even in early stage hits. Interestingly, spatial or shape diversity in the design of libraries has been identified as an important factor for broad biological activity (J. Chem. Info. Comput. Sci. 2003, 43, 987-1003).


Although cyclic peptide libraries of both synthetic and biosynthetic origin have been prepared and studied in some depth (J. Comput. Aided. Mol. Des. 2002, 16, 415-430; Curr. Opin. Struct. Biol. 2013, 23, 571-580; Drug Discov Today. 2014, 19, 388-399; Curr. Opin. Chem. Biol. 2015, 24, 131-138), libraries of macrocyclic non-peptidic or semi-peptidic structures remain more problematic to construct synthetically and their bioactivity has been only perfunctorily investigated (J. Med. Chem. 2011, 54, 1961-2004; J. Med. Chem. 2011, 54, 8305-8320; Macrocycles in Drug Discovery, J. Levin, ed., RSC Publishing, 2014, pp 398-486, ISBN 978-1-84973-701-2; J. Med. Chem. 2015, 58, 2855-2861).


Hence, the macrocyclic compounds and libraries of the disclosure provide distinct structural scaffolds from those previously known. In that manner, they satisfy a significant need in the art for novel compounds and libraries that are useful in the search for new therapeutic agents for the prevention or treatment of a wide variety of disease states.


SUMMARY OF THE DISCLOSURE

According to one aspect, there are provided libraries of two or more macrocyclic compounds chosen from compounds of formula (I) and formula (II) and their salts as defined in the present disclosure.


According to another aspect, there are provided libraries comprising from two (2) to ten thousand (10,000) macrocyclic compounds chosen from compounds of formula (I) and formula (II) and their salts as defined in the present disclosure.


According to other aspects, there are provided libraries comprising discrete macrocyclic compounds chosen from compounds of formula (I) and formula (II) and their salts as defined in the present disclosure and libraries comprising mixtures of macrocyclic compounds chosen from compounds of formula (I) and their salts as defined in the present disclosure.


According to an additional aspect, it was found that such libraries can be useful for the identification of macrocyclic compounds that modulate a biological target.


According to still other aspects, there are provided libraries of two or more macrocyclic compounds chosen from compounds of formula (I) and formula (II) and their salts as defined in the present disclosure, dissolved in a solvent and libraries of two or more macrocyclic compounds chosen from compounds of formula (I) and formula (II) and their salts as defined in the present disclosure, distributed in one or more multiple sample holders.


According to a further aspect, there are provided macrocyclic compounds chosen from compounds of formula (I) and formula (II) and their salts as defined in the present disclosure.


According to yet another aspect, there are provided kits comprising the libraries as defined in the present disclosure or compounds as defined in the present disclosure and one or more multiple sample holders.


According to a further aspect, there is provided a method of using the library according to the present disclosure or the compounds of the present disclosure, the method comprises contacting any compound described in the present disclosure with a biological target so as to obtain identification of compound(s) that modulate(s) the biological target.


According to one more aspect, there is provided a process for preparing macrocyclic compounds and libraries thereof as defined in the present disclosure.


It was found that such libraries of macrocyclic compounds are useful as research tools in drug discovery efforts for new therapeutic agents to treat or prevent a range of diseases.


BRIEF DESCRIPTION OF THE SCHEMES

Further features and advantages of the disclosure will become more readily apparent from the following description of specific embodiments as illustrated by way of examples in the appended schemes wherein:


Scheme 1 shows a general synthetic scheme for the synthesis of macrocyclic compounds for the libraries of the present disclosure.


Scheme 2 shows a synthetic scheme for a representative library of macrocyclic compounds of formula (I) containing four building block elements of the present disclosure.


Scheme 3 shows a synthetic scheme for a representative library of macrocyclic compounds of formula (I) containing four building block elements including side chain functionalization with additional building blocks of the present disclosure.


Scheme 4 shows a synthetic scheme for a representative library of macrocyclic compounds of formula (I) containing five building block elements of the present disclosure.


Scheme 5 shows a synthetic scheme for a representative library of macrocyclic compounds of formula (I) containing three building block elements of the present disclosure.


Scheme 6 shows a synthetic scheme for an additional representative library of macrocyclic compounds of formula (I) containing four building block elements of the present disclosure.


Scheme 7 shows a synthetic scheme for a representative library of macrocyclic compounds of formula (I) containing five building block elements including side chain functionalization with additional building blocks of the present disclosure.


Scheme 8 shows a synthetic scheme for a representative library of macrocyclic compounds of formula (II) containing three building block elements.







DETAILED DESCRIPTION OF THE DISCLOSURE

There are provided new macrocyclic compounds and libraries thereof that are useful as research tools for the discovery of new pharmaceutical agents for a range of diseases. Processes for preparing these compounds and libraries, as well as methods of using the libraries, have also been developed and comprise part of this disclosure.


Therefore, in a first aspect, the disclosure relates to libraries comprising at least two macrocyclic compounds selected from the group consisting of compounds of formula (I) and salts thereof.




embedded image


wherein:

    • X1 is selected from the group consisting of N, O and NR22, where R22 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C04 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, sulfonyl and C1-C6 alkyl substituted with hydroxy, alkoxy, amino, mercapto, carboxy, carboxyalkyl, carboxyaryl, amido, amidino, guanidino, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl or C4-C14 heteroaryl, when X1 is NR22, X1 can also form an optionally substituted four, five, six or seven-membered ring together with R2 and R5, if present in A, and, when X1 is N, X1 forms an optionally substituted four, five, six or seven-membered ring together with A;
    • X2 is selected from the group consisting of O and NR23, where R23 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, sulfonyl and C1-C6 alkyl substituted with hydroxy, alkoxy, amino, mercapto, carboxy, carboxyalkyl, carboxyaryl, amido, amidino, guanidino, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, when X2 is not bonded to a carbonyl group in A or B, X2 can also be selected from S(O)q1 where q1 is 0-2, and R23 can also be selected from the group consisting of formyl, acyl, amino acyl, amido, amidino, carboxyalkyl, carboxyaryl and sulfonamide, and when X2 is NR23, X2 can also form an optionally substituted four, five, six or seven-membered ring together with R10, if present in A, or R12a, if present in B;
    • X3 is selected from the group consisting of N, O and NR24, where R24 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, sulfonyl and C1-C6 alkyl substituted with hydroxy, alkoxy, amino, mercapto, carboxy, carboxyalkyl, carboxyaryl, amido, amidino, guanidino, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl or C4-C14 heteroaryl, when X3 is NR24, X3 can also form an optionally substituted four, five, six or seven-membered ring together with R12b, if present in B, or R15, if present in D, and, when X3 is N, X3 forms an optionally substituted four, five, six or seven-membered ring together with D;
    • X4 is selected from the group consisting of O and NR25, where R25 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, sulfonyl and C1-C6 alkyl substituted with hydroxy, alkoxy, amino, mercapto, carboxy, carboxyalkyl, carboxyaryl, amido, amidino, guanidino, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl or C4-C14 heteroaryl, when X4 is not bonded to a carbonyl group in D, X4 can also be selected from S(O)q2 where q2 is 0-2, and R25 can also be selected from the group consisting of formyl, acyl, amino acyl, amido, amidino, carboxyalkyl, carboxyaryl and sulfonamide, and when X4 is NR25, X4 can also form an optionally substituted four, five, six or seven-membered ring together with R1 or R20, if present in D;
    • A, when X1 is O or NR22, is selected from the group consisting of:
    • (X1)—(CH2)n1a—(X2), (X1)—(CH2)n1b—X5—(CH2)n1c—(X2),




embedded image




    • A, when X1 is N, is selected from the group consisting of:







embedded image






      • where n1a is 2-10; n2, n3 and n4 are independently 0-4; n5 is 0-3; nib and n1c are independently 1-4; n6a, n6b, n6c, n7a, n7b and n7c are independently 2-4, when X8a, X8b, X8c, X9a, X9b or X9c are CH2, n6a, n6b, n6c, n7a, n7b and n7c, respectively, can also be 0-1;

      • X5 is selected from the group consisting of O, CH═CH, S(O)q3 and NR26, where q3 is 0-2 and R26 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, formyl, acyl, amino acyl, carboxyalkyl, carboxyaryl, amido, amidino, sulfonyl, sulfonamido and C1-C6 alkyl substituted with hydroxy, alkoxy, amino, mercapto, carboxy, carboxyalkyl, carboxyaryl, amido, amidino, guanidino, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl or C4-C14 heteroaryl;

      • X6 and X7 are independently selected from the group consisting of O and NR27, where R18 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, sulfonyl and C1-C6 alkyl substituted with hydroxy, alkoxy, amino, mercapto, carboxy, carboxyalkyl, carboxyaryl, amido, amidino, guanidino, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl or C4-C14 heteroaryl, when X6 or X7 are NR27, X6 and X7 can also form an optionally substituted four, five, six or seven-membered ring together with, respectively, R6 and R9;

      • X8a, X8b, X8c, X9a, X9b and X9c are independently selected from the group consisting of CH2, O and NR28, where R28 is selected from the group consisting of hydrogen, C1-C4 alkyl, formyl, acyl and sulfonyl;

      • Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11 and Z12 are independently selected from the group consisting of N, N+—O and CR29, where R29 is selected from the group consisting of hydrogen, hydroxy, alkoxy, amino, amido, amidino, guanidino, halogen, cyano, nitro, carboxy, carboxyalkyl, carboxyaryl, trifluoromethyl, C1-C6 alkyl, C3-C7 cycloalkyl, C2-C10 heterocycle, C6-C12 aryl, and C4-C10 heteroaryl, wherein in the group of Z1, Z2, Z3 and Z4, three or less within that group are N; wherein in the group of Z5, Z6, Z7 and Z8, three or less within that group are N; and wherein in the group of Z9, Z10, Z11 and Z12, three or less within that group are N; and

      • (X1) and (X2) indicate the site of bonding to X1 and X2 of formula (I), respectively;



    • B is selected from the group consisting of:







embedded image






      • where (X2) and (X3) indicate the site of bonding to X2 and X3 of formula (I), respectively;



    • D, when X3 is O or NR24, is selected from the group consisting of:

    • (X3)—(CH2)n8—(X4), (X3)—(CH2)n9a—X10—(CH2)n9b—(X4),







embedded image


embedded image




    • D, when X3 is N, is selected from the group consisting of:







embedded image






      • where n8 is 2-10; n9a and n9b are independently 2-4; n10, n11 and n12 are independently 0-4; n13 is 0-3; n14a, n14b and n14c are independently 0-4; n15a, n15b, n15c, n16a, n16b, n16c, n17a, n17b, n17c, n18a, n18b, n18c, n19a, n19b and n19c are independently 2-4, when X13a, X13b, X13c, X15a, X15b, X15c, X16a, X16b, X16c, X18a, X18b or X18c are CH2, n15a, n15b, n15c, n17a, n17b, n17c, n18a, n18b, n18c, n19a, n19b and n19c, respectively, can also be 0-1;

      • X10 is selected from the group consisting of O, CH═CH, S(O)q4 and NR30, where q4 is 0-2 and R30 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, formyl, acyl, amino acyl, carboxyalkyl, carboxyaryl, amido, amidino, sulfonyl, sulfonamido and C1-C6 alkyl substituted with hydroxy, alkoxy, amino, mercapto, carboxy, carboxyalkyl, carboxyaryl, amido, amidino, guanidino, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl or C4-C14 heteroaryl;

      • X11 and X12 are independently selected from the group consisting of O and NR31, where R31 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, sulfonyl and C1-C6 alkyl substituted with hydroxy, alkoxy, amino, mercapto, carboxy, carboxyalkyl, carboxyaryl, amido, amidino, guanidino, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl or C4-C14 heteroaryl, when X11 or X12 are NR28, X11 and X12 can also form an optionally substituted four, five, six or seven-membered ring together with, respectively, R16 and R19;

      • X13a, X13b, X13c, X15a, X15b, X15c, X16a, X16b, X16c, X18a, X18b and X18c are independently selected from the group consisting of CH2, O and NR32, where R32 is selected from the group consisting of hydrogen, C1-C4 alkyl, formyl, acyl and sulfonyl;

      • X14a, X14b and X14c are independently selected from the group consisting of O and NR33, where R33 is selected from the group consisting of hydrogen, C1-C4 alkyl, formyl, acyl and sulfonyl;

      • X17a, X17b and X17c are independently selected from the group consisting of O, S(O)q5 NR34 and CR35R36, where q5 is 0-2, R34 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, formyl, acyl, amino acyl, carboxyalkyl, carboxyaryl, amido, amidino, sulfonyl, sulfonamido and C1-C6 alkyl substituted with hydroxy, alkoxy, amino, mercapto, carboxy, carboxyalkyl, carboxyaryl, amido, amidino, guanidino, C3-C05 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl; R35 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, formyl, acyl, amino acyl, carboxyalkyl, carboxyaryl, amido, amidino, sulfonyl, sulfonamido and C1-C6 alkyl substituted with hydroxy, alkoxy, amino, mercapto, carboxy, carboxyalkyl, carboxyaryl, amido, amidino, guanidino, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl; and R36 is selected from the group consisting of hydrogen and C1-C6 alkyl; or R35 and R36 together with the carbon to which they are bonded form an optionally substituted three, four, five, six or seven-membered ring;

      • Z13, Z14, Z15, Z16, Z17, Z18, Z19, Z20, Z21, Z22, Z23, Z24, Z25, Z26, Z27, Z28, Z29, Z30, Z31, Z32, Z33, Z34, Z35 and Z36 are independently selected from the group consisting of N, N+—O and CR37, where R37 is selected from the group consisting of hydrogen, hydroxy, alkoxy, amino, amido, amidino, guanidino, halogen, cyano, nitro, carboxy, carboxyalkyl, carboxyaryl, trifluoromethyl, C1-C6 alkyl, C3-C7 cycloalkyl, C2-C10 heterocycle, C6-C12 aryl, C4-C10 heteroaryl, wherein in the group of Z13, Z14, Z15 and Z16, three or less within that group are N; wherein in the group of Z17, Z18, Z19 and Z20, three or less within that group are N; wherein in the group of Z21, Z22, Z23 and Z24, three or less within that group are N; wherein in the group of Z25, Z26, Z27 and Z28, three or less within that group are N; wherein in the group of Z29, Z30, Z31 and Z32, three or less within that group are N; and wherein in the group of Z33, Z34, Z35 and Z36, three or less within that group are N; and

      • (X3) and (X4) indicate the site of bonding to X3 and X4 of formula (I), respectively;



    • R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R12a, R12b, R13, R14, R15, R16, R17, R18, R19, and R20 are independently selected from the group consisting of:







embedded image






      • where (#) indicates the site of bonding of the moiety to the remainder of the structure; p1, p2, p3, p4 and p5 are independently 0-5; p6 and p7 are independently 0-6;

      • W1 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, formyl, acyl, amino acyl, amido, carboxyalkyl, carboxyaryl, amidino, sulfonyl, sulfonamido and C1-C8 alkyl substituted with C3-C15 cycloalkyl, C6-C15 aryl or C4-C14 heteroaryl;

      • W2 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, acyl, amino acyl and C1-C8 alkyl substituted with C3-C15 cycloalkyl, C6-C15 aryl or C4-C14 heteroaryl;

      • W3 and W8 are independently selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl and C1-C8 alkyl substituted with C3-C15 cycloalkyl, C6-C15 aryl or C4-C14 heteroaryl;

      • W4 is selected from the group consisting of hydrogen, halogen, trifluoromethyl, hydroxy and methyl;

      • W5 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, formyl, acyl, carboxyalkyl, carboxyaryl, amido, amidino, sulfonyl, sulfonamido and C1-C8 alkyl substituted with C3-C15 cycloalkyl, C6-C15 aryl or C4-C14 heteroaryl;

      • W6 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, acyl, carboxyalkyl, carboxyaryl, amido and sulfonyl; and

      • W7 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, sulfonyl and C1-C8 alkyl substituted with C3-C15 cycloalkyl, C6-C15 aryl or C4-C14 heteroaryl;

      • wherein R1, when X4 is NR25, can also form an optionally substituted four, five, six or seven-membered ring together with NR25,

      • wherein R2, when X1 is NR22, can also form an optionally substituted four, five, six or seven-membered ring together with NR22;

      • wherein R5, when X1 is NR22, can also form an optionally substituted four, five, six or seven-membered ring together with NR22;

      • wherein R10, when X2 is NR23, can also form an optionally substituted four, five, six or seven-membered ring together with NR23;

      • wherein R12a, when X2 is NR23, can also form an optionally substituted four, five, six or seven-membered ring together with NR23;

      • wherein R12b, when X3 is NR24, can also form an optionally substituted four, five, six or seven-membered ring together with NR24;

      • wherein R15, when X3 is NR24, can also form an optionally substituted four, five, six or seven-membered ring together with NR24;

      • wherein R20, when X4 is NR25, can also form an optionally substituted four, five, six or seven-membered ring together with NR25; and



    • R11a, R11b, R21a and R21b are independently selected from the group consisting of hydrogen, fluorine, C1-C10 alkyl, C6-C12 aryl, hydroxy, alkoxy, aryloxy and amino.





In one embodiment, A in formula (I) is selected from the group consisting of:




embedded image


embedded image


embedded image


where (X1) and (X2) indicate the site of bonding to X1 and X2 of formula (I), respectively.


In another embodiment, A in formula (I) is selected from the group consisting of:




embedded image


wherein n2 is 0; n3 is 0-2; X6 is selected from the group consisting of NH and NCH3; R4 and R7 are hydrogen; R3, R5 and R6 are independently selected from the group consisting of:




embedded image


where (#) indicates the site of bonding of the moiety to the remainder of the structure; and (X1) and (X2) indicate the site of bonding to X1 and X2 of formula (I), respectively.


In a specific embodiment, A in formula (I) is selected from the group consisting of:




embedded image


where X1 is N and (X1) and (X2) indicate the site of bonding to X1 and X2 of formula (I), respectively.


In a further embodiment, D in formula (I) is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


where (X)) and (X4) (X3) indicate the site of bonding to X3 and X4 formula (I), respectively.


In still another embodiment, D in formula (I) is selected from the group consisting of:




embedded image


wherein n10 is 0; n11 is 0-2; X11 is selected from the group consisting of NH and NCH3; R14 and R17 are hydrogen; R13, R15 and R16 are independently selected from the group consisting of:




embedded image


where (#) indicates the site of bonding of the moiety to the remainder of the structure; and (X3) and (X4) indicate the site of bonding to X3 and X4 of formula (I), respectively.


In another specific embodiment, D in formula (I) is selected from the group consisting of:




embedded image


where X3 is N and (X3) and (X4) indicate the site of bonding to X3 and X4 of formula (I), respectively.


In an additional embodiment, Z1, Z2, Z3, Z4, Z5, Z6, Z7 Z8, Z9 Z10, Z11 and Z12 are CR29 and R29 is selected from the group consisting of hydrogen and halogen.


In other embodiments, Z13, Z14, Z15, Z16, Z17, Z18, Z19, Z20, Z21, Z22, Z23, Z24, Z25, Z26, Z27, Z28, Z29, Z30, Z31, Z32, Z33, Z34, Z35 and Z36 are CR37 and R37 is selected from the group consisting of hydrogen and halogen.


In yet another embodiment, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R12a, R12b, R13, R14, R15, R16, R17, R18, R19, and R20 are independently selected from the group consisting of:




embedded image


where (#) indicates the site of bonding of the moiety to the remainder of the structure.


In more embodiments, X1, X2 and X4 are independently selected from the group consisting of NH and NCH3 and X3 is selected from the group consisting of O, NH and NCH3.


As an additional aspect, the disclosure relates to libraries comprising at least two macrocyclic compounds selected from the group consisting of compounds of formula (II) and salts thereof.




embedded image


wherein:

    • X21 is selected from the group consisting of N, O and NR49, where R49 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, sulfonyl and C1-C6 alkyl substituted with hydroxy, alkoxy, amino, mercapto, carboxy, carboxyalkyl, carboxyaryl, amido, amidino, guanidino, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl or C4-C14 heteroaryl, when X21 is NR49, X21 can also form an optionally substituted four, five, six or seven-membered ring together with R42, if present in G, and, when X21 is N, X21 forms an optionally substituted four, five, six or seven-membered ring together with G;
    • X22 is selected from the group consisting of O and NR50, where R50 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, sulfonyl and C1-C6 alkyl substituted with hydroxy, alkoxy, amino, mercapto, carboxy, carboxyalkyl, carboxyaryl, amido, amidino, guanidino, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, when X22 is not bonded to a carbonyl group in G, X22 can also be selected from S(O)q21 where q21 is 0-2, and R50 can also be selected from the group consisting of formyl, acyl, amino acyl, amido, amidino, carboxyalkyl, carboxyaryl and sulfonamide;
    • X23 is selected from the group consisting of O and NR51, where R51 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, sulfonyl and C1-C6 alkyl substituted with hydroxy, alkoxy, amino, mercapto, carboxy, carboxyalkyl, carboxyaryl, amido, amidino, guanidino, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl or C4-C14 heteroaryl, when X23 is not bonded to a carbonyl group in K, X23 can also be selected from S(O)q22 where q22 is 0-2, and R51 can also be selected from the group consisting of formyl, acyl, amino acyl, amido, amidino, carboxyalkyl, carboxyaryl and sulfonamide, and when X23 is NR51, X23 can also form an optionally substituted four, five, six or seven-membered ring together with R41;
    • A, when X21 is O or NR49, is selected from the group consisting of:
    • (X21)—(CH2)n21a—(X22), (X21)—(CH2)n21b—X24—(CH2)n21c—(X22),




embedded image




    • A, when X21 is N, is selected from the group consisting of:







embedded image






      • where n21a is 2-10; n22 and n23 are independently 0-3; n21b and n21c are independently 1-4; n24a, n24b, n24c, n25a, n25b and n25c are independently 2-4, when X25a, X25b, X25c, X26a, X26b or X26c are CH2, n24a, n24b, n24c, n25a, n25b and n25c, respectively, can also be 0-1;

      • X24 is selected from the group consisting of O, CH═CH, S(O)q23 and NR52, where q23 is 0-2 and R52 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, formyl, acyl, amino acyl, carboxyalkyl, carboxyaryl, amido, amidino, sulfonyl, sulfonamido and C1-C6 alkyl substituted with hydroxy, alkoxy, amino, mercapto, carboxy, carboxyalkyl, carboxyaryl, amido, amidino, guanidino, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl or C4-C14 heteroaryl;

      • X25a, X25b, X25c, X26a, X26b and X26c are independently selected from the group consisting of CH2, O and NR53, where R53 is selected from the group consisting of hydrogen, C1-C4 alkyl, formyl, acyl and sulfonyl;

      • Z41, Z42, Z42, Z44, Z45, Z46, Z47, Z48, Z49, Z50, Z51 and Z52 are independently selected from the group consisting of N, N+—O and CR54, where R54 is selected from the group consisting of hydrogen, hydroxy, alkoxy, amino, amido, amidino, guanidino, halogen, cyano, nitro, carboxy, carboxyalkyl, carboxyaryl, trifluoromethyl, C1-C6 alkyl, C3-C7 cycloalkyl, C2-C10 heterocycle, C6-C12 aryl, C4-C10 heteroaryl, wherein in the group of Z41, Z42, Z43 and Z44, three or less within that group are N; wherein in the group of Z45, Z46, Z47 and Z48, three or less within that group are N; and wherein in the group of Z49, Z50, Z51 and Z52, three or less within that group are N; and

      • (X21) and (X22) indicate the site of bonding to X21 and X22 of formula (II), respectively;



    • K, when X22 is O or NR50, is selected from the group consisting of:

    • (X22)—(CH2)n26—(X23), (X22)—(CH2)n27a—X27—(CH2)n27b—(X23),







embedded image


embedded image




    • K, when X22 is N, is selected from the group consisting of:







embedded image






      • where n26 is 2-10; n27a and n27b are independently 2-4; n28 is 0-4; n29 is 0-3; n30a, n30b and n30c are independently 0-4; n31a, n31b, n31c, n32a, n32b, n32c, n33a, n33b, n33c, n34a, n34b, n34c, n35a, n35b and n35c are independently 2-4, when X28a, X28b, X28c, X30a, X30b, X30c, X31a, X31b, X31c, X33a, X33b or X33c are CH2, n31a, n31b, n31c, n33a, n33b, n33c, n34a, n34b, n34c, n35a, n35b and n35c, respectively, can also be 0-1;

      • X27 is selected from the group consisting of O, CH═CH, S(O)q24 and NR55, where q24 is 0-2 and R55 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, formyl, acyl, amino acyl, carboxyalkyl, carboxyaryl, amido, amidino, sulfonyl, sulfonamido and C1-C6 alkyl substituted with hydroxy, alkoxy, amino, mercapto, carboxy, carboxyalkyl, carboxyaryl, amido, amidino, guanidino, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl or C4-C04 heteroaryl;

      • X28a, X28b, X28c, X30a, X30b, X30c, X31a, X31b, X31c, X33a, X33b and X33c are independently selected from the group consisting of CH2, O and NR56, where R56 is selected from the group consisting of hydrogen, C1-C4 alkyl, formyl, acyl and sulfonyl;

      • X29a, X29b and X29c are independently selected from the group consisting of O and NR57, where R57 is selected from the group consisting of hydrogen, C1-C4 alkyl, formyl, acyl and sulfonyl;

      • X32a, X32b and X32c are independently selected from the group consisting of 0, S(O)q25, NR58 and CR59R60, where q25 is 0-2, R58 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, formyl, acyl, amino acyl, carboxyalkyl, carboxyaryl, amido, amidino, sulfonyl, sulfonamido and C1-C6 alkyl substituted with hydroxy, alkoxy, amino, mercapto, carboxy, carboxyalkyl, carboxyaryl, amido, amidino, guanidino, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl; R59 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, formyl, acyl, amino acyl, carboxyalkyl, carboxyaryl, amido, amidino, sulfonyl, sulfonamido and C1-C6 alkyl substituted with hydroxy, alkoxy, amino, mercapto, carboxy, carboxyalkyl, carboxyaryl, amido, amidino, guanidino, C3-C05 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl; and R60 is selected from the group consisting of hydrogen and C1-C6 alkyl; or R59 and R60 together with the carbon to which they are bonded form an optionally substituted three, four, five, six or seven-membered ring;

      • Z53, Z54, Z55, Z56, Z57, Z58, Z59, Z60, Z61, Z62, Z63, Z64, Z65, Z66, Z67, Z68, Z69, Z70, Z71, Z72, Z73, Z74, Z75 and Z76 are independently selected from the group consisting of N, N+—Oand CR61, where R61 is selected from the group consisting of hydrogen, hydroxy, alkoxy, amino, amido, amidino, guanidino, halogen, cyano, nitro, carboxy, carboxyalkyl, carboxyaryl, trifluoromethyl, C1-C6 alkyl, C3-C7 cycloalkyl, C2-C10 heterocycle, C6-C12 aryl, C4-C10 heteroaryl, wherein in the group of Z53, Z54, Z55 and Z56, three or less within that group are N; wherein in the group of Z57, Z58, Z59 and Z60, three or less within that group are N; wherein in the group of Z61, Z62,

      • Z63 and Z64, three or less within that group are N; wherein in the group of Z65, Z66, Z67 and Z68, three or less within that group are N; wherein in the group of Z69, Z70, Z71 and Z72, three or less within that group are N; and wherein in the group of Z73, Z74, Z75 and Z76, three or less within that group are N; and

      • (X22) and (X23) indicate the site of bonding to X22 and X23 of formula (II), respectively;



    • R41, R42, R43, R44, R46 and R47 are independently selected from the group consisting of:







embedded image






      • where (#) indicates the site of bonding of the moiety to the remainder of the structure; p11, p12, p13, p14 and p15 are independently 0-5; p16 and p17 are independently 0-6;

      • W11 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, formyl, acyl, amino acyl, amido, carboxyalkyl, carboxyaryl, amidino, sulfonyl, sulfonamido and C1-C8 alkyl substituted with C3-C15 cycloalkyl, C6-C15 aryl or C4-C14 heteroaryl;

      • W12 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, acyl, amino acyl and C1-C8 alkyl substituted with C3-C15 cycloalkyl, C6-C15 aryl or C4-C14 heteroaryl;

      • W13 and W18 are independently selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl and C1-C8 alkyl substituted with C3-C15 cycloalkyl, C6-C15 aryl or C4-C14 heteroaryl;

      • W14 is selected from the group consisting of hydrogen, halogen, trifluoromethyl, hydroxy and methyl;

      • W15 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, formyl, acyl, carboxyalkyl, carboxyaryl, amido, amidino, sulfonyl, sulfonamido and C1-C8 alkyl substituted with C3-C15 cycloalkyl, C6-C15 aryl or C4-C14 heteroaryl;

      • W16 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, acyl, carboxyalkyl, carboxyaryl, amido and sulfonyl; and

      • W17 is selected from the group consisting of hydrogen, C1-C20 alkyl, C3-C15 cycloalkyl, C2-C14 heterocycle, C6-C15 aryl, C4-C14 heteroaryl, sulfonyl and C1-C8 alkyl substituted with C3-C15 cycloalkyl, C6-C15 aryl or C4-C14 heteroaryl;

      • wherein R41, when X23 is NR51, can also form an optionally substituted four, five, six or seven-membered ring together with NR51; and

      • wherein R42, when X21 is NR49, can also form an optionally substituted four, five, six or seven-membered ring together with NR49; and



    • R45a, R45b, R48a and R48b are independently selected from the group consisting of hydrogen, fluorine, C1-C10 alkyl, C6-C12 aryl, hydroxy, alkoxy, aryloxy and amino.





In a specific embodiment, G in formula (II) is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image




    • where (X21) and (X22) indicate the site of bonding to X21 and X22 of formula (II), respectively.





In a further specific embodiment, G in formula (II) is:




embedded image




    • wherein n22 is 0; R44 is hydrogen and R43 is selected from the group consisting of:







embedded image


where (#) indicates the site of bonding of the moiety to the remainder of the structure; and (X21) and (X22) indicate the site of bonding to X21 and X22 of formula (II), respectively.


In an additional specific embodiment, K in formula (II) is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


where (X22) and (X23) indicate the site of bonding to X22 and X23 of formula (II), respectively.


In yet an additional specific embodiment, K in formula (II) is:




embedded image




    • wherein n28 is 0; R47 is hydrogen; R46 is selected from the group consisting of:







embedded image




    • where (#) indicates the site of bonding of the moiety to the remainder of the structure; and (X22) and (X23) indicate the site of bonding of K to X22 and X23 of formula (II), respectively.





In a further embodiment, Z41, Z42, Z42, Z44, Z45, Z46, Z47, Z48, Z49, Z50, Z51 and Z52 are CR54 and R54 is selected from the group consisting of hydrogen and halogen.


In another embodiment, Z53, Z54, Z55, Z56, Z57, Z58, Z59, Z60, Z61, Z62, Z63, Z64, Z65, Z66, Z67, Z68, Z69, Z70, Z71, Z72, Z73, Z74, Z75 and Z76 are CR61 and R61 is selected from the group consisting of hydrogen and halogen.


In more embodiments, X21, X22 and X23 are independently selected from the group consisting of NH and NCH3.


In yet a further embodiment, the libraries of the present disclosure may be comprised of at least two macrocyclic compounds selected from only one of formula (I) and formula (II) or from both of said formulas.


In a related embodiment, the libraries of the present disclosure may comprise as few as two (2) to more than ten thousand (10,000) such macrocyclic compounds.


In an additional embodiment, the library is comprised of macrocyclic compounds selected from those with structures 1401-3813 as defined herein.


In yet an additional embodiment, the library is comprised of macrocyclic compounds selected from those with structures 3816-3975 as defined herein.


In a further embodiment, the library is comprised of macrocyclic compounds selected from those with structures 3976-4121 as defined herein.


In a preferred embodiment, the library can be synthesized as discrete individual macrocyclic compounds utilizing techniques as described herein.


In still another embodiment, the library is synthesized as mixtures of at least two macrocyclic compounds.


In further embodiments, the macrocyclic compounds in the library are provided as solids (powders, salts, crystals, amorphous material and so on), syrups or oils as they are obtained from the preparation methods described in the disclosure.


In a different embodiment, the macrocyclic compounds in the library are provided dissolved in an appropriate organic, aqueous or mixed solvent, solvent system or buffer.


In a preferred embodiment, the organic solvent used to dissolve the macrocyclic compounds in the library is DMSO. The resulting concentration of the compound in DMSO may be between 0.001 and 100 mM.


In an embodiment relating to the use of the libraries, the macrocyclic compounds are distributed into at least one multiple sample holder, such as a microtiter plate or a miniaturized chip. For most uses, this distribution is done in an array format compatible with the automated systems used in HTS.


In a related embodiment, this distribution may be done as single, discrete compounds in each sample of the at least one multiple sample holder or as mixtures in each sample of the at least one multiple sample holder.


In a further embodiment, at least one multiple sample holder is a microtiter plate containing 96, 384, 1536, 3456, 6144 or 9600 wells, which are the sizes typically used in HTS, although other numbers of wells may be utilized for specialized assays or equipment.


In another aspect, the disclosure relates to kits comprising a library of macrocyclic compounds as described herein and at least one multiple sample holder.


In an embodiment, the one multiple sample holder in the kit is a microtiter plate containing 96, 384, 1536, 3456, 6144 or 9600 wells or a miniaturized chip.


In other embodiments, the library in the kit is distributed as individual compounds in each sample of the at least one multiple sample holder or as more than one compound in each sample of the at least one multiple sample holder


In an additional aspect, the disclosure relates to macrocyclic compounds represented by formula (I) and formula (II) and salts thereof.


In particular embodiments, macrocyclic compounds with structures 1401-3813 as defined in the disclosure and their pharmaceutically acceptable salts are provided.


In other particular embodiments, macrocyclic compounds with structures 3816-3975 as defined in the disclosure and their pharmaceutically acceptable salts are provided.


In still more particular embodiments, macrocyclic compounds with structures 3976-4121 as defined in the disclosure and their pharmaceutically acceptable salts are provided.


In a further aspect, the disclosure relates to methods of using the libraries of macrocyclic compounds of formula (I) and formula (II) and their salts for the identification of specific compounds that modulate a biological target by contacting the compounds of the libraries with said target. This is most often done using HTS assays, but may also be done in low or medium throughput assays. The libraries of the disclosure may be tested in these assays in whole or in part and may be tested separately or at the same time as tests of other compounds and libraries.


In an embodiment, the biological target is selected from any known class of pharmacological targets, including, but not limited to, enzymes, G protein-coupled receptors (GPCR), nuclear receptors, ion channels, transporters, transcription factors, protein-protein interactions and nucleic acid-protein interactions. Enzymes include, but are not limited to, proteases, kinases, esterases, amidases, dehydrogenases, endonucleases, hydrolases, lipases, phosphatases, convertases, synthetases and transferases. Since HTS assays have been developed for all of these target classes, the nature of the target is not a limiting factor in the use of the libraries of the present disclosure. Further, given this level of experience, it is within the scope of those skilled in the art to develop such assays for new targets that are identified and characterized for use in drug discovery programs.


In a further embodiment, the modulation in the method of using the libraries is agonism, antagonism, inverse agonism, activation, inhibition or partial variants of each of these types of activities as may be of interest depending on the specific target and the associated disease state.


In other embodiments, the modulation and biological target being investigated in the method of using the libraries may have relevance for the treatment and prevention of a broad range of medical conditions. As such, the libraries of the present disclosure have wide applicability to the discovery of new pharmaceutical agents.


In an additional aspect, the disclosure provides a process for preparing the macrocyclic compounds of formula (I) and formula (II) and libraries of such macrocyclic compounds.


In a particular embodiment, the process involves the following steps:

    • synthesis of the individual multifunctional, protected building blocks;
    • assembly of from three to eight building blocks in a sequential manner with cycles of selective deprotection of a reactive functionality followed by attachment;
    • selective deprotection of two reactive functional groups of the assembled building block structure followed by cyclization;
    • removal of all remaining protecting groups from the cyclized products; and
    • optionally, purification.


In another embodiment applicable to libraries, the process further comprises distribution of the final macrocycle compounds into a format suitable for screening.


In an additional embodiment, one or more of the above steps are performed on the solid phase. In particular, the assembly of the building blocks is preferentially conducted on the solid phase.


In further embodiments, the attachment of each individual building block is performed using a reaction independently selected from amide bond formation, reductive amination, Mitsunobu reaction and its variants, such as the Fukuyama-Mitsunobu reaction, and nucleophilic substitution.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs.


The term “alkyl” refers to straight or branched chain saturated or partially unsaturated hydrocarbon groups having from 1 to 20 carbon atoms, in some instances 1 to 8 carbon atoms. Examples of alkyl groups include, but are not limited to, methyl, ethyl, isopropyl, tert-butyl, 3-hexenyl, and 2-butynyl. By “unsaturated” is meant the presence of 1, 2 or 3 double or triple bonds, or a combination of the two. Such alkyl groups may also be optionally substituted as described below.


When a subscript is used with reference to an alkyl or other hydrocarbon group defined herein, the subscript refers to the number of carbon atoms that the group may contain. For example, “C2-C4 alkyl” indicates an alkyl group with 2, 3 or 4 carbon atoms.


The term “cycloalkyl” refers to saturated or partially unsaturated cyclic hydrocarbon groups having from 3 to 15 carbon atoms in the ring, in some instances 3 to 7, and to alkyl groups containing said cyclic hydrocarbon groups. Examples of cycloalkyl groups include, but are not limited to, cyclopropyl, cyclopropylmethyl, cyclopentyl, cyclohexyl, 2-(cyclohexyl)ethyl, cycloheptyl, and cyclohexenyl. Cycloalkyl as defined herein also includes groups with multiple carbon rings, each of which may be saturated or partially unsaturated, for example decalinyl, [2.2.1]-bicycloheptanyl or adamantanyl. All such cycloalkyl groups may also be optionally substituted as described below.


The term “aromatic” refers to an unsaturated cyclic hydrocarbon group having a conjugated pi electron system that contains 4n+2 electrons where n is an integer greater than or equal to 1. Aromatic molecules are typically stable and are depicted as a planar ring of atoms with resonance structures that consist of alternating double and single bonds, for example benzene or naphthalene.


The term “aryl” refers to an aromatic group in a single or fused carbocyclic ring system having from 6 to 15 ring atoms, in some instances 6 to 10, and to alkyl groups containing said aromatic groups. Examples of aryl groups include, but are not limited to, phenyl, 1-naphthyl, 2-naphthyl and benzyl. Aryl as defined herein also includes groups with multiple aryl rings which may be fused, as in naphthyl and anthracenyl, or unfused, as in biphenyl and terphenyl. Aryl also refers to bicyclic or tricyclic carbon rings, where one of the rings is aromatic and the others of which may be saturated, partially unsaturated or aromatic, for example, indanyl or tetrahydronaphthyl (tetralinyl). All such aryl groups may also be optionally substituted as described below.


The term “heterocycle” or “heterocyclic” refers to non-aromatic saturated or partially unsaturated rings or ring systems having from 3 to 15 atoms, in some instances 3 to 7, with at least one heteroatom in at least one of the rings, said heteroatom being selected from O, S or N. Each ring of the heterocyclic group can contain one or two O atoms, one or two S atoms, one to four N atoms, provided that the total number of heteroatoms in each ring is four or less and each ring contains at least one carbon atom. The fused rings completing the heterocyclic groups may contain only carbon atoms and may be saturated or partially unsaturated. The N and S atoms may optionally be oxidized and the N atoms may optionally be quaternized. Examples of non-aromatic heterocycle groups include, in a non-limitative manner, pyrrolidinyl, tetrahydrofuranyl, morpholinyl, thiomorpholinyl, piperidinyl, piperazinyl, thiazolidinyl, isothiazolidinyl, and imidazolidinyl. All such heterocyclic groups may also be optionally substituted as described below.


The term “heteroaryl” refers to an aromatic group in a single or fused ring system having from 5 to 15 ring atoms, in some instances 5 to 10, which have at least one heteroatom in at least one of the rings, said heteroatom being selected from O, S or N. Each ring of the heteroaryl group can contain one or two O atoms, one or two S atoms, one to four N atoms, provided that the total number of heteroatoms in each ring is four or less and each ring contains at least one carbon atom. The fused rings completing the bicyclic or tricyclic groups may contain only carbon atoms and may be saturated, partially unsaturated or aromatic. In structures where the lone pair of electrons of a nitrogen atom is not involved in completing the aromatic pi electron system, the N atoms may optionally be quaternized or oxidized to the N-oxide. Heteroaryl also refers to alkyl groups containing said cyclic groups. Examples of monocyclic heteroaryl groups include, but are not limited to pyrrolyl, pyrazolyl, pyrazolinyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, isothiazolyl, furanyl, thienyl, oxadiazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, and triazinyl. Examples of bicyclic heteroaryl groups include, but are not limited to indolyl, benzothiazolyl, benzoxazolyl, benzothienyl, quinolinyl, tetrahydroisoquinolinyl, isoquinolinyl, benzimidazolyl, benzopyranyl, indolizinyl, benzofuranyl, isobenzofuranyl, chromonyl, coumarinyl, benzopyranyl, cinnolinyl, quinoxalinyl, indazolyl, purinyl, pyrrolopyridinyl, furopyridinyl, thienopyridinyl, dihydroisoindolyl, and tetrahydroquinolinyl. Examples of tricyclic heteroaryl groups include, but are not limited to carbazolyl, benzindolyl, phenanthrollinyl, acridinyl, phenanthridinyl, and xanthenyl. All such heteroaryl groups may also be optionally substituted as described below.


The term “alkoxy” or “alkoxyl” refers to the group —ORa, wherein Ra is alkyl, cycloalkyl or heterocyclic. Examples include, but are not limited to methoxy, ethoxy, tert-butoxy, cyclohexyloxy and tetrahydropyranyloxy.


The term “aryloxy” refers to the group —ORb wherein Rb is aryl or heteroaryl. Examples include, but are not limited to phenoxy, benzyloxy and 2-naphthyloxy.


The term “acyl” refers to the group —C(═O)—Rc wherein Rc is alkyl, cycloalkyl, heterocyclic, aryl or heteroaryl. Examples include, but are not limited to, acetyl, benzoyl and furoyl.


The term “amino acyl” indicates an acyl group that is derived from an amino acid as later defined.


The term “amino” refers to an —NRdRe group wherein Rd and Re are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, heterocyclic, aryl and heteroaryl. Alternatively, Rd and Re together form a heterocyclic ring of 3 to 8 members, optionally substituted with unsubstituted alkyl, unsubstituted cycloalkyl, unsubstituted heterocyclic, unsubstituted aryl, unsubstituted heteroaryl, hydroxy, alkoxy, aryloxy, acyl, amino, amido, carboxy, carboxyalkyl, carboxyaryl, mercapto, sulfinyl, sulfonyl, sulfonamido, amidino, carbamoyl, guanidino or ureido, and optionally containing one to three additional heteroatoms selected from O, S or N.


The term “amido” refers to the group —C(═O)—NRfRg wherein Rf and Rg are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, heterocyclic, aryl and heteroaryl. Alternatively, Rf and Rg together form a heterocyclic ring of 3 to 8 members, optionally substituted with unsubstituted alkyl, unsubstituted cycloalkyl, unsubstituted heterocyclic, unsubstituted aryl, unsubstituted heteroaryl, hydroxy, alkoxy, aryloxy, acyl, amino, amido, carboxy, carboxyalkyl, carboxyaryl, mercapto, sulfinyl, sulfonyl, sulfonamido, amidino, carbamoyl, guanidino or ureido, and optionally containing one to three additional heteroatoms selected from O, S or N.


The term “amidino” refers to the group —C(═NRh)NRiRj wherein Rh is selected from the group consisting of hydrogen, alkyl, cycloalkyl, heterocyclic, aryl and heteroaryl; and Ri and Rj are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, heterocyclic, aryl and heteroaryl. Alternatively, Ri and Rj together form a heterocyclic ring of 3 to 8 members, optionally substituted with unsubstituted alkyl, unsubstituted cycloalkyl, unsubstituted heterocyclic, unsubstituted aryl, unsubstituted heteroaryl, hydroxy, alkoxy, aryloxy, acyl, amino, amido, carboxy, carboxyalkyl, carboxyaryl, mercapto, sulfinyl, sulfonyl, sulfonamido, amidino, carbamoyl, guanidino or ureido, and optionally containing one to three additional heteroatoms selected from O, S or N.


The term “carboxyalkyl” refers to the group —CO2Rk, wherein Rk is alkyl, cycloalkyl or heterocyclic.


The term “carboxyaryl” refers to the group —CO2Rm, wherein Rm is aryl or heteroaryl.


The term “oxo” refers to the bivalent group ═O, which is substituted in place of two hydrogen atoms on the same carbon to form a carbonyl group.


The term “mercapto” refers to the group —SRn wherein Rn is hydrogen, alkyl, cycloalkyl, heterocyclic, aryl or heteroaryl.


The term “sulfinyl” refers to the group —S(═O)Rp wherein Rp is alkyl, cycloalkyl, heterocyclic, aryl or heteroaryl.


The term “sulfonyl” refers to the group —S(═O)2—Rq1 wherein Rq1 is alkyl, cycloalkyl, heterocyclic, aryl or heteroaryl.


The term “aminosulfonyl” refers to the group —NRq2—S(═O)2—Rq3 wherein Rq2 is hydrogen, alkyl, cycloalkyl, heterocyclic, aryl or heteroaryl; and Rq3 is alkyl, cycloalkyl, heterocyclic, aryl or heteroaryl.


The term “sulfonamido” refers to the group —S(═O)2—NRrRs wherein Rr and Rs are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, heterocyclic, aryl or heteroaryl. Alternatively, Rr and Rs together form a heterocyclic ring of 3 to 8 members, optionally substituted with unsubstituted alkyl, unsubstituted cycloalkyl, unsubstituted heterocyclic, unsubstituted aryl, unsubstituted heteroaryl, hydroxy, alkoxy, aryloxy, acyl, amino, amido, carboxy, carboxyalkyl, carboxyaryl, mercapto, sulfinyl, sulfonyl, sulfonamido, amidino, carbamoyl, guanidino or ureido, and optionally containing one to three additional heteroatoms selected from O, S or N.


The term “carbamoyl” refers to a group of the formula —N(Rt)—C(═O)—ORu wherein Rt is selected from hydrogen, alkyl, cycloalkyl, heterocyclic, aryl or heteroaryl; and Ru is selected from alkyl, cycloalkyl, heterocylic, aryl or heteroaryl.


The term “guanidino” refers to a group of the formula —N(Rv)—C(═NRw)—NRxRy wherein Rv, Rw, Rx and Ry are independently selected from hydrogen, alkyl, cycloalkyl, heterocyclic, aryl or heteroaryl. Alternatively, Rx and Ry together form a heterocyclic ring or 3 to 8 members, optionally substituted with unsubstituted alkyl, unsubstituted cycloalkyl, unsubstituted heterocyclic, unsubstituted aryl, unsubstituted heteroaryl, hydroxy, alkoxy, aryloxy, acyl, amino, amido, carboxy, carboxyalkyl, carboxyaryl, mercapto, sulfinyl, sulfonyl, sulfonamido, amidino, carbamoyl, guanidino or ureido, and optionally containing one to three additional heteroatoms selected from O, S or N.


The term “ureido” refers to a group of the formula —N(Rz)—C(═O)—NRaaRbb wherein Rz, Raa and Rbb are independently selected from hydrogen, alkyl, cycloalkyl, heterocyclic, aryl or heteroaryl. Alternatively, Raa and Rbb together form a heterocyclic ring of 3 to 8 members, optionally substituted with unsubstituted alkyl, unsubstituted cycloalkyl, unsubstituted heterocyclic, unsubstituted aryl, unsubstituted heteroaryl, hydroxy, alkoxy, aryloxy, acyl, amino, amido, carboxy, carboxyalkyl, carboxyaryl, mercapto, sulfinyl, sulfonyl, sulfonamido, amidino, carbamoyl, guanidino or ureido, and optionally containing one to three additional heteroatoms selected from O, S or N.


The expression “optionally substituted” is intended to indicate that the specified group is unsubstituted or substituted by one or more suitable substituents, unless the optional substituents are expressly specified, in which case the term indicates that the group is unsubstituted or substituted with the specified substituents. As defined above, various groups may be unsubstituted or substituted (i.e., they are optionally substituted) unless indicated otherwise herein (e.g., by indicating that the specified group is unsubstituted).


The term “substituted” when used with the terms alkyl, cycloalkyl, heterocyclic, aryl and heteroaryl refers to an alkyl, cycloalkyl, heterocyclic, aryl or heteroaryl group having one or more of the hydrogen atoms of the group replaced by substituents independently selected from unsubstituted alkyl, unsubstituted cycloalkyl, unsubstituted heterocyclic, unsubstituted aryl, unsubstituted heteroaryl, hydroxy, alkoxy, aryloxy, acyl, amino, amido, carboxy, carboxyalkyl, carboxyaryl, halo, oxo, mercapto, sulfinyl, sulfonyl, sulfonamido, amidino, carbamoyl, guanidino, ureido and groups of the formulas —NRCCC(═O)Rdd, —NReeC(═NRff)Rgg, —OC(═O)NRhhRii, —OC(═O)Rjj, —OC(═O)ORkk, —NRmmSO2Rnn, or —NRppSO2NRqqRrr wherein Rcc, Rdd, Ree, Rff, Rgg, Rhh, Rii, Rjj, Rmm, Rpp, Rqq and Rrr are independently selected from hydrogen, unsubstituted alkyl, unsubstituted cycloalkyl, unsubstituted heterocyclic, unsubstituted aryl or unsubstituted heteroaryl; and wherein Rkk and Rnn are independently selected from unsubstituted alkyl, unsubstituted cycloalkyl, unsubstituted heterocyclic, unsubstituted aryl or unsubstituted heteroaryl. Alternatively, Rgg and Rhh, Rjj and Rkk or Rpp and Rqq together form a heterocyclic ring of 3 to 8 members, optionally substituted with unsubstituted alkyl, unsubstituted cycloalkyl, unsubstituted heterocyclic, unsubstituted aryl, unsubstituted heteroaryl, hydroxy, alkoxy, aryloxy, acyl, amino, amido, carboxy, carboxyalkyl, carboxyaryl, mercapto, sulfinyl, sulfonyl, sulfonamido, amidino, carbamoyl, guanidino or ureido, and optionally containing one to three additional heteroatoms selected from O, S or N. In addition, the term “substituted” for aryl and heteroaryl groups includes as an option having one of the hydrogen atoms of the group replaced by cyano, nitro or trifluoromethyl.


A substitution is made provided that any atom's normal valency is not exceeded and that the substitution results in a stable compound. Generally, when a substituted form of a group is present, such substituted group is preferably not further substituted or, if substituted, the substituent comprises only a limited number of substituted groups, in some instances 1, 2, 3 or 4 such substituents.


When any variable occurs more than one time in any constituent or in any formula herein, its definition on each occurrence is independent of its definition at every other occurrence. Also, combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.


A “stable compound” or “stable structure” refers to a compound that is sufficiently robust to survive isolation to a useful degree of purity and formulation into an efficacious therapeutic agent.


The term “amino acid” refers to the common natural (genetically encoded) or synthetic amino acids and common derivatives thereof, known to those skilled in the art. When applied to amino acids, “standard” or “proteinogenic” refers to the genetically encoded 20 amino acids in their natural configuration. Similarly, when applied to amino acids, “non-standard,” “unnatural” or “unusual” refers to the wide selection of non-natural, rare or synthetic amino acids such as those described by Hunt, S. in Chemistry and Biochemistry of the Amino Acids, Barrett, G. C., ed., Chapman and Hall: New York, 1985.


The term “amino acid side chain” refers to any side chain from a standard or unnatural amino acid, and is denoted RAA. For example, the side chain of alanine is methyl, the side chain of valine is isopropyl and the side chain of tryptophan is 3 indolylmethyl.


The term “activator” refers to a compound that increases the normal activity of a protein, receptor, enzyme, interaction, or the like.


The term “agonist” refers to a compound that duplicates at least some of the effect of the endogenous ligand of a protein, receptor, enzyme, interaction, or the like.


The term “antagonist” refers to a compound that reduces at least some of the effect of the endogenous ligand of a protein, receptor, enzyme, interaction, or the like.


The term “inhibitor” refers to a compound that reduces the normal activity of a protein, receptor, enzyme, interaction, or the like.


The term “inverse agonist” refers to a compound that reduces the activity of a constitutively-active receptor below its basal level.


The term “library” refers to a collection of chemical compounds.


The term “modulator” refers to a compound that imparts an effect on a biological or chemical process or mechanism. For example, a modulator may increase, facilitate, upregulate, activate, inhibit, decrease, block, prevent, delay, desensitize, deactivate, down regulate, or the like, a biological or chemical process or mechanism. Accordingly, a modulator can be an “agonist” or an “antagonist.” Exemplary biological processes or mechanisms affected by a modulator include, but are not limited to, enzyme binding, receptor binding and hormone release or secretion. Exemplary chemical processes or mechanisms affected by a modulator include, but are not limited to, catalysis and hydrolysis.


The term “peptide” refers to a chemical compound comprising at least two amino acids covalently bonded together using amide bonds. The related term “peptidic” refers to compounds that possess the structural characteristics of a peptide.


The term “peptidomimetic” refers to a chemical compound designed to mimic a peptide, but which contains structural differences through the addition or replacement of one of more functional groups of the peptide in order to modulate its activity or other properties, such as solubility, metabolic stability, oral bioavailability, lipophilicity, permeability, etc. This can include replacement of the peptide bond, side chain modifications, truncations, additions of functional groups, etc. When the chemical structure is not derived from the peptide, but mimics its activity, it is often referred to as a “non-peptide peptidomimetic.”


The term “peptide bond” refers to the amide [—C(═O)—NH—] functionality with which individual amino acids are typically covalently bonded to each other in a peptide.


The term “protecting group” refers to any chemical compound that may be used to prevent a potentially reactive functional group, such as an amine, a hydroxyl or a carboxyl, on a molecule from undergoing a chemical reaction while chemical change occurs elsewhere in the molecule. A number of such protecting groups are known to those skilled in the art and examples can be found in Protective Groups in Organic Synthesis, T. W. Greene and P. G. Wuts, eds., John Wiley & Sons, New York, 4th edition, 2006, 1082 pp, ISBN 9780471697541. Examples of amino protecting groups include, but are not limited to, phthalimido, trichloroacetyl, benzyloxycarbonyl, tert butoxycarbonyl, and adamantyl-oxycarbonyl. In some embodiments, amino protecting groups are carbamate amino protecting groups, which are defined as an amino protecting group that when bound to an amino group forms a carbamate. In other embodiments, amino carbamate protecting groups are allyloxycarbonyl (Alloc), benzyloxycarbonyl (Cbz), 9 fluorenylmethoxycarbonyl (Fmoc), tert-butoxycarbonyl (Boc) and α,α dimethyl-3,5 dimethoxybenzyloxycarbonyl (Ddz). For a recent discussion of newer nitrogen protecting groups see: Tetrahedron 2000, 56, 2339-2358. Examples of hydroxyl protecting groups include, but are not limited to, acetyl, tert-butyldimethylsilyl (TBDMS), trityl (Trt), tert-butyl, and tetrahydropyranyl (THP). Examples of carboxyl protecting groups include, but are not limited to, methyl ester, tert-butyl ester, benzyl ester, trimethylsilylethyl ester, and 2,2,2-trichloroethyl ester. A protecting group is herein designated as PG, with a subscript if more than one is present in the same molecule or if multiple protecting groups are utilized in a particular reaction scheme. In the latter case only, different PGi designations in the scheme may refer to the same protecting group.


The term “orthogonal,” when applied to a protecting group, refers to one that can be selectively deprotected in the presence of one or more other protecting groups, even if they are protecting the same type of chemical functional group. For example, an allyl ester can be removed in the presence of other ester protecting groups through the use of Pd(0).


The term “solid phase chemistry” refers to the conduct of chemical reactions where one component of the reaction is covalently bonded to a polymeric material (solid support as defined below). Reaction methods for performing chemistry on solid phase have become more widely known and established outside the traditional fields of peptide and oligonucleotide chemistry (Solid-Phase Synthesis: A Practical Guide, F. Albericio, ed., CRC Press, 2000, 848 pp, ISBN: 978-0824703592; Organic Synthesis on Solid Phase, 2nd edition, Florencio Zaragoza Dörwald, Wiley-VCH, 2002, 530 pp, ISBN: 3-527-30603-X; Solid-Phase Organic Synthesis: Concepts, Strategies, and Applications, P. H. Toy, Y. Lam, eds., Wiley, 2012, 568 pp, ISBN: 978-0470599143).


The term “solid support,” “solid phase” or “resin” refers to a mechanically and chemically stable polymeric matrix utilized to conduct solid phase chemistry. This is denoted by “Resin,” “P-” or the following symbol:




embedded image


Examples of appropriate polymer materials include, but are not limited to, polystyrene, polyethylene, polyethylene glycol (PEG, including, but not limited to, ChemMatrix® (Matrix Innovation, Quebec, Quebec, Canada; J. Comb. Chem. 2006, 8, 213-220)), polyethylene glycol grafted or covalently bonded to polystyrene (also termed PEG-polystyrene, TentaGel™, Rapp, W.; Zhang, L.; Bayer, E. In Innovations and Perspectives in Solid Phase Synthesis. Peptides, Polypeptides and Oligonucleotides; Epton, R., ed.; SPCC Ltd.: Birmingham, UK; p 205), polyacrylate (CLEAR™), polyacrylamide, polyurethane, PEGA [polyethyleneglycol poly(N,N dimethyl-acrylamide) co-polymer, Tetrahedron Lett. 1992, 33, 3077-3080], cellulose, etc. These materials can optionally contain additional chemical agents to form cross-linked bonds to mechanically stabilize the structure, for example polystyrene cross-linked with divinylbenezene (DVB, usually 0.1-5%, preferably 0.5-2%). This solid support can include as non-limiting examples aminomethyl polystyrene, hydroxymethyl polystyrene, benzhydrylamine polystyrene (BHA), methylbenzhydrylamine (MBHA) polystyrene, and other polymeric backbones containing free chemical functional groups, most typically, NH2 or —OH, for further derivatization or reaction. The term is also meant to include “Ultraresins” with a high proportion (“loading”) of these functional groups such as those prepared from polyethyleneimines and cross-linking molecules (J. Comb. Chem. 2004, 6, 340-349). At the conclusion of the synthesis, resins are typically discarded, although they have been shown to be able to be recycled (Tetrahedron Lett. 1975, 16, 3055).


In general, the materials used as resins are insoluble polymers, but certain polymers have differential solubility depending on solvent and can also be employed for solid phase chemistry. For example, polyethylene glycol can be utilized in this manner since it is soluble in many organic solvents in which chemical reactions can be conducted, but it is insoluble in others, such as diethyl ether. Hence, reactions can be conducted homogeneously in solution, then the product on the polymer precipitated through the addition of diethyl ether and processed as a solid. This has been termed “liquid-phase” chemistry.


The term “linker” when used in reference to solid phase chemistry refers to a chemical group that is bonded covalently to a solid support and is attached between the support and the substrate typically in order to permit the release (cleavage) of the substrate from the solid support. However, it can also be used to impart stability to the bond to the solid support or merely as a spacer element. Many solid supports are available commercially with linkers already attached.


Abbreviations used for amino acids and designation of peptides follow the rules of the IUPAC-IUB Commission of Biochemical Nomenclature in J. Biol. Chem. 1972, 247, 977-983. This document has been updated: Biochem. J., 1984, 219, 345-373; Eur. J. Biochem., 1984, 138, 9-37; 1985, 152, 1; Int. J. Pept. Prot. Res., 1984, 24, following p 84; J. Biol. Chem., 1985, 260, 14-42; Pure Appl. Chem. 1984, 56, 595-624; Amino Acids and Peptides, 1985, 16, 387-410; and in Biochemical Nomenclature and Related Documents, 2nd edition, Portland Press, 1992, pp 39-67. Extensions to the rules were published in the JCBN/NC-IUB Newsletter 1985, 1986, 1989; see Biochemical Nomenclature and Related Documents, 2nd edition, Portland Press, 1992, pp 68-69.


The expression “compound(s) and/or composition(s) of the present disclosure” as used in the present document refers to compounds of formulas (I) presented in the disclosure, isomers thereof, such as stereoisomers (for example, enantiomers, diastereoisomers, including racemic mixtures) or tautomers, or to pharmaceutically acceptable salts, solvates, hydrates and/or prodrugs of these compounds, isomers of these latter compounds, or racemic mixtures of these latter compounds, and/or to composition(s) made with such compound(s) as previously indicated in the present disclosure. The expression “compound(s) of the present disclosure” also refers to mixtures of the various compounds or variants mentioned in the present paragraph. The expression “library(ies) of the present disclosure” refers to a collection of two or more individual compounds of the present disclosure, or a collection of two or more mixtures of compounds of the present disclosure.


It is to be clear that the present disclosure includes isomers, racemic mixtures, pharmaceutically acceptable salts, solvates, hydrates and prodrugs of compounds described therein and mixtures comprising at least two of such entities.


The macrocyclic compounds comprising the libraries of the disclosure may have at least one asymmetric center. Where the compounds according to the present document possess more than one asymmetric center, they may exist as diastereomers. It is to be understood that all such isomers and mixtures thereof in any proportion are encompassed within the scope of the present disclosure. It is to be understood that while the stereochemistry of the compounds of the present disclosure may be as provided for in any given compound listed herein, such compounds of the disclosure may also contain certain amounts (for example less than 30%, less than 20%, less than 10%, or less than 5%) of compounds of the present disclosure having alternate stereochemistry.


The expression “pharmaceutically acceptable” means compatible with the treatment of subjects such as animals or humans.


The expression “pharmaceutically acceptable salt” means an acid addition salt or basic addition salt which is suitable for or compatible with the treatment of subjects such as animals or humans.


The expression “pharmaceutically acceptable acid addition salt” as used herein means any non-toxic organic or inorganic salt of any compound of the present disclosure, or any of its intermediates. Illustrative inorganic acids which form suitable salts include hydrochloric, hydrobromic, sulfuric and phosphoric acids, as well as metal salts such as sodium monohydrogen orthophosphate and potassium hydrogen sulfate. Illustrative organic acids that form suitable salts include mono-, di-, and tricarboxylic acids such as glycolic, lactic, pyruvic, malonic, succinic, glutaric, fumaric, malic, tartaric, citric, ascorbic, maleic, benzoic, phenylacetic, cinnamic and salicylic acids, as well as sulfonic acids such as p-toluenesulfonic and methanesulfonic acids. Either the mono or di-acid salts can be formed, and such salts may exist in either a hydrated, solvated or substantially anhydrous form. In general, the acid addition salts of the compounds of the present disclosure are more soluble in water and various hydrophilic organic solvents, and generally demonstrate higher melting points in comparison to their free base forms. The selection of the appropriate salt will be known to one skilled in the art. Other non-pharmaceutically acceptable salts, e.g. oxalates, may be used, for example, in the isolation of the compounds of the present disclosure, for laboratory use, or for subsequent conversion to a pharmaceutically acceptable acid addition salt.


The term “pharmaceutically acceptable basic addition salt” as used herein means any non-toxic organic or inorganic base addition salt of any acid compound of the disclosure, or any of its intermediates. Acidic compounds of the disclosure that may form a basic addition salt include, for example, where CO2H is a functional group. Illustrative inorganic bases which form suitable salts include lithium, sodium, potassium, calcium, magnesium or barium hydroxide. Illustrative organic bases which form suitable salts include aliphatic, alicyclic or aromatic organic amines such as methylamine, trimethylamine and picoline or ammonia. The selection of the appropriate salt will be known to a person skilled in the art. Other non-pharmaceutically acceptable basic addition salts, may be used, for example, in the isolation of the compounds of the disclosure, for laboratory use, or for subsequent conversion to a pharmaceutically acceptable acid addition salt.


The formation of a desired compound salt is achieved using standard techniques. For example, the neutral compound is treated with an acid or base in a suitable solvent and the formed salt is isolated by filtration, extraction or any other suitable method.


The formation of a desired compound salt is achieved using standard techniques. For example, the neutral compound is treated with an acid or base in a suitable solvent and the formed salt is isolated by filtration, extraction or any other suitable method.


The term “solvate” as used herein means a compound of the present disclosure, wherein molecules of a suitable solvent are incorporated in the crystal lattice. A suitable solvent is physiologically tolerable at the dosage administered. Examples of suitable solvents are ethanol, water and the like. When water is the solvent, the molecule is referred to as a “hydrate”. The formation of solvates of the compounds of the present disclosure will vary depending on the compound and the solvate. In general, solvates are formed by dissolving the compound in the appropriate solvent and isolating the solvate by cooling or using an antisolvent. The solvate is typically dried or azeotroped under ambient conditions.


The terms “appropriate” and “suitable” mean that the selection of the particular group or conditions would depend on the specific synthetic manipulation to be performed and the identity of the molecule but the selection would be well within the skill of a person trained in the art. All process steps described herein are to be conducted under conditions suitable to provide the product shown. A person skilled in the art would understand that all reaction conditions, including, for example, reaction solvent, reaction time, reaction temperature, reaction pressure, reactant ratio and whether or not the reaction should be performed under an anhydrous or inert atmosphere, can be varied to optimize the yield of the desired product and it is within their skill to do so.


Compounds of the present disclosure include prodrugs. In general, such prodrugs will be functional derivatives of these compounds which are readily convertible in vivo into the compound from which it is notionally derived. Prodrugs of the compounds of the present disclosure may be conventional esters formed with available hydroxy, or amino group. For example, an available OH or nitrogen in a compound of the present disclosure may be acylated using an activated acid in the presence of a base, and optionally, in inert solvent (e.g. an acid chloride in pyridine). Some common esters which have been utilized as prodrugs are phenyl esters, aliphatic (C8-C24) esters, acyloxymethyl esters, carbamates and amino acid esters. In certain instances, the prodrugs of the compounds of the present disclosure are those in which one or more of the hydroxy groups in the compounds is masked as groups which can be converted to hydroxy groups in vivo. Conventional procedures for the selection and preparation of suitable prodrugs are described, for example, in Design of Prodrugs, ed. H. Bundgaard, Elsevier Science Ltd., 1985, 370 pp, ISBN 978-0444806758.


Compounds of the present disclosure include radiolabeled forms, for example, compounds labeled by incorporation within the structure 2H, 3H, 14, 15N, or a radioactive halogen such as 125I. A radiolabeled compound of the compounds of the present disclosure may be prepared using standard methods known in the art.


The term “subject” as used herein includes all members of the animal kingdom including human.


The expression a “therapeutically effective amount”, “effective amount” or a “sufficient amount” of a compound or composition of the present disclosure is a quantity sufficient to, when administered to the subject, including a mammal, for example a human, effect beneficial or desired results, including clinical results, and, as such, an “effective amount” or synonym thereto depends upon the context in which it is being applied. For example, in the context of treating cancer, for example, it is an amount of the compound or composition sufficient to achieve such treatment of the cancer as compared to the response obtained without administration of the compound or composition. The amount of a given compound or composition of the present disclosure that will correspond to an effective amount will vary depending upon various factors, such as the given drug or compound, the pharmaceutical formulation, the route of administration, the type of disease or disorder, the identity of the subject or host being treated, and the like, but can nevertheless be routinely determined by one skilled in the art. Also, as used herein, a “therapeutically effective amount”, “effective amount” or a “sufficient amount” of a compound or composition of the present disclosure is an amount which inhibits, suppresses or reduces a cancer (e.g., as determined by clinical symptoms or the amount of cancerous cells) in a subject as compared to a control.


As used herein, and as well understood in the art, “treatment” or “treating” is an approach for obtaining beneficial or desired results, including clinical results. Beneficial or desired clinical results can include, but are not limited to, alleviation or amelioration of one or more symptoms or conditions, diminishment of extent of disease, stabilized (i.e. not worsening) state of disease, preventing spread of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. “Treatment” or “treating” can also mean prolonging survival as compared to expected survival if not receiving treatment.


“Palliating” a disease or disorder, means that the extent and/or undesirable clinical manifestations of a disorder or a disease state are lessened and/or time course of the progression is slowed or lengthened, as compared to not treating the disorder.


The expression “derivative thereof” as used herein when referring to a compound means a derivative of the compound that has a similar reactivity and that could be used as an alternative to the compound in order to obtain the same desired result.


In understanding the scope of the present disclosure, the term “comprising” and its derivatives, as used herein, are intended to be open ended terms that specify the presence of the stated features, elements, components, groups, integers, and/or steps, but do not exclude the presence of other unstated features, elements, components, groups, integers and/or steps. The foregoing also applies to words having similar meanings such as the terms, “including”, “having” and their derivatives. Finally, terms of degree such as “substantially”, “about” and “approximately” as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed. These terms of degree should be construed as including a deviation of at least ±5% of the modified term if this deviation would not negate the meaning of the word it modifies.


Further features and advantages of the macrocyclic compounds and libraries of the present disclosure will become more readily apparent from the following description of synthetic methods, analytical procedures and methods of use.


1. Synthetic Methods
A. General Synthetic Information

Reagents and solvents were of reagent quality or better and were used as obtained from various commercial suppliers unless otherwise noted. For certain reagents, a source may be indicated if the number of suppliers is limited. Solvents, such as DMF, DCM, DME and THF, are of Drisolv®, Omnisolv® (EMD Millipore, Darmstadt, Germany), or an equivalent synthesis grade quality except for (i) deprotection, (ii) resin capping reactions and (iii) washing. NMP used for coupling reactions is of analytical grade. DMF was adequately degassed by placing under vacuum for a minimum of 30 min prior to use. Ether refers to diethyl ether. Amino acids, Boc-, Fmoc- and Alloc-protected and side chain-protected derivatives, including those of N-methyl and unnatural amino acids, were obtained from commercial suppliers, including AAPPTec (Louisville, Ky., USA), Advanced ChemTech (part of CreoSalus, Louisville, Ky.), Anaspec (Fremont, Calif., USA), AstaTech (Bristol, Pa., USA), Bachem (Bubendorf, Switzerland), Chem-Impex International (Wood Dale, Ill., USA), Iris Biotech (Marktredwitz, Germany), Matrix Scientific (Columbia, S.C., USA), Novabiochem (EMD Millipore), PepTech (Bedford, Mass., USA), or synthesized through standard methodologies known to those in the art. Amino alcohols were obtained commercially or synthesized from the corresponding amino acids or amino esters using established procedures from the literature (for example Tet. Lett. 1992, 33, 5517-5518; J. Org. Chem. 1993, 58, 3568-3571; Lett. Pept. Sci. 2003, 10, 79-82; Ind. J. Chem. 2006, 45B, 1880-1886; Synth. Comm. 2011, 41, 1276-1281). Hydroxy acids were obtained from commercial suppliers or synthesized from the corresponding amino acids as described in the literature (Tetrahedron 1989, 45, 1639-1646; Tetrahedron 1990, 46, 6623-6632; J. Org. Chem. 1992, 57, 6239-6256.; J. Am. Chem. Soc. 1999, 121, 6197-6205; Org. Lett. 2004, 6, 497-500; Chem. Comm. 2015, 51, 2828-2831). Resins for solid phase synthesis were obtained from commercial suppliers, including AAPTech, Novabiochem and Rapp Polymere (Tübingen, Germany). Analytical TLC was performed on pre-coated plates of silica gel, for example 60F254 (0.25 mm thickness) containing a fluorescent indicator.


NMR spectra were recorded on a Bruker 400 MHz or 500 MHz spectrometer. or comparable instrument, and are referenced internally with respect to the residual proton signals of the solvent. Additional structural information or insight about the conformation of the molecules in solution can be obtained utilizing appropriate two-dimensional NMR techniques known to those skilled in the art.


HPLC analyses were performed on a Waters Alliance system running at 1 mL/min using a Zorbax SB-C18 (4.6 mm×30 mm, 2.5 μm), an Xterra MS C18 column (4.6 mm×50 mm, 3.5 μm), or comparable. A Waters 996 PDA provided UV data for purity assessment. Data was captured and processed utilizing the instrument software package. MS spectra were recorded on a Waters ZQ or Platform II system.


Preparative HPLC purifications were performed on deprotected macrocycles using the following instrumentation configuration (or comparable): Waters 2767 Sample Manager, Waters 2545 Binary Gradient Module, Waters 515 HPLC Pumps (2), Waters Flow Splitter, 30-100 mL, 5000:1, Waters 2996 Photodiode Detector, Waters Micromass ZQ., on an Atlantis Prep C18 OBD (19×100 mm, 5 μm) or an XTerra MS C18 column (19×100 mm, 5 μm). The mass spectrometer, HPLC, and mass-directed fraction collection are controlled via MassLynx software version 4.0 with FractionLynx. Fractions shown by MS analysis to contain the desired pure product were evaporated under reduced pressure, usually on a centrifugal evaporator system [Genevac (SP Scientific), SpeedVac™ (Thermo Scientific, Savant) or comparable] or, alternatively, lyophilized. Compounds were then analyzed by LC-MS-UV analysis for purity assessment and identity confirmation. Automated medium pressure chromatographic purifications were performed on a Biotage Isolera system with disposable silica or C18 cartridges. Solid phase extraction was performed utilizing PoraPak™ [Sigma-Aldrich (Supelco), St. Louis, Mo., USA], SiliaSep™, SiliaPrep™ and SiliaPrepX™ (SiliCycle, Quebec, QC, Canada) or comparable columns, cartridges, plates or media as appropriate for the compound being purified.


The expression “concentrated/evaporated/removed under reduced pressure” or concentrated/evaporated/removed in vacuo” indicates evaporation utilizing a rotary evaporator under either water aspirator pressure or the stronger vacuum provided by a mechanical oil vacuum pump as appropriate for the solvent being removed or, for multiple samples simultaneously, evaporation of solvent utilizing a centrifugal evaporator system. “Flash chromatography” refers to the method described as such in the literature (J. Org. Chem. 1978, 43, 2923-2925.) and is applied to chromatography on silica gel (230-400 mesh, EMD Millipore or equivalent) used to remove impurities, some of which may be close in Rf to the desired material.


The majority of the synthetic procedures described herein are for the solid phase (i.e. on resin), since this is more appropriate for creating the libraries of the present disclosure, but it will be appreciated by those in the art that these same transformations can also be modified to be applicable to traditional solution phase processes as well. The major modifications are the substitution of a standard aqueous organic work-up process for the successive resin washing steps and the use of lower equivalents for reagents versus the solid phase.


The following synthetic methods will be referenced elsewhere in the disclosure by using the number 1 followed by the letter referring to the method or procedure, i.e. Method 1F for Fmoc deprotection.


B. General Methods for Synthesis of Libraries of Macrocyclic Compounds

Different synthetic strategies, including solution and solid phase techniques, are employed to prepare the libraries of macrocyclic compounds of the disclosure. An outline of the general strategy for the synthesis of the libraries of compounds of the disclosure is provided in Scheme 1. It will be appreciated by those skilled in the art that for the synthesis of larger libraries, the use of solid phase procedures typically will be preferable and more efficient. Further, the macrocyclic compounds can be made in mixtures or as discrete compounds. In either case, the utilization of specific strategies for tracking the synthesis can be advantageous, such as the use of tagging methodologies (i.e. radiofrequency, color-coding or specific chemical functionality, for a review, see J. Receptor Signal Transduction Res. 2001, 21, 409-445) and sequestration of resin containing a single compound using a polypropylene mesh “tea” bag (Proc. Natl. Acad. Sci. USA 1985, 82, 5131-5135) or flow-through capsule (MiniKan, Biotechnol. Bioengineer. 2000, 71, 44-50), which permit the simultaneous transformation of multiple different individual compounds in the same reaction vessel. For mixtures, such tags can also be effectively used to facilitate “deconvolution” or the identification of the active structure(s) from a mixture that was found to be a hit during screening.


The construction of the macrocyclic compounds of the library involves the following phases: (i) synthesis of the individual multifunctional, appropriately protected, building blocks, including elements for interaction at biological targets and fragments for control and definition of conformation, as well as moieties that can perform both functions; (ii) assembly of the building blocks, typically in a sequential manner with cycles of selective deprotection and attachment, although this step could also be performed in a convergent manner, utilizing standard chemical transformations as well as those described in more detail in the General/Standard Procedures and Examples herein, such as amide bond formation, reductive amination, Mitsunobu reaction and its variants, and nucleophilic substitution reactions; (iii) optionally, selective removal of one or more side chain protecting groups can be performed, either during the building block assembly or after assembly is completed, then the molecule further reacted with one or more additional building blocks to extend the structure at the selectively unprotected functional group(s); (iv) selective deprotection of two functional groups followed by cyclization of the assembled linear compounds, which can involve one or more steps, to form the macrocyclic structures; and (v) removal of all remaining protecting groups, if necessary, and, optionally, purification to provide the desired final macrocycles.


The assembly reactions require protection of functional groups to avoid side reactions. Even though amino acids are only one of the types of building blocks employed, the well-established strategies of peptide chemistry have utility for the macrocyclic compounds and libraries of the disclosure as well (Meth. Mol. Biol. 2005, 298, 3-24). In particular, these include the Fmoc/tBu strategy (Int. J. Pept. Prot. Res. 1990, 35, 161-214) and the Boc/Bzl strategy (Meth. Mol. Biol. 2013, 1047, 65-80), although those in the art will appreciate that other orthogonal strategies may be necessary, for example the use of allyl-based protecting groups, to enable selective reaction at a particular site in multi-functional building blocks.


For solid phase processes, the cyclization can be conducted with the linear precursor on the resin after the two reacting groups are selectively deprotected and the appropriate reagents for cyclization added. This is followed by cleavage from the resin, which may also cleave the side chain protecting groups with the use of appropriate conditions. However, it is also possible to cyclize concomitant with resin cleavage if a special linker that facilitates this so-called “cyclization-release” process (Comb. Chem. HTS 1998, 1, 185-214) is utilized. Alternatively, the assembled linear precursor can be cleaved from the resin and then cyclized in solution. This requires the use of a resin that permits removal of the bound substrate without concomitant protecting group deprotection. For Fmoc strategies, 2-chlorotrityl resin (Tetrahedron Lett. 1989, 30, 3943-3946; Tetrahedron Lett. 1989, 30, 3947-3950) and derivatives are effective for this purpose, while for Boc approaches, an oxime resin has been similarly utilized (J. Org. Chem. 1980, 45, 1295-1300). Alternatively, a resin can be used that is specially activated for facile cleavage only after precursor assembly, but is otherwise quite stable, termed a “safety-catch” linker or resin (Bioorg. Med. Chem. 2005, 13, 585-599). For cyclization in solution phase, the assembled linear precursor is selectively deprotected at the two reacting functional groups, then subjected to appropriate reaction conditions for cyclization. Typically, side chain protecting groups are removed at the end of the synthesis regardless of the method utilized prior to purification or any biological testing.


Upon isolation and characterization, the library compounds can be stored individually in the form thus obtained (solids, syrups, liquids) or dissolved in an appropriate solvent, for example DMSO. If in solution, the compounds can also be distributed into an appropriate array format for ease of use in automated screening assays, such as in microplates or on miniaturized chips. Prior to use, the library compounds, as either solids or solutions, are typically stored at low temperature to ensure the integrity of the compounds is maintained over time. As an example, libraries are stored at or below −70° C. as 10 mM solutions in 100% DMSO, allowed to warm to ambient temperature and diluted with buffer, first to a working stock solution, then further to appropriate test concentrations for use in HTS or other assays.


C. General Methods for Solid Phase Chemistry

These methods can be equally well applied for the combinatorial synthesis of mixtures of compounds or the parallel synthesis of multiple individual compounds to provide the libraries of macrocyclic compounds of the present disclosure. In the event of combinatorial synthesis of mixtures, it is necessary to include some type of encoding or tracking mechanism in order to deconvolute the data obtained from HTS of the libraries so that the identity of the active compound obtained can be ascertained (Curr. Opin. Biotechnol. 1995, 6, 632-639; Curr. Opin. Drug Discov. Develop. 2002, 5, 580-593; Curr. Opin. Chem. Biol. 2003, 7, 374-379).


For solid phase chemistry, the solvent choice is important not just to solubilize reactants as in solution chemistry, but also to swell the resin to be able to access all the reactive sites thereon. Certain solvents interact differently with the polymer matrix depending on its nature and can affect this swelling property. As an example, polystyrene (with DVB cross-links) swells best in nonpolar solvents such as DCM and toluene, while shrinking when exposed to polar solvents like alcohols. In contrast, other resins such as PEG (for example, ChemMatrix®) and PEG-grafted ones (for example, TentaGel®), maintain their swelling even in polar solvents. For the reactions of the present disclosure, appropriate choices can be made by one skilled in the art. In general, polystyrene-DVB resins are employed with DMF, DCM and NMP as common solvents. The volume of the reaction solvent required is generally 3-5 mL per 100 mg resin. When the term “appropriate amount of solvent” is used in the synthesis methods, it refers to this quantity. The recommended quantity of solvent roughly amounts to a 0.2 M solution of building blocks (amino acids, hydroxy acids, amino alcohols, diacids, diamines, and derivatives thereof, typically used at 5 eq relative to the initial loading of the resin). Reaction stoichiometry was determined based upon the “loading” (represents the number of active functional sites, provided by the supplier, typically as mmol/g) of the starting resin.


The reaction can be conducted in any appropriate vessel, for example round bottom flasks, solid phase reaction vessels equipped with a fritted filter and stopcock, or Teflon-capped jars. The vessel size should be such that there is adequate space for the solvent, and that there is sufficient room for the resin to be effectively agitated taking into account that certain resins can swell significantly when treated with organic solvents. The solvent/resin mixture should fill about 60% of the vessel. Agitations for solid phase chemistry could be performed manually or with an orbital shaker (for example, Thermo Scientific, Forma Models 416 or 430) at 150-200 rpm, except for those reactions where scale makes use of mild mechanical stirring more suitable to ensure adequate mixing, a factor which is generally accepted as important for a successful reaction on resin.


The volume of solvent used for the resin wash is a minimum of the same volume as used for the reaction, although more is generally used to ensure complete removal of excess reagents and other soluble residual by-products (minimally 0.05 mL/mg resin). Each of the resin washes specified in the General/Standard Procedures and Examples should be performed for a duration of at least 5 min with agitation (unless otherwise specified) in the order listed. The number of washings is denoted by “nx” together with the solvent or solution, where n is an integer. In the case of mixed solvent washing systems, they are listed together and denoted solvent 1/solvent 2. After washing, the expression “dried in the usual manner” and analogous expressions mean that the resin is dried first in a stream of air or nitrogen for 20 min-1 h, using the latter if there is concern over oxidation of the substrate on the resin, and subsequently under vacuum (oil pump usually) until full dryness is attained (minimum 2 h to overnight (o/n)).


The general and specific synthetic methods and procedures utilized for representative macrocyclic compounds disclosed and utilized herein are presented below. Although the methods described may indicate a specific protecting group, other suitable protection known in the art may also be employed.


D. General Procedure for Loading of First Building Block to Resin

Certain resins can be obtained with the first building block (BB1), in particular amino acid building blocks, already attached. For other cases on the solid support, the building blocks can be attached using methods known in the art. As an example, the following procedure is followed for adding the first protected building block to 2-chlorotrityl chloride resin.


Prewash the resin with DCM (2×), then dry in the usual manner. In a suitable reaction vessel, dissolve Fmoc-BB1 (2 eq) in DCM (0.04 mL/mg resin) and add DIPEA (4 eq.), agitate briefly, then add the resin. Agitate o/n on an orbital shaker, remove the solvent, wash with DMF (2×), then, cap any remaining reactive sites using MeOH/DIPEA/DCM (2:1:17) (3×). The resin is washed sequentially with DCM (1×), iPrOH (1×), DCM (2×), ether (1×), then dried in the usual manner.


In the case of solution phase chemistry, the first building block is typically used as a suitably protected derivative with one functional group free for subsequent reaction.


E. Standard Procedure for Monitoring the Progress of Reactions on the Solid Phase

Since methods usually employed for monitoring reaction progress (TLC, direct GC or HPLC) are not available for solid phase reactions, it is necessary to perform cleavage of a small amount of material from the support in order to determine the progress of a transformation, such as described in the following representative procedure for 2-chlorotrityl resin. A small amount of resin (a few beads is usually sufficient) is removed from the reaction vessel, then washed successively with DMF (2×), iPrOH (1×), DCM (2×), ether (1×), dried, then treated with 200 μL 20% hexafluoroisopropanol (HFIP)/DCM, for 10-20 min, and concentrated with a stream of air or nitrogen. To the crude residue obtained, add 200-400 μL MeOH (or use DMSO or THF to solubilize fully protected intermediate compounds), filter through a 45 μm HPLC filter, or a plug of cotton, and analyze the filtrate by HPLC or HPLC-MS.


It is also possible to monitor the progress of solid phase reactions involving amines using a variety of other tests, including the Kaiser (ninhydrin) test for primary amines (Anal. Biochem. 1970, 34, 595-598; Meth. Enzymol. 1997, 289, 54), the 2,4,6-trinitrobenzene-sulphonic acid test (Anal. Biochem. 1976, 71, 260-264), the bromophenol blue test (Collect. Czech. Chem. Commun. 1988, 53, 2541-2548), the isatin test for proline (Meth. Enzymol. 1997, 289, 54-55), and the chloroanil test for secondary amines (Pept. Res. 1995, 8, 236-237).


F. General Procedure for Fmoc Deprotection

In an appropriate vessel, a solution of 20% piperidine (Pip) in DMF (0.04 mL/mg resin) was prepared. The resin was added to the solution and the mixture agitated for 30 min. The reaction solution was removed, then this treatment repeated. After this, the resin was washed sequentially with: DMF (2×), iPrOH (1×), DMF (1×), iPrOH (1×), DCM (2×), ether (1×), then the resin dried in the usual manner.


Note that when N-alkylated-amino acids are present in the BB1 position, to minimize the potential of diketopiperazine formation, 50% Pip/DMF is used for Fmoc-deprotection of BB2 and the procedure modified as follows: Add the solution to the resin and agitate for only 5-7 min, remove the solvent, add DMF, agitate quickly and remove the solvent, then resume the remaining washes as described above.


An analogous procedure is performed in solution to remove the Fmoc group. The N-Fmoc protected compound is dissolved in a solution of 20% piperidine in DMF, stirred for 30 min at rt, then concentrated in vacuo. The residue is typically used as obtained in the next chemical reaction step, but also can be purified by crystallization either as the free base or salt, aqueous-organic extraction or flash chromatography as appropriate for the structure.


G. General Procedure for Attachment of Amines to Acids

To an appropriate reaction vessel, add the acid building block (2.5-3.5 eq), coupling agent (2.5-3.5 eq) and NMP (0.04 mL/mg resin), followed by DIPEA (5-7 eq). Agitate the mixture vigorously for a few seconds and then add the amine-containing resin. Alternatively, separately prepare a solution of the coupling agent (3.5 eq) in NMP, then add this solution to the acid building block (2.5-3.5 eq) and agitate vigorously. Add DIPEA (5-7 eq), agitate a few seconds, then add the resin. HATU (1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate) and DEPBT (3-(diethoxyphosphoryloxy)-1,2,3-benzotriazin-4(3H)-one) are two typical coupling agents employed, although many other suitable ones are known and could also be utilized (Chem. Rev. 2011, 111, 6557-6602). Agitate the reaction mixture o/n, remove the solution and, if deprotection will be done immediately, wash the resin sequentially with: DMF (2×), iPrOH (1×), DMF (2×), then dry. If deprotection will not be performed immediately, wash sequentially with DMF (2×); iPrOH (1×); DMF (1×); iPrOH (1×), DCM (2×), ether (1×), then dry in the usual manner.


For attachment of BB3 and beyond, utilize 5 eq of acid building block and coupling agent with 10 eq of DIPEA. If the acid building block is one known to require repeated treatment for optimal results, for example N-alkylated and other hindered amino acids, use half of the indicated equivalents for each of the two treatments.


Although the above describes the amine on resin and the acid as the new building block added, it will be appreciated by those in the art that the reverse can also be performed in a similar manner, with the acid component on the solid phase and the amine being the added component.


In addition to the use of acids as building blocks, it is also possible to utilize Fmoc acid fluorides (formed from the acid using cyanuric fluoride, J. Am. Chem. Soc. 1990, 112, 9651-9652) and Fmoc acid chlorides (formed from the acid using triphosgene, J. Org. Chem. 1986, 51, 3732-3734) as alternatives for particularly difficult attachments.


H. General Procedures for Oxidation of Alcohol Building Blocks to Aldehydes.

A number of different oxidation methods can be utilized to convert alcohols to aldehydes for use in the attachment of building blocks by reductive amination. The following lists the most appropriate methods for the compounds of the present disclosure, and the types of building blocks on which they are typically applied,

  • 1) MnO2 oxidation (see Example 1K for additional details) used for benzylic aldehydes.
  • 2) Swern oxidation (DMSO, oxalyl chloride) used for both benzylic and alkyl aldehydes. (Synthesis 1981, 165-185)




embedded image


  • 3) Pyridine.SO3 (see Example 1J for additional details) used for both benzylic and alkyl aldehydes.

  • 4) Dess-Martin Periodinane (DMP, 1,1,1-Triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one) used for alkyl aldehydes (J. Am. Chem. Soc., 1991, 113, 7277-7287)





embedded image


The following are structures of representative aldehyde building blocks of the present disclosure formed by oxidation of the corresponding alcohols using these general procedures or prepared as described in the Examples.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


The products are characterized by 1H NMR (using the aldehyde CHO as a diagnostic tool) and LC-MS.


I. General Procedure for Attachment of Building Blocks by Reductive Amination. using BAP


The N-protected aldehyde (1.5 eq) was dissolved in MeOH/DCM/TMOF (trimethyl orthoformate) (2:1:1) or MeOH/TMOF (3:1) (0.04 mL/mg resin) and the resulting solution added to the resin and agitated for 0.5-1 h. If solubility is a problem, THF can be substituted for DCM in the first solvent mixture. Add borane-pyridine complex (BAP, 3 eq) and agitate for 15 min, then carefully release built-up pressure and continue agitation o/n. If the reaction is not complete, add more BAP (2 eq) and agitate again o/n. After removal of the solvent, the resin was washed sequentially with DMF (2×), THF (1×), iPrOH (1×), DCM (1×), THF/MeOH (3:1, 1×), DCM/MeOH (3:1, 1×), DCM (2×), ether (1×), then dried in the usual manner.


For alkyl aldehydes, the quantity of reactants can be adjusted slightly to 1.4-1.5 eq of aldehyde and 2-3 eq of BAP in MeOH/DCM/TMOF (2:1:1). However, note that the reaction often does require up to 3 eq of reducing agent to go to completion with hindered amines. For benzylic aldehydes, add 3 eq of BAP in a mixture of 3:1 of MeOH/TMOF. If the reaction is not complete, add another 2 eq of BAP and agitate again o/n. Certain amino acids, such as Gly, undergo double alkylation easily (for such cases use Nos-Gly and attach the building block using Method 1L), while hindered amino acids such as Aib do not proceed to completion. In the latter instance, monitor reaction closely before proceeding to Fmoc deprotection and, if not complete, perform a second treatment.


J. General Procedure for Attachment of Building Blocks by Reductive Amination Using Sodium Triacetoxyborohydride.

As an alternative method, found particularly useful for benzylic aldehydes, sodium triacetoxyborohydride can be employed in the reductive amination process as follows. Dissolve 1.5-3 eq of the aldehyde in DCM (0.4 mL/mg resin), add the amine-containing resin, then agitate for 2 h. To the mixture, add NaBH(OAc)3 (4-5 eq) and agitate o/n. Once the reaction is complete, remove the solvent, then wash the resin sequentially with DMF (2×), THF (1×), iPrOH (1×), DCM (1×), THF/MeOH (3:1, 1×), DCM/MeOH (3:1, 1×), DCM (2×), ether (1×) and dry in the usual manner. Please note that if the reductive amination is not complete, such as is often encountered with Pro or N-alkyl amino acids, additional aldehyde must be included as part of the second treatment.


K. General Procedure for Attachment of Building Blocks by Reductive Amination Using Sequential Sodium Cyanoborohydride and BAP Treatment.

For certain benzylic aldehydes, a sequential Borch and BAP reduction process can be beneficial as described in the following. In the first step, the Fmoc-protected aldehyde (3 eq) in NMP/TMOF (1:1) containing 0.5% glacial acetic acid) (0.4 mL/mg resin) is added to the resin in an appropriate reaction vessel and agitate for 30 min. To the mixture, add NaBH3CN (10 eq), agitate for 10 min, then release pressure and continue agitation o/n. Remove the solvent and wash the resin sequentially with: DMF (2×), iPrOH (1×), DMF (1×), iPrOH (1×), DCM (2×), ether (1×). If in-process QC (Method 1E) shows incomplete reaction, proceed to suspend the resin in MeOH/DCM/TMOF (2:1:1), add BAP (2-3 eq) and agitate for 4 h. Remove the solvent and wash the resin sequentially with: DMF (2×), THF (1×), iPrOH (1×), DCM (1×), THF/MeOH (3:1, 1×), DCM/MeOH (3:1, 1×), DCM (2×), ether (1×), then dry in the usual manner. For building blocks containing a pyridine moiety, use MeOH/DCM (1:1), no TMOF, for the second treatment.


Reductive amination conditions and reagents for representative building blocks are collated in the table that follows:













Aldehyde Building Block(s)
Conditions and reagents







PG-S30
3 eq aldehyde, MeOH/DCM/TMOF 2:1:1,



3 eq BAP


PG-S31, PG-S32 and any
2-3 eq aldehyde, MeOH/DCM/TMOF 2:1:1,


amino aldehyde derived
3 eq BAP


from an amino acid


PG-S37
1.5-2 eq aldehyde NaBH(OAc)3/DCM


PG-S38
1.5 eq aldehyde, MeOH/TMOF 3:1, 3 eq



BAP, followed by NaBH(OAc)3,



or NaBH(OAc)3/DCM


PG-S43
1.5 eq aldehyde, MeOH/DCM/TMOF 2:1:1,



2 eq BAP


PG-S46
1.5 eq aldehyde, MeOH/TMOF 3:1, 3 eq.



BAP or NaBH(OAc)3


PG-S49
1.5 eq aldehyde, MeOH/DCM/TMOF 2:1:1,



2 eq BAP


Pyridine-containing
3 eq aldehyde, MeOH/DCM/TMOF (2:1:1),


building blocks
2-3 eq BAP









Although the above procedures for reductive amination describe the amine being the resin component and the aldehyde as the new building block added, it will be appreciated by those in the art that the reverse can also be performed in a similar manner, with the aldehyde component on the solid phase and the amine being the added component.


L. Standard Procedure for Building Block Attachment Using Mitsunobu Reaction.

The procedure below specifically describes the building block being attached as its 2-nitrobenzenesulfonyl-derivative (Nos, nosyl) with Fukuyama-Mitsunobu reaction conditions (Tet. Lett. 1995, 36, 6373-6374) then being used for attachment of the next building block.


Step 1L-1.


Prepare a solution of HATU (5 eq), or other appropriate coupling agent, in NMP (0.04 mL/mg resin), monitoring the pH and adjusting to maintain around pH 8, then add to the nosyl-containing building block (5 eq, see Method 1M below) and agitate vigorously. To this solution, add DIPEA (10 eq), agitate briefly, then add to resin and agitate o/n. Use 50% of the indicated quantities if a repeat treatment is planned or anticipated. Upon completion, if the next step will be conducted immediately, wash the resin sequentially with DMF (2×), i-PrOH (1×), DMF (2×), then proceed. Otherwise, wash with DMF (2×); i-PrOH (1×); DMF (1×); DCM (2×), the last wash cycle can be alternatively done as DCM (1×), ether (1×), then dry the resin in the usual manner.


Step 1L-2.


Dissolve the reactant hydroxy component (alcohol, phenol) (5 eq) in THF (0.04 mL/mg resin, 0.2 M) and add PPh3-DIAD adduct (5 eq, see Method 1O below) and very briefly agitate (10-15 sec). Alternatively, prepare a solution of PPh3 (5 eq) and alcohol (5 eq) in THF, cool to 0° C. and add DIAD (5 eq) dropwise. Stir for 15 min at 0° C., add nosyl-containing resin and agitate o/n. Filter the resin and wash sequentially with: THF (2×), toluene (1×), EtOH (1×), toluene (1×), THF (1×), iPrOH (1×), THF (1×), THF/MeOH (3:1, 1×), DCM/MeOH (3:1, 1×), DCM (2×), then dry the resin in the usual manner. Note that the order of addition is important for best results.


The Mitsunobu reaction procedure is used preferentially to attach the following building blocks (note that for best conversion, incorporation of these may require being subjected to a second treatment with the building block and reagents): PG-S7, PG-S8, PG-S9, PG-S10, PG-S13, PG-S15.


Alternatively, the building block can also be attached first as its Fmoc, Boc or other N-protected derivative. In those cases, that protection must first be removed using the appropriate method, then the nosyl group installed and the alkyation executed as described in more detail in Method 1P below. Other sulfonamides containing electron-withdrawing substituents can also be utilized for this transformation, including, but not limited to, the 4-nitro-benzenesulfonyl, 2,4-dinitrobenzenesulfonyl (Tet. Lett. 1997, 38, 5831-5834), 4-cyanobenzenesulfonyl (J. Org. Chem. 2017, 82, 4550-4560) and Bts (benzothiazolylsulfonyl) (J. Am. Chem. Soc. 1996, 118, 9796-9797; Bioorg. Med. Chem. Lett. 2008, 18, 4731-4735) groups.


Further, although the above procedure describes the nosylated amine being on the resin and the hydroxy/phenol-containing component being present on the new building block added, it will be appreciated by those in the art that the reverse arrangement can also be utilized in an analogous manner, with the hydroxy/phenol-containing component on the solid phase and the nosylated amine being present on the added building block.


M. Standard Procedure for Nosyl Protection.

The amino acid substrate was added to a solution of 2-nitro-benzenesulfonyl chloride (Nos-Cl, 4 eq) and 2,4,6-collidine (10 eq) in NMP (0.04 mL/mg resin), then the reaction agitate for 1-2 h. The solution was removed and the resin washed sequentially with: DMF (2×), iPrOH (1×), DMF (1×), iPrOH (1×), DMF (2×), iPrOH (1×), DCM (2×), ether (1×). For protection of primary amines, Nos-Cl (1-1.2 eq) and 2,4,6-collidine (2.5 eq) in NMP (0.04 mL/mg resin) were used with agitation for 30-45 min. With more hindered amines, a second treatment might be required. Analogous procedures are utilized to conduct this reaction in solution.


N. Standard Procedure for Nosyl Deprotection.

A solution of 2-mercaptoethanol (10 eq), DBU (1,8-diaza-bicyclo[5.4.0.]undec-7-ene, 5 eq) in NMP (0.04 mL/mg resin) was prepared and added to the resin, then the mixture agitated for 8-15 min. The longer reaction time will be required for more hindered substrates. The resin was filtered and washed with NMP, then the treatment repeated. The resin was again filtered and washed sequentially with: DMF (2×), iPrOH (1×), DMF (1×), iPrOH (1×), DMF (1×), DCM (1×), iPrOH (1×), DCM (2×), ether (1×).


O. Standard Procedure for the Synthesis of PPh3-DIAD Adduct.

This reagent was prepared in a manner essentially as described in WO 2004/111077. In a round bottom flask under nitrogen, DIAD (1 eq) was added dropwise to a solution of PPh3 (1 eq) in THF (0.4 M) at 0° C., then the reaction stirred for 30 min at that temperature. The solid precipitate was collected on a medium porosity glass-fritted filter, wash the solid with cold THF (Drisolv grade or equivalent) to remove any color, then with anhydrous ether. The resulting white powder was dried under vacuum and stored under nitrogen in the freezer. It is removed shortly before an intended use.


P. Standard Procedure for N-Alkylation.



embedded image


If the building block is attached as its Fmoc (depicted), Boc or other N-protected derivative, first remove that protecting group using the appropriate deprotection method, and perform installation of the nosyl group using Method 1M. With the Nos group in place, use the procedure of Step 1K-2 above to alkylate the nitrogen under Fukuyama-Mitsunobu conditions (Tet. Lett. 1995, 36, 6373-6374) with an alcohol (R—OH). This procedure can be utilized for preparing N-methyl and other N-alkyl components for which the respective individual building block is commercially unavailable or otherwise difficult to access. Methylation can also be conducted using diazomethane with the nosyl substrate on resin (J Org Chem. 2007, 72, 3723-3728). The nosyl group is removed using Method 1N, then the next building block is added or, if the building block assembly is concluded, the precursor is cleaved from the resin (or the appropriate functionality on the first building block is deprotected if solution phase) and subjected to the macrocyclization reaction (Method 1R).


Alternatively, as can be appreciated by those in the art, in the case that other functionality in the molecule is used for the next building block reaction, it may be advantageous to leave the N-Nos group installed until the end of the building block assembly or even after the macrocyclization, since it essentially provides protection of the backbone amide and prevents side reactions at that site (J. Pept. Res. 1997, 49, 273-279), and delay cleaving it only at that time.


Q. General Procedure for Cleavage from 2-Chlorotrityl Resin.


Add a solution of 20% HFIP (hexafluoro-2-propanol) in DCM (0.03 mL/mg resin) to the resin and agitate for 2 h. Filter the resin and wash it with 20% HFIP in DCM (0.01 mL/mg resin, 2×) and DCM (0.01 mL/mg resin, 1×). The filtrate is evaporated to dryness under vacuum.


R. General Procedure for Macrocyclization.

A solution of DEPBT (1.0-1.2 eq) and DIPEA (2.0-2.4 eq) in 25% NMP/THF (0.03 mL/mg original resin) is prepared and added to the residue from the previous step. In certain cases where compounds may be poorly soluble, dissolve the residue first in NMP, then add DEPBT and DIPEA in THF to the solution. The crude reaction mixture is filtered through one or more solid phase extraction (SPE) cartridges (for example PoraPak, PS-Trisamine, Si-Triamine, Si-Carbonate), then further purified by flash chromatography or preparative HPLC.


S. Standard Procedures for Final Protecting Group Deprotection

The method of deprotection depends on the nature of the protecting groups on the side chains of the macrocycle(s) being deprotected using the following guidelines.

  • 1) For removal of Boc and tBu groups only, the following mixtures are utilized: 50% TFA,/3% triisopropylsilane (TIPS)/47% DCM or 50% TFA/45% DCM/5% H2O (2 mL/cpd), agitate for 2 h, then concentrate in vacuo. For building blocks containing a double bond, 50% TFA/45% DCM/5% H2O should be used as the cleavage solution to avoid reduction of the alkene.
  • 2) For removal of tBu esters/ethers and trityl groups, utilize 75% TFA/22% DCM/3% TIPS (2 mL/cpd), agitate for 2 h, then concentrate in vacuo. Alternatively, 75% 4N HCl/dioxane/20% DCM/5% H2O mixture can be employed, which works particularly well to ensure complete Ser(But) deprotection. Also, if the macrocycle does not contain Thr, Ser, His, Asn or Gin building block components, 75% TFA/20% DCM/5% H2O (2 mL/cpd) can be used as an alternative cleavage mixture.
  • 3) For removal of Pbf groups, use a mixture of 91% TFA/2% DCM/5% H2O/2% TIPS (2 mL/cpd), agitate for 2 h protected from ambient light, then concentrate in vacuo.
  • 4) Triethylsilane (TES) can also be used for the above deprotection procedures in place of TIPS, but should not be used with compounds containing Trp as it can reduce the indole moiety.


    T. Standard Procedure for Reactions of Building Blocks with Side Chain Functionalities on Solid Phase.


Using orthogonal protecting groups on side chain reactive functionalities permits selective deprotection and reaction of the liberated group(s) in order to further diversify the library of macrocyclic compounds through the addition of pendant building blocks. Representative groups that can be derivatized with one or more of the procedures below are amines, alcohols, phenols and carboxylic acids. This is typically performed while the structure is still bound to the resin and prior to cyclization. The following are representative types of transformations that are performed:


1) Amines, Alcohols and Phenols with Acid Chlorides


Prepare a solution of acid chloride (3.5 eq) in THF, 2,4,6-collidine (5 eq) and add the substrate on resin, agitate at rt o/n. The reaction mixture becomes milky after about 5 min. After o/n, remove the solution and wash the resin with: DMF (2×), DCM (1×), iPrOH (1×), DMF (1×), DCM (2×), ether (1×), then dry in the usual manner.


2) Amines with Sulfonyl Chlorides


Add the sulfonyl chloride (4 eq for aryl sulfonyl chlorides and 8 eq for alkyl sulfonyl chlorides) to the suspension of the resin and 2,4,6-collidine (2.5×sulfonyl chloride eq) in NMP, then agitate for 1-2 h. Remove the solution, wash the resin sequentially with DMF (2×), iPrOH (1×), DMF (1×), DCM (2×), ether (1×), then dry the resin in the usual manner.


3) Amines, Alcohols and Phenols with Carboxylic Acids


To a solution of carboxylic acid (5 eq), DIPEA (10 eq), HATU (5 eq) in NMP, add the resin and agitate o/n. Remove the solution, wash the resin sequentially with DMF (2×), iPrOH (1×), DMF (1×), DCM (2×), ether (1×), then dry the resin in the usual manner.


4) Reductive Amination

The standard procedures (Methods 11, 1J and 1K) described above are employed for reductive amination, except only 1 eq of the aldehyde is used to avoid double alkylation side products.


5) Carboxylic Acids with Amines


Prepare a solution of 6-Cl-HOBt (1 eq), EDAC (3-(((ethylimino)-methylene)amino)-N,N-dimethylpropan-1-amine hydrochloride, 5 eq.), and DIPEA (1 eq) in NMP. Add the resin and agitate for 15 min. To this is added the amine (5 eq) and the reaction mixture agitated o/n. Remove the solutions and wash the resin sequentially with DMF (2×); iPrOH (1×); DMF (1×); DCM (2×), ether (1×), then dry in the usual manner.


6) Amines and Phenols with Alcohols


Suspend the resin containing the phenol or nosylated amine in THF (0.04 mL/mg resin, 0.2 M) and add PPh3-DIAD adduct (5 eq, see Method 1O below) and very briefly agitate (10-15 sec). Alternatively, prepare a solution of PPh3 (5 eq) and alcohol (5 eq) in THF, cool to 0° C. and add DIAD (5 eq) dropwise. In either case, stir for 15 min at 0° C., then agitate o/n. Filter the resin and wash sequentially with: THF (2×), toluene (1×), EtOH (1×), toluene (1×), THF (1×), iPrOH (1×), THF (1×), THF/MeOH (3:1, 1×), DCM/MeOH (3:1, 1×), DCM (2×), then dry in the usual manner. Note that the order of addition is important for best results.


The following are structures of representative reagent building blocks utilized for the above transformations in the preparation of macrocyclic compounds and libraries of the disclosure as described in the Examples.




embedded image


embedded image


embedded image


The following non-limiting reaction schemes illustrate these transformations in conjunction with particular orthogonal protecting groups [R in the schemes contains one or more protected moieties that are not affected by the selective deprotection of allyl (Methods 1BB and 1CC), Alloc (Methods 1AA) or Fmoc (Method 1F)] for derivatization of selected functional groups in the preparation of macrocyclic compounds and libraries of the disclosure as detailed further in the Examples.




embedded image


U. Standard Procedure for Boc Protection.

Di-tert-butyl dicarbonate (5 eq) was added to the amine substrate on resin and triethylamine (5 eq) in DCM (0.04 mL/mg resin), then the mixture agitated for 4 h. Alternative organic amine bases, sodium carbonate or potassium carbonate can also be used. The solvent was removed and the resin washed sequentially with DMF (2×), iPrOH (1×), DMF (1×), DCM (2×), ether (1×), then dried the resin in the usual manner. An analogous method can be utilized in solution phase.


V. Standard Procedure for Boc Deprotection.

The Boc-containing substrate on resin was treated with 25% TFA in DCM (0.04 mL/mg resin) and agitated for 30 min. The resin was washed sequentially with DMF (2×); iPrOH (1×); DMF (1×); DCM (2×), ether (1×), then dried in the usual manner. A similar procedure is applied for removal of the Boc group in solution, although typically using a lower concentration of TFA (1-10%).


W. Standard Procedure for Fmoc Protection.

The free amine or amino acid is dissolved in water and NaHCO3 (2 eq) added. To the resulting stirred solution at 0° C. is slowly added Fmoc-OSu or Fmoc-Cl (1.5 eq) in dioxane. The reaction mixture is maintained at 0° for 1 h, then allowed to warm to room temperature overnight. Water is added and the aqueous layer extracted with EtOAc (2×). The organic layer is extracted with saturated NaHCO3 (aq) (2×). The combined aqueous layers are acidified to pH 1 with 10% HCl, then extracted with EtOAc (3×). The combined organic layers are dried (anhydrous MgSO4 or Na2SO4) and concentrated in vacuo. The resulting residue is then purified by crystallization or flash chromatography as appropriate. An analogous procedure without the extractive work-up, but with the addition of a standard resin washing process, can be used on solid phase.


X. Standard Procedure for Alloc Protection.

The amine is dissolved in water and Na2CO3 (2.7 eq) added with stirring. The resulting solution is cooled to 0° and a cooled solution of allyl chloroformate (1.5 eq) in dioxane added dropwise. The resulting mixture is stirred at 0° for 1 h then allowed to warm to room temperature while stirring overnight. Water is then added and the aqueous layer extracted with EtOAc (2×). The organic layer is extracted with saturated NaHCO3 (aq) (2×). The combined aqueous layers are acidified to pH 1 through the addition of 10% HCl, then extracted with EtOAc (3×). The combined organic layers are dried (MgSO4) and concentrated in vacuo. The resulting residue is then purified by flash chromatography or crystallization. An analogous procedure without the extractive work-up, but with the addition of a standard resin washing process, can be used on solid phase. With acid sensitive solid supports, like 2-chlorotrityl resin, however, care must be exercised to maintain a neutral or slightly basic reaction medium during this process.


Y. Standard Procedure for Allyl Ester Protection.

The carboxylic acid dissolved in dry DCM and allyl alcohol (1.1 eq) added with stirring. The mixture is cooled to at 00° C. under an inert atmosphere and dicyclohexylcarbodiimide (DCC, 1 eq) added followed by DMAP (0.05 eq). The reaction is allowed to warm to room temperature until complete as indicated by TLC (typically 24-48 h). EtOAc is added and the resulting precipitate removed by filtration and the solid washed with additional EtOAc. The filtrate is concentrated in vacuo and the residue purified by flash chromatography or crystallization as necessary.


Z. Standard Procedure for Allyl Ether Protection.

Prepare a solution of PPh3 (1.5 eq) and allyl alcohol (1.2 eq) in THF, cool to 0° C. and add DIAD (1.5 eq) dropwise. Stir for 15 min at 0° C., add the phenol component (for example Boc-Tyr-OBut, 1 eq) and allow the reaction mixture to warm to room temperature over 3 h. Alternatively, dissolve the phenol (1 eq) in THF (0.2 M) and add PPh3-DIAD adduct (1.5 eq, Method 10) with stirring. Ether (equal volume to THF) is added and the precipitated solid removed by filtration, washed with ether, then the combined filtrate and washings washed with H2O and saturated NaCl (aq). The organic layer is dried over anhydrous MgSO4, then the desiccant removed and the solvent evaporated under reduced pressure. The residue is purified by flash chromatography to give the protected product.


AA. Standard Procedures for Alloc Deprotection.

Suspend the resin in DCM and bubble nitrogen gas through the mixture for 10 min, then add phenylsilane (PhSiH3) (10-24 eq) and bubble nitrogen through the suspension again for 5 min. Add Pd(PPh3)4 (0.1 eq) and maintain the nitrogen flow for a further 5 min, then agitate the reaction for 4 h protected from light. Remove the solvent and wash the resin sequentially with: DMF (2×), iPrOH (1×), DCM (1×), DMF (1×), 0.5% sodium diethylthiocarbamate in DMF (3×), DMF (1×), iPrOH (1×), DMF (1×), DCM (2×), ether (1×), then dry in the usual manner. A similar process can be applied in solution along with the addition of an appropriate extractive work-up procedure followed by crystallization or flash chromatography purification.


BB. Standard Procedure for Ally Ester Deprotection.

Bubble nitrogen through the resin in DCM for 5 min, then evacuate and flush with nitrogen (3×) and bubble nitrogen through for a further 5 min. Add phenylsilane (10-24 eq), bubble nitrogen for 5 min, then add Pd(PPh3)4 (0.1 eq) and keep bubbling nitrogen through for a further 5 min. Close the reaction vessel, and agitate for 5 h protected from light. Remove the solution and wash the resin sequentially with: DMF (2×); iPrOH (1×); DCM (1×); DMF (1×); 0.5% sodium diethylthiocarbamate in DMF (3×); DMF (1×); iPrOH (1×); DMF (1×); DCM (2×); ether (1×) and dry in the usual manner. A similar process can be applied in solution along with the addition of an appropriate extractive work-up procedure followed by crystallization or flash chromatography purification.


CC. Standard Procedure for Ally Ether Deprotection.

Bubble nitrogen through the resin in DCM for 5 min, then evacuate and flush with nitrogen (3×) and bubble nitrogen through for a further 5 min. Add phenylsilane (24 eq), bubble nitrogen for 5 min, then add Pd(PPh3)4 (0.10-0.25 eq) and keep bubbling nitrogen through for a further 5 min, close the reaction vessel and agitate at rt for 16 h (o/n) protected from light. Remove the solution and wash the resin sequentially with: DMF (2×); iPrOH (1×); DCM (1×); DMF (1×); 0.5% sodium diethylthiocarbamate in DMF (3×); DMF (1×); iPrOH (1×); DMF (1×); DCM (2×); ether (1×), then dry in the usual manner. A similar process can be applied in solution along with the addition of an appropriate extractive work-up procedure followed by crystallization or flash chromatography purification.


2. Analytical Methods

The following representative methods for qualitative and quantitative analysis and characterization of the macrocyclic compounds comprising the libraries of the disclosure are routinely performed both for monitoring reaction progress as well as to assess the final products obtained. These analytical methods will be referenced elsewhere in the disclosure by using the number 2 followed by the letter referring to the method or procedure, i.e. Method 2B for preparative purification.


A. Standard HPLC Methods for Purity Analysis

Column: Zorbax SB-C18, 4.6 mm×30 mm, 2.5 μm


Solvent A: Water+0.1% TFA


Solvent B: CH3CN+0.1% TFA


UV Monitoring at λ=220, 254, 280 nm


Gradient Method A1


















Time (min)
Flow (mL/min)
% A
% B





















0
2
95
5



2.3
2
0
100



2.32
2
0
100



4
2
0
100










Gradient Method A2


















Time (min)
Flow (mL/min)
% A
% B





















0
2
95
5



0.5
2
95
5



5
2
0
100



7
2
0
100










The following representative methods are employed for preparative HPLC purification of the macrocyclic compounds comprising the libraries of the disclosure.


B. Standard HPLC Methods for Preparative Purification

Column: Atlantis Prep C18 OBD, 19 mm×100 mm, 5 μm


Solvent A: Aqueous Buffer (10 mM ammonium formate, pH 4)


Solvent B: MeOH


Gradient Method P1
















Time (min)
Flow (mL/min)
% A
% B
Curve



















0
30
89
11



2
30
89
11
6


8
30
2
98
6


9.7
30
2
98
6


10
30
50
50
6









Gradient Method P2
















Time (min)
Flow (mL/min)
% A
% B
Curve



















0
30
80
20



2
30
80
20
6


8
30
2
98
6


9.7
30
2
98
6


10
30
50
50
6









Gradient Method P3
















Time (min)
Flow (mL/min)
% A
% B
Curve



















0
30
70
30



2
30
70
30
6


8
30
2
98
6


9.7
30
2
98
6


10
30
50
50
6









Gradient Method P4
















Time (min)
Flow (mL/min)
% A
% B
Curve



















0
30
60
40



2
30
60
40
6


8
30
2
98
6


9.7
30
2
98
6


10
30
50
50
6









Gradient Method P5
















Time (min)
Flow (mL/min)
% A
% B
Curve



















0
30
89
11



2
30
89
11
6


12
30
2
98
6


14.7
30
2
98
6


15
30
70
30
6









Gradient Method P6
















Time (min)
Flow (mL/min)
% A
% B
Curve



















0
30
80
20



2
30
80
20
6


12
30
2
98
6


14.7
30
2
98
6


15
30
70
30
6









Gradient Method P7
















Time (min)
Flow (mL/min)
% A
% B
Curve



















0
30
89
11



2
30
89
11
6


11.7
30
2
98
6


12
30
89
11
6









Gradient Method P8
















Time (min)
Flow (mL/min)
% A
% B
Curve



















0
30
89
11



3
30
89
11
6


11.7
30
2
98
6


12
30
89
11
6









Gradient Method P9
















Time (min)
Flow (mL/min)
% A
% B
Curve



















0
30
89
11



2
30
89
11
6


8
30
2
98
6


9.7
30
2
98
6


10
30
70
30
6









Gradient Method P10
















Time (min)
Flow (mL/min)
% A
% B
Curve



















0
30
80
20



2
30
80
20
6


8
30
2
98
6


9.7
30
2
98
6


10
30
70
30
6











    • Typically, methods P5, P6, P7, P8, P9 and P10 are used if a sample requires additional purification after the initial purification run.

    • Note that lower flow rates (i.e. 20-25 mL/min) can be utilized with concomitant lengthening of the gradient run time.

    • The use of ammonium formate buffer results in the macrocyclic compounds, typically, being obtained as their formate salt forms.





3. Methods of Use

The libraries of macrocyclic compounds of the present disclosure are useful for application in high throughput screening (HTS) on a wide variety of targets of therapeutic interest. The design and development of appropriate HTS assays for known, as well as newly identified, targets is a process well-established in the art (Methods Mol. Biol. 2009, 565, 1-32; Mol. Biotechnol. 2011, 47, 270-285) and such assays have been found to be applicable to the interrogation of targets from any pharmacological target class. These include G protein-coupled receptors (GPCR), nuclear receptors, enzymes, ion channels, transporters, transcription factors, protein-protein interactions and nucleic acid-protein interactions. Methods for HTS of these target classes are known to those skilled in the art (High Throughput Screening in Drug Discovery, J. Hüser, ed., Wiley-VCH, 2006, pp 343, ISBN 978-3-52731-283-2; High Throughput Screening: Methods and Protocols, 2nd edition, W. P. Janzen, P. Bernasconi, eds., Springer, 2009, pp 268, ISBN: 978-1-60327-257-5; Cell-Based Assays for High-Throughput Screening: Methods and Protocols, P. A. Clemons, N. J. Tolliday, B. K. Wagner, eds., Springer, 2009, pp 211, ISBN 978-1-60327-545-3). These methods can be utilized to identify modulators of any type, including agonists, activators, inhibitors, antagonists, and inverse agonists. The Examples describe representative HTS assays in which libraries of the present disclosure are useful. The targets include an enzyme, a G protein-coupled receptor and a protein-protein interaction. Prior to use, the libraries are typically stored at or below −70° C. as 10 mM stock solutions in 100% DMSO (frozen), allowed to warm to rt, then aliquots diluted to an appropriate test concentration, for example 10 μM in buffer.


The libraries of compounds of the present disclosure are thus used as research tools for the identification of bioactive hits from HTS that in turn serve to initiate drug discovery efforts directed towards new therapeutic agents for the prevention and treatment of a range of medical conditions. As used herein, “treatment” is not necessarily meant to imply cure or complete abolition of the disorder or symptoms associated therewith.


Further embodiments of the present disclosure will now be described with reference to the following Examples. It should be appreciated that these Examples are for the purposes of illustrating embodiments of the present disclosure, and do not limit the scope of the disclosure.


Example 1
Preparation of Building Blocks

When not obtained from commercial vendors, protected building blocks S1, S2, (S)-S3, (R)-S3, (S)-S4, (R)-S4, S5, S6, S7, S8, (S)-S53, (R)-S53 were prepared by N-protection of the readily commercially available materials 2-aminoethanol, 2-methylaminoethanol, L-alaninol, D-alaninol, L-leucinol, D-leucinol, 3-aminopropan-1-ol, 4-aminobutan-1-ol, 5-aminopentan-1-ol, 6-aminohexan-1-ol, L-valinol and D-valinol, respectively, with methods and conditions known to those in the art, for example Boc2O and K2CO3 for N-Boc derivatives (Method 1U), and Fmoc-OSu (Method 1W, Example 1A) or Fmoc-Cl and NaHCO3 for N-Fmoc derivatives or allyl chloroformate and Na2CO3 (see Method 1X) for N-Alloc derivatives. Similarly, protected derivatives of S9, S11, S12, S13, S14, S23, S24 and S28 can be prepared directly from the commercially available starting materials indicated below:


S9: 2-(2-aminoethoxy)ethanol (Alfa Aesar (Ward Hill, Mass.), Cat. No. L18897);


S11: 3-(hydroxymethyl)azetidine (SynQuest Laboratories (Alachua, Fla.), Cat. No. 4H56-1-NX);


S12: 4-piperidinyl-methanol (Alfa Aesar, Cat. No. 17964);


S13: [2-(Aminomethyl)phenyl]methanol (Ark Pharm, Cat. No. AK-41063);


S14: [3-(aminomethyl)phenyl]methanol (Combi-Blocks (San Diego, Calif.), Cat. No. QB-3285);


S23: 2-[2-(aminomethyl)phenylthio]benzyl alcohol (Aldrich (Milwaukee, Wis.), Cat. No. 346314);


S24: cis-4-aminocyclohexyl methanol (Enamine (Monmouth Junction, N.J.), Cat. No. EN300-105832);


S28: trans-4-aminocyclohexyl methanol (Enamine, Cat. No. EN300-106767);


Building blocks S10 and S21 are synthesized as described in the literature (J. Med. Chem. 2006, 49, 7190-7197, Supplementary Information; compounds 4g and 4b, respectively).


As an alternative, when available, the corresponding N-protected acids can be converted to the N-protected alcohols using the procedure described in Example 1I.


Structures of representative amino alcohol building blocks of the present disclosure, presented as their N-protected derivatives, the usual species utilized for the construction of the macrocyclic compounds and libraries of the disclosure, are:




embedded image


embedded image


embedded image


embedded image


A. Representative Procedure for Fmoc Protection: Synthesis of Building Block S14



embedded image


Fmoc-OSu (38.6 g, 115 mmol) was added to a solution of [3-(amino-methyl)phenyl]methanol (S14, 16.5 g, 121 mmol) in THF (150 mL), water (75 mL) and sodium bicarbonate (20.3 g, 241 mmol) at room temperature (rt) and the reaction stirred overnight (o/n). At that point, a small sample was diluted with MeOH, acidified with a drop of HOAc, and analyzed by LC-MS, which showed the desired product with no Fmoc-OSu reagent. The reaction was acidified with 1M HCl, diluted with ethyl acetate (EtOAc), and stirred for 2 h. The white solid was filtered off, washed well with water, then EtOAc, and air dried for 3 h until a constant weight was attained. The product thus obtained, Fmoc-S14 (15.3 g), was found by LC-MS to be free of identifiable organic impurities. The aqueous layer was extracted with EtOAc (2×). The combined organic layers were washed with H2O (2×) and brine, then dried over anhydrous MgSO4. The desiccant was removed by filtration and the filtrate concentrated under reduced pressure to give additional amounts of the desired product as a white solid (34.1 g). The combined solids were triturated with ethyl acetate at reflux for a few minutes, then o/n at rt to give Fmoc-S14 in 88% yield (38.1 g).


Similarly, Fmoc-protected derivatives of the unnatural amino acids, 3-azetidine carboxylic acid (3-Azi), 4-piperidine carboxylic acid (4-Pip, isonipecotic acid) and cis-4-aminocyclohexane-1-carboxylic acid (cis-4-Ach) are prepared utilizing this method.




embedded image


Protected materials are also available commercially: Fmoc-3-Azi (ChemImpex, Cat. No. 07330; Matrix Scientific Cat. No. 059921), Fmoc-4-Pip (ChemImpex, Cat. No, 04987, Anaspec, Cat. No. AS-26202), Fmoc-4-cis-Ach, (ChemImpex, Cat. No, 11954, Anaspec, Cat. No. AS-26385).


B. Alternative Procedure for the Synthesis of Building Block S14



embedded image


Conversion of 3-bromobenzaldehyde (14-1) to the nitrile was accomplished through nucleophilic aromatic substitution with copper(I) cyanide. Subsequent reduction of both the carbonyl and nitrile with lithium aluminum hydride (LAH) provided the amino alcohol after appropriate work-up, which was then protected with Fmoc using standard conditions (Method 1W, Example 1A). The corresponding Boc derivative is accessed by substituting Boc2O and K2CO3 in the last step of the scheme.


C. Standard Procedure for the Synthesis of Building Blocks S15 and S16



embedded image


Analogous procedures are utilized to access protected derivatives of S15 and S16 starting, respectively, from 2-(2-aminoethyl)benzoic acid (15-1, Ark Pharm, Cat. No. AK-32693) and 3-(2-aminoethyl)benzoic acid (16-1, Ark Pharm, Cat. No. AK-34290). The amine is protected with Boc (Method 1U) or Fmoc (Method 1W, Example 1A) in the standard manner to provide 15-2 and 16-2. The acid was then reduced to the alcohol through the mixed anhydride (see Example 11) to yield PG-S15 and PG-S16.


D. Standard Procedure for the Synthesis of Building Blocks S17 and S19



embedded image


An identical strategy is employed for the preparation of the protected building blocks of S17 and S19. The former begins from 2-(2-aminomethyl)-phenol (Combi-Blocks, Cat. No. A-3525, as HCl salt), while the latter proceeds from 2-(2-aminoethyl)phenol (Ark Pharm, Cat. No. 114741). The amine of each is protected with Boc in the usual manner (Method 1V) to give 17-1 and 19-1, respectively. The free phenols are then derivatized using a Mitsunobu reaction with triphenylphosphine and diisopropylazodicarboxylate (DIAD) along with the mono-t-butyldimethylsilyl (TBDMS) ether of ethylene glycol (17-A), followed by removal of the silyl protection with tetrabutylammonium fluoride (TBAF, 1 M in THF) to give Boc-S17 and Boc-S19. These can be converted into the corresponding Fmoc analogues through the deprotection-protection sequence shown.


As an alternative approach to these two molecules, the phenol can be alkylated via a substitution reaction utilizing base (for example K2CO3, NaH) and a suitable derivative of 17-A containing a leaving group (i.e. halide, mesylate, tosylate, triflate) in place of the hydroxyl, which can be prepared from 17-A using procedures known to those in the art.


E. Standard Procedure for the Synthesis of Building Blocks S18 and S20



embedded image


An essentially identical strategy is utilized for the synthesis of the protected building blocks S18 and S20. The former starts from methyl salicylate (18-1), while the latter initiates from methyl 2-(2-hydroxyphenyl)acetate (20-1, Ark Pharm Cat. No. AK-76378). Reaction of the phenol of these two materials with Boc-2-aminoethanol (Boc-S1) under Mitsunobu conditions gives 18-2 and 20-2, respectively. Reduction of the ester group with diisobutylaluminum hydride (DIBAL) provides the Boc-protected target compounds. Conversion of the protecting group from Boc to Fmoc can be effected as already described to give Fmoc-S17 and Fmoc-S19.


F. Standard Procedure for the Synthesis of Building Block S22 and S27



embedded image


The two phenols of catechol (22-1) or resorcinol (27-1) were sequentially reacted under Mitsunobu conditions, first with 1 eq of the mono-protected diol 17-A, followed by 1 eq of an appropriate N-protected-2-amino-ethanol (PG-S1). Material that does not react fully can be extracted with aqueous base (hence, the PG chosen must be compatible with such conditions). Standard deprotection of the silyl ether with 1 M TBAF in THF provides PG-S22 and PG-S27. The N-protecting group can be interchanged as already described if necessary.


G. Standard Procedure for the Synthesis of Building Block S25



embedded image


To a solution of 3-hydroxybenzaldehyde (25-1, 100 mg, 0.819 mmol), Ph3P (215 mg, 0.819 mmol) and Fmoc-3-amino-1-propanol (Fmoc-S5, 256 mg, 0.860 mmol) in THF (30 mL) at rt was added dropwise DIAD (0.159 mL, 0.819 mmol). The mixture was stirred at rt for 2 d, then evaporated in vacuo and the residue purified by flash chromatography (hexanes:EtOAc: 95:5 to 50:50 over 14 min). Product-containing fractions were concentrated under reduced pressure to leave the desired coupled product, Fmoc-S45, as a white solid, 1H NMR and MS consistent with structure. Reduction of the aldehyde with sodium borohydride under standard conditions provided Fmoc-S25.


H. Standard Procedure for the Synthesis of Building Block S26



embedded image


In a manner analogous to that described above for PG-S22 and PG-S27, the two phenol moieties of 4-fluoro-catechol (26-1, Fluorochem (Hadfield, United Kingdom, Cat. No. 306910) were sequentially reacted under Mitsunobu conditions, first with 17-A, then with PG-S1. Although the initial conversion is regioselective for the phenol para to the fluorine substituent, the first reaction uses only a single equivalent of 17-A to minimize formation of side products. Standard deprotection of the silyl ether with 1 M TBAF in THF provides PG-S26.


I. Standard Procedure for the Reduction of Acid Building Blocks to Alcohols



embedded image


For the transformation of amino acid building blocks (I-1) to the corresponding amino alcohol (1-2) components, a solution of the protected amino acid (I-1, 15 mmol) in THF (100 mL) under nitrogen was cooled in an ice-salt bath, then isobutyl chloroformate (IBCF, 1.96 mL, 15.0 mmol) and 4-methylmorpholine (NMM, 1.64 mL, 15.0 mmol) added dropwise simultaneously via syringes over 5 min. The mixture was stirred at 0° C. for 30 min, then at rt for another 30 min. The white precipitate that formed was filtered into a 500 mL flask through a pre-washed Celite® pad and rinsed with anhydrous ether (70 mL). The flask was placed under nitrogen in an ice-bath, and a mixture of sodium borohydride (0.85 g, 22.5 mmol) in water (10 mL) added in one shot with the neck of the flask left open. Significant gas evolution was observed and the reaction mixture formed a suspension. More water (20 mL) was added, the ice-bath removed, and the reaction stirred rapidly with monitoring by LC-MS and TLC. After 1 h at ambient temperature, LC-MS analysis indicated that the reaction was complete. More water was then added and the organic layer extracted with EtOAc (2×150 mL). The combined organic layers were washed sequentially with 1 M citric acid, NaHCO3 (sat.), water, brine, and dried over anhydrous MgSO4. The mixture was filtered and the filtrate concentrated under reduced pressure to give 1-2 in 60-80% yield. The product thus obtained was sufficiently pure to be used without further purification for subsequent reactions.


J. Standard Procedure for the Oxidation of Alcohol Building Blocks to Aldehydes Using Pyridine Sulfur Trioxide Complex



embedded image


The following procedure is provided for the transformation of Fmoc-protected amino alcohol building blocks such as 1-2 to the corresponding amino aldehyde components (J-1) for use in a reductive amination attachment procedure. In a 250 mL round-bottomed flask was dissolved 1-2 (10 mmol) in CH2Cl2 (46.3 mL) and DMSO (10 mL). Triethylamine (TEA, 5.58 mL, 40 mmol) was added and the solution cooled to 0° C. under nitrogen. Pyridine sulfur trioxide complex (pyr.SO3, 4.77 g, 30 mmol) was added as a solution in DMSO (16.3 mL) over 20 min and the reaction monitored by TLC and LC-MS until complete. After 4 h, the reaction was cooled to 0° C. in an ice-bath, EtOAc/ether (1:1, 150 mL) was added, and the organic layer washed with saturated NaHCO3 (1×150 mL). More water was added as necessary to dissolve any insoluble material. The aqueous layer was extracted with EtOAc/ether (1:1, 3×150 mL). The organic extracts were combined and washed sequentially with 1M KHSO4 (1×150 mL), saturated NH4Cl (2×120 mL), water (200 mL), brine (2×200 mL), dried over anhydrous MgSO4, filtered and the filtrate concentrated under reduced pressure to give J-1 typically in excellent 90-95% yields. The product thus obtained was acceptable for use in subsequent transformations without further purification.


K. Representative Procedure for the Oxidation of Building Blocks to Aldehydes with Manganese Dioxide




embedded image


Fmoc-S14 (38 g, 106 mmol) was suspended in DCM (151 mL) and THF (151 mL). Manganese dioxide (Strem (Newburyport, Mass., USA) Cat. No. 25-1360, 92 g, 1.06 mol) was added and the reaction agitated o/n on an orbital shaker at 200 rpm. A small sample was filtered through MgSO4 with THF and analyzed by LC-MS, which indicated 87% conversion. More MnO2 (23.0 g, 264 mmol) was added and the reaction agitated for 16 h more, at which time the reaction was found to have progressed to 90% conversion. Another quantity of MnO2 (23.0 g, 264 mmol) was added and agitation continued for another 16 h, after which LC-MS indicated complete reaction. The reaction mixture was filtered through MgSO4 with filter-paper on top, and the trapped solids rinsed with THF. The residual MnO2 was agitated with THF, filtered and washed with THF. The filtrate was passed again through MgSO4 and several layers of filter-paper and the filtrate was pale yellow with no MnO2. Evaporation of the filtrate under reduced pressure left a light yellow solid. The solid was triturated with ether, heated to reflux and allowed to cool slowly with stirring. After stirring for 4 h, the white solid that formed was filtered to give Fmoc-S37 as a white solid (28.6 g, 80 mmol, 76.0% yield). 1H-NMR and LC-MS were consistent with the expected product. The MnO2 was washed again with THF (300 mL) with agitation o/n, followed by filtration and concentration of the filtrate in vacuo to give 1.0 g of crude product which was combined with 2.0 g recovered from the mother liquor of the above trituration and this combined solid triturated with ether. A second crop of the desired product was isolated as an off white solid (1.60 g, 4.48 mmol, 4.2% additional yield).


L. Standard Procedure for the Synthesis of Building Block S50



embedded image


Step S50-1.


To a solution of 2-hydroxybenzaldehyde (50-1, 10.0 g, 82 mmol) in MeOH (100 mL) at rt was added 7 N ammonium hydroxide (29.2 mL, 205 mmol) in MeOH. The solution turned yellow in color. The homogeneous solution was stirred at rt for 3 h at which time TLC showed a new, more polar product. Solid sodium borohydride (1.73 g, 45.7 mmol) was added to the reaction in small portions and stirring continued at rt for 2 h. The reaction was quenched with 10% NaOH, then the methanol evaporated in vacuo. The resulting aqueous solution was diluted with EtOAc (50 mL) and the layers separated. The organic layer was washed with 10% HCl (3×). The aqueous washes were combined with the original aqueous layer and the pH adjusted to 9 with 10% NaOH. A white solid formed, which was isolated by filtration, washed and dried in air. This material was treated with Boc2O (19.0 mL, 82.0 mmol) in DCM and stirred at rt for 24 h. The reaction mixture was diluted with water, extracted with EtOAc, the organic layers dried over MgSO4, filtered, then evaporated in vacuo to leave an oil that was purified by flash chromatography (hexanes:EtOAc, 9:1 to 1:1) to give 50-2 as a colorless oil (65% yield).




embedded image


Step S50-2.


To a solution of 50-2 (3.86 g, 17.29 mmol) and Alloc-S1 (3.76 g, 25.9 mmol) in THF (200 mL) at rt was added Ph3P (6.80 g, 25.9 mmol), then DIAD (5.04 mL, 25.9 mmol). The mixture was stirred at rt o/n at which point TLC indicated reaction completion. The solvent was evaporated in vacuo and the residue purified by flash chromatography (100 g silica, hexanes:EtOAc: 90:10 to 70:30 over 13 min) to give two fractions. The main fraction contained primarily the desired product, while the minor fraction was contaminated with a significant amount of solid hydrazine by-product. The minor fraction was triturated with an ether/hexane mixture, then filtered. The residue from concentration in vacuo of the mother liquors from this filtration were combined with the major fraction and subjected to a second flash chromatography (hexanes:EtOAc: 90:10 to 60:40 over 14 min) to give the diprotected product, Alloc-S50(Boc), as a colorless oil (46% yield). This was treated with 1% TFA to remove the Boc group, which provided Alloc-S50.


M. Alternative Procedure for the Synthesis of Building Block S50



embedded image


To 2-hydroxybenzaldehyde (50-1, 605 mg, 4.96 mmol) and (9H-fluoren-9-yl)methyl carbamate (593 mg, 2.48 mmol) in toluene (30 mL) was added TFA (0.955 mL, 12.4 mmol). The mixture was stirred at 80° C. for 2 d, then allowed to cool to rt, evaporated in vacuo and the residue purified by flash chromatography (hexanes:EtOAc: 95:5 to 50:50 over 14 min). Product-containing fractions were concentrated under reduced pressure to leave 50-3 as a solid, 1H NMR and LC-MS consistent with structure, 0.39 mg, estimated 46% yield.


As another alternative, 2-(aminomethyl) phenol is commercially available (Matrix Scientific Cat. No. 009264; Apollo Scientific Cat. No. OR12317; Oakwood Cat. No. 023454) and can be protected with Fmoc using standard methods (Method 1W, Example 1A).


Analogously as described for 50-2, 50-3 can be converted into Alloc-S50 by a reaction sequence involving Mitsunobu coupling followed by standard Fmoc deprotection (Method 1F).




embedded image


N. Standard Procedure for the Synthesis of Building Block S51



embedded image


To a solution of 2-(2-hydroxyphenyl)acetamide (51-1, Fluorochem, Cat. No. 375417, 50.0 mg, 0.331 mmol), Ph3P (104 mg, 0.397 mmol) and Fmoc-2-aminoethanol (Fmoc-S1, 122 mg, 0.430 mmol) in THF (4 mL) at rt was added DIAD (0.077 ml, 0.397 mmol) dropwise. The mixture was stirred at rt overnight, then evaporated in vacuo and the residue purified by flash chromatography. The intermediate amide 51-2 was then treated with borane-dimethyl sulfide at 0° C. for 2 h, then quenched carefully with water, followed by dilute acid. The product Fmoc-S51 was isolated after standard work-up. Use of other appropriate nitrogen protecting groups on 2-aminoethanol provides alternative protected derivatives of S51.




embedded image


In a similar manner, various protected derivatives of S50 can be accessed starting from salicylamide (50-3) as an alternative route to these materials.


O. Standard Procedure for the Synthesis of Building Block S52



embedded image


Boc-L-phenylalaninamide ((S)-52-1), purchased from commercial suppliers or prepared from the unprotected precursor by treatment with Boc2O under standard conditions, was reduced with borane-dimethyl sulfide to give the mono-protected diamine (S)-S52(Boc). The primary amine was protected in the usual manner (Method 1X) with an Alloc group, then the Boc group removed using standard conditions to yield Alloc-(S)-S52. The enantiomer, Alloc-(R)-S52, is synthesized similarly from D-phenylalaninamide. Such a procedure is also applicable to the synthesis of other diamines from α-N-protected amino acid amides.


P. Standard Procedure for the Synthesis of Building Blocks S57, S58, S59, S61 and S62



embedded image


Linear diamines (P-1, n=0-4) are monoprotected with Boc under standard conditions using literature methods (Synth. Comm. 1990, 20, 2559-2564; Synth. Comm. 2007, 37, 737-742; Org. Lett. 2015, 17, 422-425). The products (P-2) thus obtained are reacted with allyl chloroformate in the presence of base to install the Alloc protecting group. The now differentially diprotected amines are treated with acid to cleave the Boc group and provide the desired Alloc-protected diamines [P-3: S57 (n=0), S58 (n=1), S59 (n=2), S61 (n=3), S62 (n=4)].


Alternatively, Boc-monoprotected diamines (P-2) are commercially available: n=0 (Alfa Aesar, Cat. No. L19974); n=1 (Aldrich, Cat. No. 436992); n=2 (Aldrich, Cat. No. 15404); n=3 (Aldrich, Cat. No. 15406); n=4 (Aldrich, Cat. No. 79229).


Q. Standard Procedure for the Synthesis of Building Block S60



embedded image


The (S) and (R)-isomers of Q-1 are commercially available [Key Organics (Camelford, United Kingdom) Cat. No. GS-0920, Ark Pharm, Cat. No. AK-77631, respectively]. The latter portion of the method just described to prepare Alloc-monoprotected 1,ω-diamines, is applied to (S)- and (R)-Q-1 to provide both isomers of the differentially protected diamine Q-2. Selective removal of the Boc group provides the enantiomers of Alloc-S60.


R. Standard Procedure for the Synthesis of Building Block Alloc-S63



embedded image


To 3-hydroxybenzaldehyde (25-1, 1.99 g, 16.3 mmol) and (9H-fluoren-9-yl)methyl carbamate (2.44 g, 10.2 mmol) in toluene (100 mL) was added TFA (2.36 mL, 30.6 mmol). The mixture was stirred at 80° C. for 2 d, then allowed to cool to rt, evaporated in vacuo and the residue purified by flash chromatography (hexanes:EtOAc: 95:5 to 50:50 over 14 min). Product-containing fractions were concentrated under reduced pressure to leave 63-2 as a white solid, 1H NMR and LC-MS (M+H+346) consistent with structure, 2.50 g, 71% yield.


Alternatively, 3-(aminomethyl) phenol is commercially available (Matrix Scientific Cat. No. 009265; Alfa Aesar Cat. No. H35708) and is protected with Fmoc using Method 1W/Example 1A.




embedded image


In a manner similar to that already described for S50, the phenol is reacted with Alloc-S1 under Mitsunobu conditions to yield Alloc-S63(Fmoc), from which the Fmoc is cleaved to provide the desired product, Alloc-S63.


S. Standard Procedure for the Synthesis of Building Block S64



embedded image


Commerically available 3-(2-aminoethyl) phenol (3-hydroxyphenethyl-amine, AstaTech, Cat. No. 51439; Ark Pharm, Cat. No. AK-41280) is protected with Boc using standard methods (Method 1U) to provide 64-1. Fmoc protection can also be employed (Method 1W, Example 1A). In a manner analogous to that already described for S50 and S63, the phenol is reacted with Alloc-S1 under Mitsunobu conditions to give Alloc-S64(Boc), which is then subjected to acid treatment for removal of the Boc to yield the desired product, Alloc-S64.


T. Standard Procedure for the Synthesis of Aryl Ether Building Blocks



embedded image


The amino allyl ester (T-1) was prepared from the corresponding N-protected amino acid using Method 1Y, then the nitrogen protection removed using the appropriate procedure, for example Method 1V for Boc. T-1 is then converted into the a-hydroxy esters (T-2) utilizing the procedure described in the literature for a-hydroxy acids (Org. Lett. 2004, 4, 497-500). This process proceeds with retention of configuration. Subsequently, T-2 is reacted with the protected phenolic alcohol (T-3) under Mitsunobu conditions to provide T-4 with the inverted chiral center. Alternative protecting groups to the silyl ether depicted can also be employed as will be appreciated by those in the art. Structures of representative amino alcohol building blocks of the present disclosure prepared in this manner are:




embedded image


embedded image


embedded image


embedded image


Deprotection of the alcohol with appropriate conditions was followed by oxidation to the aldehyde (T-5) with Method 1H, within which the structures of representative examples of these products are presented.


Example 2
Synthesis of a Representative Library of Macrocyclic Compounds of Formula (I) Containing Four Building Blocks

The synthetic scheme presented in Scheme 2 was followed to prepare the library of macrocyclic compounds 1401-2115 on solid support. The first building block amino acid (BB1) was loaded onto the resin (Method 1D), then, after removal of the Fmoc protection (Method 1F), the next building block (BB2) attached, using reductive amination (Methods 1I or 1J), Fukuyama-Mitsunobu alkylation (via the procedure in Method 1P, not depicted in Scheme 2), or amide coupling chemistry (Method 1G). Upon removal of the Fmoc protecting group, the third building block (BB3) was connected via amide bond formation (Method 1G), then the final building block (BB4) attached, again after Fmoc removal (Method 1F), using reductive amination (Methods 1I or 1J) or alkylation chemistry (Method 1P procedure, not shown in Scheme 2). This was followed sequentially by selective N-terminal deprotection (Method 1F), cleavage from the resin (Method 1Q) and macrocyclization (Method 1R). The side chain protecting groups were then removed (Method 1S) and the resulting crude product purified by preparative HPLC (Method 2B). The amounts of each macrocycle obtained, the HPLC purity and confirmation of identity by mass spectrometry (MS) are provided in Table 1A along with the specific building blocks utilized, with the individual structures of the compounds thus prepared presented in Table 1B.


For compounds 1831-1846 and 2002-2032 in Table 1A, the procedure described in Method 1P was employed to install the methyl group after addition of BB2. As well, for compounds 1799-1814 and 1941-1970, the Method 1P procedure was employed to attach the methyl group after addition of the corresponding non-methylated BB3, although in certain cases, the protected N-Me amino acids themselves, particularly the simpler standard derivatives like N-Me-Phe, N-Me-Val, N-Me-Leu, were directly accessed commercially and used for BB3 as an alternative. The tables presented in the present disclosure represent non-limitative examples.
















TABLE 1A










Wt1

MS


Cpd
BB1
BB2
BB3
BB4
(mg)
Purity2
(M + H)






















1401
Fmoc-D-Tyr(But)
Fmoc-3-Azi
Fmoc-D-Leu
Fmoc-S9
8.2
100
447


1402
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-D-Leu
Fmoc-S9
10.3
100
447


1403
Fmoc-D-Phe
Fmoc-3-Azi
Fmoc-D-Lys(Boc)
Fmoc-S9
5.9
100
446


1404
Fmoc-Phe
Fmoc-3-Azi
Fmoc-D-Lys(Boc)
Fmoc-S9
9.3
100
446


1405
Fmoc-D-Phe(3Cl)
Fmoc-3-Azi
Fmoc-Nva
Fmoc-S9
5.9
100
451


1406
Fmoc-D-Phe(3Cl)
Fmoc-3-Azi
Fmoc-D-Val
Fmoc-S9
5.5
100
451


1407
Fmoc-Nva
Fmoc-3-Azi
Fmoc-D-Phe(3Cl)
Fmoc-S9
10.4
100
451


1408
Fmoc-Nva
Fmoc-3-Azi
Fmoc-D-Val
Fmoc-S9
8.4
100
369


1409
Fmoc-D-Val
Fmoc-3-Azi
Fmoc-D-Phe(3Cl)
Fmoc-S9
6.6
na
451


1410
Fmoc-D-Val
Fmoc-3-Azi
Fmoc-Nva
Fmoc-S9
7.0
100
369


1411
Fmoc-D-Phe(3Cl)
Fmoc-3-Azi
Fmoc-Dap(Boc)
Fmoc-S9
6.8
100
438


1412
Fmoc-Dap(Boc)
Fmoc-3-Azi
Fmoc-D-Phe(3Cl)
Fmoc-S9
6.3
100
438


1413
Fmoc-Dap(Boc)
Fmoc-3-Azi
Fmoc-D-Val
Fmoc-S9
11.0
100
356


1414
Fmoc-D-Val
Fmoc-3-Azi
Fmoc-Dap(Boc)
Fmoc-S9
5.6
100
356


1415
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-D-Phe
Fmoc-S9
8.4
100
504


1416
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-Arg(Pbf)
Fmoc-S9
2.3
100
513


1417
Fmoc-D-Phe
Fmoc-3-Azi
Fmoc-Trp(Boc)
Fmoc-S9
6.5
100
504


1418
Fmoc-D-Phe
Fmoc-3-Azi
Fmoc-Arg(Pbf)
Fmoc-S9
1.5
100
474


1419
Fmoc-Arg(Pbf)
Fmoc-3-Azi
Fmoc-Trp(Boc)
Fmoc-S9
2.0
100
513


1420
Fmoc-Arg(Pbf)
Fmoc-3-Azi
Fmoc-D-Phe
Fmoc-S9
2.6
100
474


1421
Fmoc-Pro
Fmoc-3-Azi
Fmoc-Lys(Boc)
Fmoc-S9
3.4
na
396


1422
Fmoc-Ile
Fmoc-3-Azi
Fmoc-Glu(OBut)
Fmoc-S9
9.4
na
413


1423
Fmoc-Phe
Fmoc-3-Azi
Fmoc-Leu
Fmoc-S9
7.8
100
431


1424
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-Tyr(But)
Fmoc-S9
6.3
100
520


1425
Fmoc-Thr(But)
Fmoc-3-Azi
Fmoc-Ser(But)
Fmoc-S9
23.5
na
359


1426
Fmoc-Ser(But)
Fmoc-3-Azi
Fmoc-Thr(But)
Fmoc-S9
30.2
na
359


1427
Fmoc-Pro
Fmoc-3-Azi
Fmoc-Thr(But)
Fmoc-S9
10.3
na
369


1428
Fmoc-Pro
Fmoc-3-Azi
Fmoc-Ser(But)
Fmoc-S9
3.7
na
355


1429
Fmoc-Glu(OBut)
Fmoc-3-Azi
Fmoc-Ile
Fmoc-S9
6.8
100
413


1430
Fmoc-Leu
Fmoc-3-Azi
Fmoc-Phe
Fmoc-S9
8.5
100
431


1431
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-Trp(Boc)
Fmoc-S9
5.8
100
520


1432
Fmoc-D-Tyr(But)
Fmoc-3-Azi
Fmoc-D-Leu
Fmoc-S37
6.3
na
479


1433
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-D-Leu
Fmoc-S37
7.3
100
479


1434
Fmoc-D-Phe
Fmoc-3-Azi
Fmoc-D-Lys(Boc)
Fmoc-S37
5.3
100
478


1435
Fmoc-Phe
Fmoc-3-Azi
Fmoc-D-Lys(Boc)
Fmoc-S37
5.5
100
478


1436
Fmoc-D-Phe(3Cl)
Fmoc-3-Azi
Fmoc-Nva
Fmoc-S37
3.9
100
484


1437
Fmoc-D-Phe(3Cl)
Fmoc-3-Azi
Fmoc-D-Val
Fmoc-S37
4.1
100
484


1438
Fmoc-Nva
Fmoc-3-Azi
Fmoc-D-Phe(3Cl)
Fmoc-S37
12.7
100
484


1439
Fmoc-Nva
Fmoc-3-Azi
Fmoc-D-Val
Fmoc-S37
11.7
100
401


1440
Fmoc-D-Val
Fmoc-3-Azi
Fmoc-D-Phe(3Cl)
Fmoc-S37
5.8
100
484


1441
Fmoc-D-Val
Fmoc-3-Azi
Fmoc-Nva
Fmoc-S37
6.7
100
401


1442
Fmoc-D-Phe(3Cl)
Fmoc-3-Azi
Fmoc-Dap(Boc)
Fmoc-S37
4.5
100
470


1443
Fmoc-Dap(Boc)
Fmoc-3-Azi
Fmoc-D-Phe(3Cl)
Fmoc-S37
4.2
100
470


1444
Fmoc-Dap(Boc)
Fmoc-3-Azi
Fmoc-D-Val
Fmoc-S37
2.9
100
388


1445
Fmoc-D-Val
Fmoc-3-Azi
Fmoc-Dap(Boc)
Fmoc-S37
6.9
100
388


1446
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-D-Phe
Fmoc-S37
7.7
100
536


1447
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-Arg(Pbf)
Fmoc-S37
1.9
100
545


1448
Fmoc-D-Phe
Fmoc-3-Azi
Fmoc-Trp(Boc)
Fmoc-S37
6.9
100
536


1449
Fmoc-D-Phe
Fmoc-3-Azi
Fmoc-Arg(Pbf)
Fmoc-S37
1.7
100
506


1450
Fmoc-Arg(Pbf)
Fmoc-3-Azi
Fmoc-Trp(Boc)
Fmoc-S37
1.6
na
545


1451
Fmoc-Arg(Pbf)
Fmoc-3-Azi
Fmoc-D-Phe
Fmoc-S37
2.1
100
506


1452
Fmoc-Pro
Fmoc-3-Azi
Fmoc-Lys(Boc)
Fmoc-S37
4.3
100
428


1453
Fmoc-Ser(But)
Fmoc-3-Azi
Fmoc-Pro
Fmoc-S37
3.9
na
387


1454
Fmoc-Ile
Fmoc-3-Azi
Fmoc-Glu(OBut)
Fmoc-S37
4.9
100
445


1455
Fmoc-Phe
Fmoc-3-Azi
Fmoc-Leu
Fmoc-S37
4.7
100
463


1456
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-Tyr(But)
Fmoc-S37
4.8
100
552


1457
Fmoc-Thr(But)
Fmoc-3-Azi
Fmoc-Ser(But)
Fmoc-S37
4.8
100
391


1458
Fmoc-Thr(But)
Fmoc-3-Azi
Fmoc-Pro
Fmoc-S37
na
na
401


1459
Fmoc-Ser(But)
Fmoc-3-Azi
Fmoc-Thr(But)
Fmoc-S37
19.7
na
391


1460
Fmoc-Pro
Fmoc-3-Azi
Fmoc-Thr(But)
Fmoc-S37
11.6
100
401


1461
Fmoc-Pro
Fmoc-3-Azi
Fmoc-Ser(But)
Fmoc-S37
8.0
100
387


1462
Fmoc-Lys(Boc)
Fmoc-3-Azi
Fmoc-Pro
Fmoc-S37
11.0
na
428


1463
Fmoc-Glu(OBut)
Fmoc-3-Azi
Fmoc-Ile
Fmoc-S37
5.6
100
445


1464
Fmoc-Leu
Fmoc-3-Azi
Fmoc-Phe
Fmoc-S37
7.9
100
463


1465
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-Trp(Boc)
Fmoc-S37
5.1
100
552


1466
Fmoc-D-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-D-Leu
Fmoc-S9
13.8
100
489


1467
Fmoc-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-D-Leu
Fmoc-S9
11.2
100
489


1468
Fmoc-D-Phe
Fmoc-4-cis-Ach
Fmoc-D-Lys(Boc)
Fmoc-S9
11.9
100
488


1469
Fmoc-Phe
Fmoc-4-cis-Ach
Fmoc-D-Lys(Boc)
Fmoc-S9
10.4
100
488


1470
Fmoc-D-Phe(3Cl)
Fmoc-4-cis-Ach
Fmoc-Nva
Fmoc-S9
7.3
100
494


1471
Fmoc-D-Phe(3Cl)
Fmoc-4-cis-Ach
Fmoc-D-Val
Fmoc-S9
10.2
100
494


1472
Fmoc-Nva
Fmoc-4-cis-Ach
Fmoc-D-Phe(3Cl)
Fmoc-S9
7.9
89
494


1473
Fmoc-Nva
Fmoc-4-cis-Ach
Fmoc-D-Val
Fmoc-S9
9.8
100
411


1474
Fmoc-D-Val
Fmoc-4-cis-Ach
Fmoc-D-Phe(3Cl)
Fmoc-S9
8.9
78
494


1475
Fmoc-D-Val
Fmoc-4-cis-Ach
Fmoc-Nva
Fmoc-S9
10.3
100
411


1476
Fmoc-D-Phe(3Cl)
Fmoc-4-cis-Ach
Fmoc-Dap(Boc)
Fmoc-S9
16.4
100
481


1477
Fmoc-Dap(Boc)
Fmoc-4-cis-Ach
Fmoc-D-Phe(3Cl)
Fmoc-S9
14.1
100
481


1478
Fmoc-Dap(Boc)
Fmoc-4-cis-Ach
Fmoc-D-Val
Fmoc-S9
8.3
100
398


1479
Fmoc-D-Val
Fmoc-4-cis-Ach
Fmoc-Dap(Boc)
Fmoc-S9
10.3
100
398


1480
Fmoc-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-D-Phe
Fmoc-S9
8.5
71
546


1481
Fmoc-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-Arg(Pbf)
Fmoc-S9
5.9
100
555


1482
Fmoc-D-Phe
Fmoc-4-cis-Ach
Fmoc-Trp(Boc)
Fmoc-S9
8.2
100
546


1483
Fmoc-D-Phe
Fmoc-4-cis-Ach
Fmoc-Arg(Pbf)
Fmoc-S9
0.4
100
516


1484
Fmoc-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-Trp(Boc)
Fmoc-S9
6.6
100
555


1485
Fmoc-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-D-Phe
Fmoc-S9
3.6
67
516


1486
Fmoc-Pro
Fmoc-4-cis-Ach
Fmoc-Lys(Boc)
Fmoc-S9
22.4
100
438


1487
Fmoc-Ile
Fmoc-4-cis-Ach
Fmoc-Glu(OBut)
Fmoc-S9
8.7
100
455


1488
Fmoc-Phe
Fmoc-4-cis-Ach
Fmoc-Leu
Fmoc-S9
11.3
100
473


1489
Fmoc-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-Tyr(But)
Fmoc-S9
12.8
95
562


1490
Fmoc-Thr(But)
Fmoc-4-cis-Ach
Fmoc-Ser(But)
Fmoc-S9
12.4
100
401


1491
Fmoc-Ser(But)
Fmoc-4-cis-Ach
Fmoc-Thr(But)
Fmoc-S9
6.4
100
401


1492
Fmoc-Pro
Fmoc-4-cis-Ach
Fmoc-Thr(But)
Fmoc-S9
7.6
100
411


1493
Fmoc-Pro
Fmoc-4-cis-Ach
Fmoc-Ser(But)
Fmoc-S9
20.1
100
397


1494
Fmoc-Glu(OBut)
Fmoc-4-cis-Ach
Fmoc-Ile
Fmoc-S9
13.5
100
455


1495
Fmoc-Leu
Fmoc-4-cis-Ach
Fmoc-Phe
Fmoc-S9
11.1
77
473


1496
Fmoc-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-Trp(Boc)
Fmoc-S9
9.8
100
562


1497
Fmoc-Asp(OBut)
Fmoc-3-Azi
Fmoc-Trp(Boc)
Fmoc-S9
2.2
100
472


1498
Fmoc-Asp(OBut)
Fmoc-3-Azi
Fmoc-Arg(Pbf)
Fmoc-S9
8.1
na
442


1499
Fmoc-Asp(OBut)
Fmoc-3-Azi
Fmoc-Tyr(But)
Fmoc-S9
2.6
na
449


1500
Fmoc-His(Trt)
Fmoc-3-Azi
Fmoc-Trp(Boc)
Fmoc-S9
5.4
100
494


1501
Fmoc-His(Trt)
Fmoc-3-Azi
Fmoc-Arg(Pbf)
Fmoc-S9
12.4
na
464


1502
Fmoc-His(Trt)
Fmoc-3-Azi
Fmoc-Tyr(But)
Fmoc-S9
18.3
100
471


1503
Fmoc-Asn(Trt)
Fmoc-3-Azi
Fmoc-Trp(Boc)
Fmoc-S9
4.3
100
471


1504
Fmoc-Asn(Trt)
Fmoc-3-Azi
Fmoc-Arg(Pbf)
Fmoc-S9
18.5
na
441


1505
Fmoc-Asn(Trt)
Fmoc-3-Azi
Fmoc-Tyr(But)
Fmoc-S9
na
na
448


1506
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-Asp(OBut)
Fmoc-S9
3.0
100
472


1507
Fmoc-Arg(Pbf)
Fmoc-3-Azi
Fmoc-Asp(OBut)
Fmoc-S9
12.0
na
442


1508
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-Asp(OBut)
Fmoc-S9
3.3
100
449


1509
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-His(Trt)
Fmoc-S9
4.1
100
494


1510
Fmoc-Arg(Pbf)
Fmoc-3-Azi
Fmoc-His(Trt)
Fmoc-S9
0.9
na
464


1511
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-His(Trt)
Fmoc-S9
5.4
100
471


1512
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-Asn(Trt)
Fmoc-S9
na
na
471


1513
Fmoc-Arg(Pbf)
Fmoc-3-Azi
Fmoc-Asn(Trt)
Fmoc-S9
2.6
na
441


1514
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-Asn(Trt)
Fmoc-S9
5.8
100
448


1515
Fmoc-Asp(OBut)
Fmoc-3-Azi
Fmoc-Trp(Boc)
Fmoc-S37
3.5
100
504


1516
Fmoc-Asp(OBut)
Fmoc-3-Azi
Fmoc-Arg(Pbf)
Fmoc-S37
1.4
100
474


1517
Fmoc-Asp(OBut)
Fmoc-3-Azi
Fmoc-Tyr(But)
Fmoc-S37
11.8
100
481


1518
Fmoc-His(Trt)
Fmoc-3-Azi
Fmoc-Trp(Boc)
Fmoc-S37
6.3
100
526


1519
Fmoc-His(Trt)
Fmoc-3-Azi
Fmoc-Arg(Pbf)
Fmoc-S37
2.2
100
496


1520
Fmoc-His(Trt)
Fmoc-3-Azi
Fmoc-Tyr(But)
Fmoc-S37
9.3
100
503


1521
Fmoc-Asn(Trt)
Fmoc-3-Azi
Fmoc-Trp(Boc)
Fmoc-S37
9.4
100
503


1522
Fmoc-Asn(Trt)
Fmoc-3-Azi
Fmoc-Arg(Pbf)
Fmoc-S37
7.6
na
473


1523
Fmoc-Asn(Trt)
Fmoc-3-Azi
Fmoc-Tyr(But)
Fmoc-S37
11.5
100
480


1524
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-Asp(OBut)
Fmoc-S37
3.8
100
504


1525
Fmoc-Arg(Pbf)
Fmoc-3-Azi
Fmoc-Asp(OBut)
Fmoc-S37
1.7
100
474


1526
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-Asp(OBut)
Fmoc-S37
4.4
100
481


1527
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-His(Trt)
Fmoc-S37
3.9
na
526


1528
Fmoc-Arg(Pbf)
Fmoc-3-Azi
Fmoc-His(Trt)
Fmoc-S37
na
na
496


1529
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-His(Trt)
Fmoc-S37
3.9
100
503


1530
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-Asn(Trt)
Fmoc-S37
5.3
100
503


1531
Fmoc-Arg(Pbf)
Fmoc-3-Azi
Fmoc-Asn(Trt)
Fmoc-S37
3.1
na
473


1532
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-Asn(Trt)
Fmoc-S37
6.2
100
480


1533
Fmoc-Asp(OBut)
Fmoc-4-cis-Ach
Fmoc-Trp(Boc)
Fmoc-S9
6.0
100
514


1534
Fmoc-Asp(OBut)
Fmoc-4-cis-Ach
Fmoc-Arg(Pbf)
Fmoc-S9
2.3
na
484


1535
Fmoc-Asp(OBut)
Fmoc-4-cis-Ach
Fmoc-Tyr(But)
Fmoc-S9
9.2
100
491


1536
Fmoc-His(Trt)
Fmoc-4-cis-Ach
Fmoc-Trp(Boc)
Fmoc-S9
9.4
100
536


1537
Fmoc-His(Trt)
Fmoc-4-cis-Ach
Fmoc-Arg(Pbf)
Fmoc-S9
13.1
na
506


1538
Fmoc-His(Trt)
Fmoc-4-cis-Ach
Fmoc-Tyr(But)
Fmoc-S9
15.3
100
513


1539
Fmoc-Asn(Trt)
Fmoc-4-cis-Ach
Fmoc-Trp(Boc)
Fmoc-S9
9.2
100
513


1540
Fmoc-Asn(Trt)
Fmoc-4-cis-Ach
Fmoc-Arg(Pbf)
Fmoc-S9
10.5
na
483


1541
Fmoc-Asn(Trt)
Fmoc-4-cis-Ach
Fmoc-Tyr(But)
Fmoc-S9
14.0
100
490


1542
Fmoc-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-Asp(OBut)
Fmoc-S9
15.2
100
514


1543
Fmoc-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-Asp(OBut)
Fmoc-S9
10.0
na
484


1544
Fmoc-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-Asp(OBut)
Fmoc-S9
18.4
100
491


1545
Fmoc-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-His(Trt)
Fmoc-S9
8.3
100
536


1546
Fmoc-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-His(Trt)
Fmoc-S9
4.5
na
506


1547
Fmoc-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-His(Trt)
Fmoc-S9
8.8
100
513


1548
Fmoc-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-Asn(Trt)
Fmoc-S9
8.7
100
513


1549
Fmoc-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-Asn(Trt)
Fmoc-S9
5.7
na
483


1550
Fmoc-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-Asn(Trt)
Fmoc-S9
9.6
100
490


1551
Fmoc-Phe
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
2.7
86
405


1552
Fmoc-Phe
Fmoc-(S)-S31
D-Nle
Fmoc-S9
4.2
100
405


1553
Fmoc-D-Phe
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
2.7
88
405


1554
Fmoc-D-Phe
Fmoc-(S)-S31
D-Nle
Fmoc-S9
3.6
100
405


1555
Fmoc-D-Tyr(But)
Fmoc-(S)-S31
Fmoc-D-Leu
Fmoc-S9
3.6
100
421


1556
Fmoc-Tyr(But)
Fmoc-(S)-S31
Fmoc-D-Leu
Fmoc-S9
5.5
100
421


1557
Fmoc-D-Phe
Fmoc-(S)-S31
Fmoc-D-Lys(Boc)
Fmoc-S9
4.0
100
420


1558
Fmoc-Phe
Fmoc-(S)-S31
Fmoc-D-Lys(Boc)
Fmoc-S9
6.3
100
420


1559
Fmoc-D-Phe(3Cl)
Fmoc-(S)-S31
Fmoc-Nva
Fmoc-S9
1.9
100
425


1560
Fmoc-D-Phe(3Cl)
Fmoc-(S)-S31
Fmoc-D-Val
Fmoc-S9
2.1
100
425


1561
Fmoc-Nva
Fmoc-(S)-S31
Fmoc-D-Phe(3Cl)
Fmoc-S9
1.9
100
425


1562
Fmoc-Nva
Fmoc-(S)-S31
Fmoc-D-Val
Fmoc-S9
2.5
na
343


1563
Fmoc-D-Val
Fmoc-(S)-S31
Fmoc-D-Phe(3Cl)
Fmoc-S9
3.4
89
425


1564
Fmoc-D-Val
Fmoc-(S)-S31
Fmoc-Nva
Fmoc-S9
7.4
100
343


1565
Fmoc-D-Phe(3Cl)
Fmoc-(S)-S31
Fmoc-Dap(Boc)
Fmoc-S9
2.7
100
412


1566
Fmoc-Dap(Boc)
Fmoc-(S)-S31
Fmoc-D-Phe(3Cl)
Fmoc-S9
2.7
100
412


1567
Fmoc-Dap(Boc)
Fmoc-(S)-S31
Fmoc-D-Val
Fmoc-S9
5.9
na
330


1568
Fmoc-D-Val
Fmoc-(S)-S31
Fmoc-Dap(Boc)
Fmoc-S9
8.4
100
330


1569
Fmoc-Trp(Boc)
Fmoc-(S)-S31
Fmoc-D-Phe
Fmoc-S9
4.4
81
478


1570
Fmoc-Trp(Boc)
Fmoc-(S)-S31
Fmoc-Arg(Pbf)
Fmoc-S9
2.6
100
487


1571
Fmoc-D-Phe
Fmoc-(S)-S31
Fmoc-Trp(Boc)
Fmoc-S9
2.0
87
478


1572
Fmoc-D-Phe
Fmoc-(S)-S31
Fmoc-Arg(Pbf)
Fmoc-S9
0.9
na
448


1573
Fmoc-Arg(Pbf)
Fmoc-(S)-S31
Fmoc-Trp(Boc)
Fmoc-S9
0.5
100
487


1574
Fmoc-Arg(Pbf)
Fmoc-(S)-S31
Fmoc-D-Phe
Fmoc-S9
0.4
100
448


1575
Fmoc-Pro
Fmoc-(S)-S31
Fmoc-Lys(Boc)
Fmoc-S9
5.6
na
370


1576
Fmoc-Ile
Fmoc-(S)-S31
Fmoc-Glu(OBut)
Fmoc-S9
na
na
387


1577
Fmoc-Trp(Boc)
Fmoc-(S)-S31
Fmoc-Tyr(But)
Fmoc-S9
3.3
79
494


1578
Fmoc-Thr(But)
Fmoc-(S)-S31
Fmoc-Ser(But)
Fmoc-S9
10.0
na
333


1579
Fmoc-Ser(But)
Fmoc-(S)-S31
Fmoc-Thr(But)
Fmoc-S9
5.6
na
333


1580
Fmoc-Pro
Fmoc-(S)-S31
Fmoc-Thr(But)
Fmoc-S9
2.5
na
343


1581
Fmoc-Pro
Fmoc-(S)-S31
Fmoc-Ser(But)
Fmoc-S9
7.2
na
329


1582
Fmoc-Glu(OBut)
Fmoc-(S)-S31
Fmoc-Ile
Fmoc-S9
2.0
na
387


1583
Fmoc-Leu
Fmoc-(S)-S31
Fmoc-Phe
Fmoc-S9
0.8
84
405


1584
Fmoc-Tyr(But)
Fmoc-(S)-S31
Fmoc-Trp(Boc)
Fmoc-S9
3.0
100
494


1585
Fmoc-Phe
Fmoc-(R)-S31
Fmoc-Leu
Fmoc-S9
2.3
100
405


1586
Fmoc-Phe
Fmoc-(R)-S31
D-Nle
Fmoc-S9
0.1
na
405


1587
Fmoc-D-Phe
Fmoc-(R)-S31
Fmoc-Leu
Fmoc-S9
3.9
100
405


1588
Fmoc-D-Phe
Fmoc-(R)-S31
D-Nle
Fmoc-S9
2.4
100
405


1589
Fmoc-D-Tyr(But)
Fmoc-(R)-S31
Fmoc-D-Leu
Fmoc-S9
4.5
na
421


1590
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-D-Leu
Fmoc-S9
3.5
na
421


1591
Fmoc-D-Phe
Fmoc-(R)-S31
Fmoc-D-Lys(Boc)
Fmoc-S9
4.8
na
420


1592
Fmoc-Phe
Fmoc-(R)-S31
Fmoc-D-Lys(Boc)
Fmoc-S9
4.2
na
420


1593
Fmoc-D-Phe(3Cl)
Fmoc-(R)-S31
Fmoc-Nva
Fmoc-S9
1.8
93
425


1594
Fmoc-D-Phe(3Cl)
Fmoc-(R)-S31
Fmoc-D-Val
Fmoc-S9
2.3
88
425


1595
Fmoc-Nva
Fmoc-(R)-S31
Fmoc-D-Phe(3Cl)
Fmoc-S9
2.5
89
425


1596
Fmoc-Nva
Fmoc-(R)-S31
Fmoc-D-Val
Fmoc-S9
na
na
na


1597
Fmoc-D-Val
Fmoc-(R)-S31
Fmoc-D-Phe(3Cl)
Fmoc-S9
2.0
83
425


1598
Fmoc-D-Val
Fmoc-(R)-S31
Fmoc-Nva
Fmoc-S9
3.8
na
343


1599
Fmoc-D-Phe(3Cl)
Fmoc-(R)-S31
Fmoc-Dap(Boc)
Fmoc-S9
3.5
71
412


1600
Fmoc-Dap(Boc)
Fmoc-(R)-S31
Fmoc-D-Phe(3Cl)
Fmoc-S9
1.5
na
412


1601
Fmoc-Dap(Boc)
Fmoc-(R)-S31
Fmoc-D-Val
Fmoc-S9
1.1
na
330


1602
Fmoc-D-Val
Fmoc-(R)-S31
Fmoc-Dap(Boc)
Fmoc-S9
6.3
na
330


1603
Fmoc-Trp(Boc)
Fmoc-(R)-S31
Fmoc-D-Phe
Fmoc-S9
2.3
87
478


1604
Fmoc-Trp(Boc)
Fmoc-(R)-S31
Fmoc-Arg(Pbf)
Fmoc-S9
1.3
na
487


1605
Fmoc-D-Phe
Fmoc-(R)-S31
Fmoc-Trp(Boc)
Fmoc-S9
2.6
74
478


1606
Fmoc-D-Phe
Fmoc-(R)-S31
Fmoc-Arg(Pbf)
Fmoc-S9
1.0
na
448


1607
Fmoc-Arg(Pbf)
Fmoc-(R)-S31
Fmoc-Trp(Boc)
Fmoc-S9
0.6
80
487


1608
Fmoc-Arg(Pbf)
Fmoc-(R)-S31
Fmoc-D-Phe
Fmoc-S9
0.7
na
448


1609
Fmoc-Pro
Fmoc-(R)-S31
Fmoc-Lys(Boc)
Fmoc-S9
2.0
na
370


1610
Fmoc-Ser(But)
Fmoc-(R)-S31
Fmoc-Pro
Fmoc-S37
1.8
na
361


1611
Fmoc-Ile
Fmoc-(R)-S31
Fmoc-Glu(OBut)
Fmoc-S9
1.0
100
387


1612
Fmoc-Trp(Boc)
Fmoc-(R)-S31
Fmoc-Tyr(But)
Fmoc-S9
2.7
83
494


1613
Fmoc-Thr(But)
Fmoc-(R)-S31
Fmoc-Ser(But)
Fmoc-S9
na
na
333


1614
Fmoc-Thr(But)
Fmoc-(R)-S31
Fmoc-Pro
Fmoc-S37
1.9
na
375


1615
Fmoc-Ser(But)
Fmoc-(R)-S31
Fmoc-Thr(But)
Fmoc-S9
4.9
na
333


1616
Fmoc-Pro
Fmoc-(R)-S31
Fmoc-Thr(But)
Fmoc-S9
0.7
na
343


1617
Fmoc-Pro
Fmoc-(R)-S31
Fmoc-Ser(But)
Fmoc-S9
1.7
na
329


1618
Fmoc-Lys(Boc)
Fmoc-(R)-S31
Fmoc-Pro
Fmoc-S37
1.3
na
402


1619
Fmoc-Glu(OBut)
Fmoc-(R)-S31
Fmoc-Ile
Fmoc-S9
1.0
na
387


1620
Fmoc-Leu
Fmoc-(R)-S31
Fmoc-Phe
Fmoc-S9
3.6
na
405


1621
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-Trp(Boc)
Fmoc-S9
3.4
na
494


1622
Fmoc-Phe
Fmoc-(S)-S32
Fmoc-Leu
Fmoc-S9
3.1
100
447


1623
Fmoc-Phe
Fmoc-(S)-S32
D-Nle
Fmoc-S9
4.7
na
447


1624
Fmoc-D-Phe
Fmoc-(S)-S32
Fmoc-Leu
Fmoc-S9
3.6
100
447


1625
Fmoc-D-Phe
Fmoc-(S)-S32
D-Nle
Fmoc-S9
3.9
na
447


1626
Fmoc-D-Tyr(But)
Fmoc-(S)-S32
Fmoc-D-Leu
Fmoc-S9
4.6
na
463


1627
Fmoc-Tyr(But)
Fmoc-(S)-S32
Fmoc-D-Leu
Fmoc-S9
5.0
na
463


1628
Fmoc-D-Phe
Fmoc-(S)-S32
Fmoc-D-Lys(Boc)
Fmoc-S9
4.9
na
462


1629
Fmoc-Phe
Fmoc-(S)-S32
Fmoc-D-Lys(Boc)
Fmoc-S9
5.3
83
462


1630
Fmoc-D-Phe(3Cl)
Fmoc-(S)-S32
Fmoc-Nva
Fmoc-S9
3.1
100
468


1631
Fmoc-D-Phe(3Cl)
Fmoc-(S)-S32
Fmoc-D-Val
Fmoc-S9
4.2
na
468


1632
Fmoc-Nva
Fmoc-(S)-S32
Fmoc-D-Phe(3Cl)
Fmoc-S9
3.5
na
468


1633
Fmoc-Nva
Fmoc-(S)-S32
Fmoc-D-Val
Fmoc-S9
1.9
na
385


1634
Fmoc-D-Val
Fmoc-(S)-S32
Fmoc-D-Phe(3Cl)
Fmoc-S9
2.9
na
468


1635
Fmoc-D-Val
Fmoc-(S)-S32
Fmoc-Nva
Fmoc-S9
4.8
na
385


1636
Fmoc-D-Phe(3Cl)
Fmoc-(S)-S32
Fmoc-Dap(Boc)
Fmoc-S9
3.0
na
455


1637
Fmoc-Dap(Boc)
Fmoc-(S)-S32
Fmoc-D-Phe(3Cl)
Fmoc-S9
2.5
na
455


1638
Fmoc-Dap(Boc)
Fmoc-(S)-S32
Fmoc-D-Val
Fmoc-S9
1.7
na
372


1639
Fmoc-D-Val
Fmoc-(S)-S32
Fmoc-Dap(Boc)
Fmoc-S9
3.4
na
372


1640
Fmoc-Trp(Boc)
Fmoc-(S)-S32
Fmoc-D-Phe
Fmoc-S9
1.9
na
520


1641
Fmoc-Trp(Boc)
Fmoc-(S)-S32
Fmoc-Arg(Pbf)
Fmoc-S9
1.1
100
529


1642
Fmoc-D-Phe
Fmoc-(S)-S32
Fmoc-Trp(Boc)
Fmoc-S9
3.3
na
520


1643
Fmoc-D-Phe
Fmoc-(S)-S32
Fmoc-Arg(Pbf)
Fmoc-S9
1.1
100
490


1644
Fmoc-Arg(Pbf)
Fmoc-(S)-S32
Fmoc-Trp(Boc)
Fmoc-S9
0.5
na
529


1645
Fmoc-Arg(Pbf)
Fmoc-(S)-S32
Fmoc-D-Phe
Fmoc-S9
0.5
na
490


1646
Fmoc-Pro
Fmoc-(S)-S32
Fmoc-Lys(Boc)
Fmoc-S9
1.7
na
412


1647
Fmoc-Ser(But)
Fmoc-(S)-S32
Fmoc-Pro
Fmoc-S37
1.5
na
403


1648
Fmoc-Ile
Fmoc-(S)-S32
Fmoc-Glu(OBut)
Fmoc-S9
3.4
100
429


1649
Fmoc-Trp(Boc)
Fmoc-(S)-S32
Fmoc-Tyr(But)
Fmoc-S9
2.4
100
536


1650
Fmoc-Thr(But)
Fmoc-(S)-S32
Fmoc-Ser(But)
Fmoc-S9
2.6
na
375


1651
Fmoc-Thr(But)
Fmoc-(S)-S32
Fmoc-Pro
Fmoc-S37
0.5
na
417


1652
Fmoc-Ser(But)
Fmoc-(S)-S32
Fmoc-Thr(But)
Fmoc-S9
1.6
na
375


1653
Fmoc-Pro
Fmoc-(S)-S32
Fmoc-Thr(But)
Fmoc-S9
1.4
na
385


1654
Fmoc-Pro
Fmoc-(S)-S32
Fmoc-Ser(But)
Fmoc-S9
1.2
na
371


1655
Fmoc-Lys(Boc)
Fmoc-(S)-S32
Fmoc-Pro
Fmoc-S37
0.9
na
444


1656
Fmoc-Glu(OBut)
Fmoc-(S)-S32
Fmoc-Ile
Fmoc-S9
1.2
100
429


1657
Fmoc-Leu
Fmoc-(S)-S32
Fmoc-Phe
Fmoc-S9
3.7
na
447


1658
Fmoc-Tyr(But)
Fmoc-(S)-S32
Fmoc-Trp(Boc)
Fmoc-S9
3.1
77
536


1659
Fmoc-Phe
Fmoc-(R)-S32
Fmoc-Leu
Fmoc-S9
3.0
na
447


1660
Fmoc-Phe
Fmoc-(R)-S32
D-Nle
Fmoc-S9
3.6
na
447


1661
Fmoc-D-Phe
Fmoc-(R)-S32
Fmoc-Leu
Fmoc-S9
3.6
na
447


1662
Fmoc-D-Phe
Fmoc-(R)-S32
D-Nle
Fmoc-S9
2.5
100
447


1663
Fmoc-D-Tyr(But)
Fmoc-(R)-S32
Fmoc-D-Leu
Fmoc-S9
2.6
96
463


1664
Fmoc-Tyr(But)
Fmoc-(R)-S32
Fmoc-D-Leu
Fmoc-S9
4.1
na
463


1665
Fmoc-D-Phe
Fmoc-(R)-S32
Fmoc-D-Lys(Boc)
Fmoc-S9
2.8
100
462


1666
Fmoc-Phe
Fmoc-(R)-S32
Fmoc-D-Lys(Boc)
Fmoc-S9
1.8
na
462


1667
Fmoc-D-Phe(3Cl)
Fmoc-(R)-S32
Fmoc-Nva
Fmoc-S9
3.9
100
468


1668
Fmoc-D-Phe(3Cl)
Fmoc-(R)-S32
Fmoc-D-Val
Fmoc-S9
3.2
100
468


1669
Fmoc-Nva
Fmoc-(R)-S32
Fmoc-D-Phe(3Cl)
Fmoc-S9
3.0
na
468


1670
Fmoc-Nva
Fmoc-(R)-S32
Fmoc-D-Val
Fmoc-S9
2.8
na
385


1671
Fmoc-D-Val
Fmoc-(R)-S32
Fmoc-D-Phe(3Cl)
Fmoc-S9
4.0
na
468


1672
Fmoc-D-Val
Fmoc-(R)-S32
Fmoc-Nva
Fmoc-S9
2.3
100
385


1673
Fmoc-D-Phe(3Cl)
Fmoc-(R)-S32
Fmoc-Dap(Boc)
Fmoc-S9
3.7
na
455


1674
Fmoc-Dap(Boc)
Fmoc-(R)-S32
Fmoc-D-Phe(3Cl)
Fmoc-S9
2.3
100
455


1675
Fmoc-Dap(Boc)
Fmoc-(R)-S32
Fmoc-D-Val
Fmoc-S9
2.3
100
372


1676
Fmoc-D-Val
Fmoc-(R)-S32
Fmoc-Dap(Boc)
Fmoc-S9
3.0
na
372


1677
Fmoc-Trp(Boc)
Fmoc-(R)-S32
Fmoc-D-Phe
Fmoc-S9
5.6
na
520


1678
Fmoc-Trp(Boc)
Fmoc-(R)-S32
Fmoc-Arg(Pbf)
Fmoc-S9
1.9
na
529


1679
Fmoc-D-Phe
Fmoc-(R)-S32
Fmoc-Trp(Boc)
Fmoc-S9
5.0
na
520


1680
Fmoc-D-Phe
Fmoc-(R)-S32
Fmoc-Arg(Pbf)
Fmoc-S9
2.4
na
490


1681
Fmoc-Arg(Pbf)
Fmoc-(R)-S32
Fmoc-Trp(Boc)
Fmoc-S9
1.2
100
529


1682
Fmoc-Arg(Pbf)
Fmoc-(R)-S32
Fmoc-D-Phe
Fmoc-S9
1.2
na
490


1683
Fmoc-Pro
Fmoc-(R)-S32
Fmoc-Lys(Boc)
Fmoc-S9
1.6
na
412


1684
Fmoc-Ser(But)
Fmoc-(R)-S32
Fmoc-Pro
Fmoc-S37
1.9
na
403


1685
Fmoc-Ile
Fmoc-(R)-S32
Fmoc-Glu(OBut)
Fmoc-S9
4.9
na
429


1686
Fmoc-Trp(Boc)
Fmoc-(R)-S32
Fmoc-Tyr(But)
Fmoc-S9
5.4
na
536


1687
Fmoc-Thr(But)
Fmoc-(R)-S32
Fmoc-Ser(But)
Fmoc-S9
4.3
na
375


1688
Fmoc-Thr(But)
Fmoc-(R)-S32
Fmoc-Pro
Fmoc-S37
1.8
na
417


1689
Fmoc-Ser(But)
Fmoc-(R)-S32
Fmoc-Thr(But)
Fmoc-S9
3.4
na
375


1690
Fmoc-Pro
Fmoc-(R)-S32
Fmoc-Thr(But)
Fmoc-S9
1.1
100
385


1691
Fmoc-Pro
Fmoc-(R)-S32
Fmoc-Ser(But)
Fmoc-S9
1.5
na
371


1692
Fmoc-Lys(Boc)
Fmoc-(R)-S32
Fmoc-Pro
Fmoc-S37
2.7
na
444


1693
Fmoc-Glu(OBut)
Fmoc-(R)-S32
Fmoc-Ile
Fmoc-S9
4.0
na
429


1694
Fmoc-Leu
Fmoc-(R)-S32
Fmoc-Phe
Fmoc-S9
4.5
na
447


1695
Fmoc-Tyr(But)
Fmoc-(R)-S32
Fmoc-Trp(Boc)
Fmoc-S9
4.7
na
536


1696
Fmoc-Asp(OBut)
Fmoc-(S)-S31
Fmoc-Trp(Boc)
Fmoc-S9
1.2
na
446


1697
Fmoc-Asp(OBut)
Fmoc-(S)-S31
Fmoc-Arg(Pbf)
Fmoc-S9
0.7
na
416


1698
Fmoc-Asp(OBut)
Fmoc-(S)-S31
Fmoc-Tyr(But)
Fmoc-S9
1.3
na
423


1699
Fmoc-His(Trt)
Fmoc-(S)-S31
Fmoc-Trp(Boc)
Fmoc-S9
3.0
na
468


1700
Fmoc-His(Trt)
Fmoc-(S)-S31
Fmoc-Arg(Pbf)
Fmoc-S9
2.0
na
438


1701
Fmoc-His(Trt)
Fmoc-(S)-S31
Fmoc-Tyr(But)
Fmoc-S9
2.7
na
445


1702
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Trp(Boc)
Fmoc-S9
2.8
na
445


1703
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Arg(Pbf)
Fmoc-S9
3.8
na
415


1704
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Tyr(But)
Fmoc-S9
3.8
na
422


1705
Fmoc-Trp(Boc)
Fmoc-(S)-S31
Fmoc-Asp(OBut)
Fmoc-S9
6.0
100
446


1706
Fmoc-Arg(Pbf)
Fmoc-(S)-S31
Fmoc-Asp(OBut)
Fmoc-S9
0.6
na
416


1707
Fmoc-Tyr(But)
Fmoc-(S)-S31
Fmoc-Asp(OBut)
Fmoc-S9
4.1
100
423


1708
Fmoc-Trp(Boc)
Fmoc-(S)-S31
Fmoc-His(Trt)
Fmoc-S9
3.5
na
468


1709
Fmoc-Arg(Pbf)
Fmoc-(S)-S31
Fmoc-His(Trt)
Fmoc-S9
na
na
na


1710
Fmoc-Tyr(But)
Fmoc-(S)-S31
Fmoc-His(Trt)
Fmoc-S9
3.0
na
445


1711
Fmoc-Trp(Boc)
Fmoc-(S)-S31
Fmoc-Asn(Trt)
Fmoc-S9
2.8
na
445


1712
Fmoc-Arg(Pbf)
Fmoc-(S)-S31
Fmoc-Asn(Trt)
Fmoc-S9
0.5
na
415


1713
Fmoc-Tyr(But)
Fmoc-(S)-S31
Fmoc-Asn(Trt)
Fmoc-S9
2.7
na
422


1714
Fmoc-Asp(OBut)
Fmoc-(R)-S31
Fmoc-Trp(Boc)
Fmoc-S9
1.1
na
446


1715
Fmoc-Asp(OBut)
Fmoc-(R)-S31
Fmoc-Arg(Pbf)
Fmoc-S9
0.8
na
416


1716
Fmoc-Asp(OBut)
Fmoc-(R)-S31
Fmoc-Tyr(But)
Fmoc-S9
1.3
na
423


1717
Fmoc-His(Trt)
Fmoc-(R)-S31
Fmoc-Trp(Boc)
Fmoc-S9
2.6
na
468


1718
Fmoc-His(Trt)
Fmoc-(R)-S31
Fmoc-Arg(Pbf)
Fmoc-S9
2.5
na
438


1719
Fmoc-His(Trt)
Fmoc-(R)-S31
Fmoc-Tyr(But)
Fmoc-S9
3.3
na
445


1720
Fmoc-Asn(Trt)
Fmoc-(R)-S31
Fmoc-Trp(Boc)
Fmoc-S9
1.7
na
445


1721
Fmoc-Asn(Trt)
Fmoc-(R)-S31
Fmoc-Arg(Pbf)
Fmoc-S9
2.5
na
415


1722
Fmoc-Asn(Trt)
Fmoc-(R)-S31
Fmoc-Tyr(But)
Fmoc-S9
1.6
na
422


1723
Fmoc-Trp(Boc)
Fmoc-(R)-S31
Fmoc-Asp(OBut)
Fmoc-S9
4.1
na
446


1724
Fmoc-Arg(Pbf)
Fmoc-(R)-S31
Fmoc-Asp(OBut)
Fmoc-S9
1.0
na
416


1725
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-Asp(OBut)
Fmoc-S9
4.5
na
423


1726
Fmoc-Trp(Boc)
Fmoc-(R)-S31
Fmoc-His(Trt)
Fmoc-S9
1.8
na
468


1727
Fmoc-Arg(Pbf)
Fmoc-(R)-S31
Fmoc-His(Trt)
Fmoc-S9
na
na
na


1728
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-His(Trt)
Fmoc-S9
2.9
100
445


1729
Fmoc-Trp(Boc)
Fmoc-(R)-S31
Fmoc-Asn(Trt)
Fmoc-S9
3.0
95
445


1730
Fmoc-Arg(Pbf)
Fmoc-(R)-S31
Fmoc-Asn(Trt)
Fmoc-S9
1.4
na
415


1731
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-Asn(Trt)
Fmoc-S9
2.7
na
422


1732
Fmoc-Asp(OBut)
Fmoc-(S)-S32
Fmoc-Trp(Boc)
Fmoc-S9
2.3
na
488


1733
Fmoc-Asp(OBut)
Fmoc-(S)-S32
Fmoc-Arg(Pbf)
Fmoc-S9
0.8
na
458


1734
Fmoc-Asp(OBut)
Fmoc-(S)-S32
Fmoc-Tyr(But)
Fmoc-S9
1.2
na
465


1735
Fmoc-His(Trt)
Fmoc-(S)-S32
Fmoc-Trp(Boc)
Fmoc-S9
3.1
na
510


1736
Fmoc-His(Trt)
Fmoc-(S)-S32
Fmoc-Arg(Pbf)
Fmoc-S9
0.9
na
480


1737
Fmoc-His(Trt)
Fmoc-(S)-S32
Fmoc-Tyr(But)
Fmoc-S9
3.8
na
487


1738
Fmoc-Asn(Trt)
Fmoc-(S)-S32
Fmoc-Trp(Boc)
Fmoc-S9
4.5
na
487


1739
Fmoc-Asn(Trt)
Fmoc-(S)-S32
Fmoc-Arg(Pbf)
Fmoc-S9
1.6
na
457


1740
Fmoc-Asn(Trt)
Fmoc-(S)-S32
Fmoc-Tyr(But)
Fmoc-S9
4.8
na
464


1741
Fmoc-Trp(Boc)
Fmoc-(S)-S32
Fmoc-Asp(OBut)
Fmoc-S9
6.8
na
488


1742
Fmoc-Arg(Pbf)
Fmoc-(S)-S32
Fmoc-Asp(OBut)
Fmoc-S9
0.7
na
458


1743
Fmoc-Tyr(But)
Fmoc-(S)-S32
Fmoc-Asp(OBut)
Fmoc-S9
5.1
na
465


1744
Fmoc-Trp(Boc)
Fmoc-(S)-S32
Fmoc-His(Trt)
Fmoc-S9
2.8
90
510


1745
Fmoc-Arg(Pbf)
Fmoc-(S)-S32
Fmoc-His(Trt)
Fmoc-S9
na
na
na


1746
Fmoc-Tyr(But)
Fmoc-(S)-S32
Fmoc-His(Trt)
Fmoc-S9
4.8
na
487


1747
Fmoc-Trp(Boc)
Fmoc-(S)-S32
Fmoc-Asn(Trt)
Fmoc-S9
3.3
89
487


1748
Fmoc-Arg(Pbf)
Fmoc-(S)-S32
Fmoc-Asn(Trt)
Fmoc-S9
0.6
na
457


1749
Fmoc-Tyr(But)
Fmoc-(S)-S32
Fmoc-Asn(Trt)
Fmoc-S9
4.4
na
464


1750
Fmoc-Asp(OBut)
Fmoc-(R)-S32
Fmoc-Trp(Boc)
Fmoc-S9
1.5
na
488


1751
Fmoc-Asp(OBut)
Fmoc-(R)-S32
Fmoc-Arg(Pbf)
Fmoc-S9
0.7
na
458


1752
Fmoc-Asp(OBut)
Fmoc-(R)-S32
Fmoc-Tyr(But)
Fmoc-S9
5.5
100
465


1753
Fmoc-His(Trt)
Fmoc-(R)-S32
Fmoc-Trp(Boc)
Fmoc-S9
5.2
na
510


1754
Fmoc-His(Trt)
Fmoc-(R)-S32
Fmoc-Arg(Pbf)
Fmoc-S9
1.4
100
480


1755
Fmoc-His(Trt)
Fmoc-(R)-S32
Fmoc-Tyr(But)
Fmoc-S9
5.7
na
487


1756
Fmoc-Asn(Trt)
Fmoc-(R)-S32
Fmoc-Trp(Boc)
Fmoc-S9
2.9
na
487


1757
Fmoc-Asn(Trt)
Fmoc-(R)-S32
Fmoc-Arg(Pbf)
Fmoc-S9
1.6
na
457


1758
Fmoc-Asn(Trt)
Fmoc-(R)-S32
Fmoc-Tyr(But)
Fmoc-S9
3.9
na
464


1759
Fmoc-Trp(Boc)
Fmoc-(R)-S32
Fmoc-Asp(OBut)
Fmoc-S9
5.2
77
488


1760
Fmoc-Arg(Pbf)
Fmoc-(R)-S32
Fmoc-Asp(OBut)
Fmoc-S9
1.1
na
458


1761
Fmoc-Tyr(But)
Fmoc-(R)-S32
Fmoc-Asp(OBut)
Fmoc-S9
4.1
100
465


1762
Fmoc-Trp(Boc)
Fmoc-(R)-S32
Fmoc-His(Trt)
Fmoc-S9
3.6
84
510


1763
Fmoc-Arg(Pbf)
Fmoc-(R)-S32
Fmoc-His(Trt)
Fmoc-S9
na
na
480


1764
Fmoc-Tyr(But)
Fmoc-(R)-S32
Fmoc-His(Trt)
Fmoc-S9
1.5
na
487


1765
Fmoc-Trp(Boc)
Fmoc-(R)-S32
Fmoc-Asn(Trt)
Fmoc-S9
4.3
100
487


1766
Fmoc-Arg(Pbf)
Fmoc-(R)-S32
Fmoc-Asn(Trt)
Fmoc-S9
0.8
na
457


1767
Fmoc-Tyr(But)
Fmoc-(R)-S32
Fmoc-Asn(Trt)
Fmoc-S9
4.3
na
464


1768
Fmoc-Phe
Fmoc-4-Pip
Fmoc-Ile
Fmoc-S9
3.0
100
459


1769
Fmoc-Phe
Fmoc-4-Pip
Fmoc-Tyr(But)
Fmoc-S9
1.5
100
509


1770
Fmoc-Ile
Fmoc-4-Pip
Fmoc-Phe
Fmoc-S9
2.4
100
459


1771
Fmoc-Ile
Fmoc-4-Pip
Fmoc-Tyr(But)
Fmoc-S9
2.6
81
475


1772
Fmoc-Tyr(But)
Fmoc-4-Pip
Fmoc-Phe
Fmoc-S9
2.3
100
509


1773
Fmoc-Tyr(But)
Fmoc-4-Pip
Fmoc-Ile
Fmoc-S9
7.8
100
475


1774
Fmoc-D-Phe(3Cl)
Fmoc-4-Pip
Fmoc-D-Val
Fmoc-S9
3.3
100
480


1775
Fmoc-D-Phe(3Cl)
Fmoc-4-Pip
Fmoc-Nva
Fmoc-S9
4.4
94
480


1776
Fmoc-D-Val
Fmoc-4-Pip
Fmoc-D-Phe(3Cl)
Fmoc-S9
3.8
100
480


1777
Fmoc-D-Val
Fmoc-4-Pip
Fmoc-Nva
Fmoc-S9
4.5
89
397


1778
Fmoc-Nva
Fmoc-4-Pip
Fmoc-D-Phe(3Cl)
Fmoc-S9
9.6
100
480


1779
Fmoc-Nva
Fmoc-4-Pip
Fmoc-D-Val
Fmoc-S9
6.2
100
397


1780
Fmoc-D-Phe(3Cl)
Fmoc-4-Pip
Fmoc-Dap(Boc)
Fmoc-S9
6.6
100
466


1781
Fmoc-D-Val
Fmoc-4-Pip
Fmoc-Dap(Boc)
Fmoc-S9
5.0
95
384


1782
Fmoc-Dap(Boc)
Fmoc-4-Pip
Fmoc-D-Phe(3Cl)
Fmoc-S9
8.1
100
466


1783
Fmoc-Dap(Boc)
Fmoc-4-Pip
Fmoc-D-Val
Fmoc-S9
4.3
100
384


1784
Fmoc-Phe
Fmoc-3-Azi
Fmoc-Ile
Fmoc-S37
5.4
100
463


1785
Fmoc-D-Phe
Fmoc-3-Azi
Fmoc-Tyr(But)
Fmoc-S37
9.1
100
513


1786
Fmoc-Ile
Fmoc-3-Azi
Fmoc-Phe
Fmoc-S37
3.9
93
463


1787
Fmoc-Ile
Fmoc-3-Azi
Fmoc-Tyr(But)
Fmoc-S37
7.7
100
479


1788
Fmoc-D-Tyr(But)
Fmoc-3-Azi
Fmoc-Ile
Fmoc-S37
11.1
96
479


1790
Fmoc-Phe
Fmoc-3-Azi
Fmoc-Nva
Fmoc-S37
3.5
94
449


1792
Fmoc-Val
Fmoc-3-Azi
Fmoc-Nva
Fmoc-S37
4.3
100
401


1794
Fmoc-D-Nva
Fmoc-3-Azi
Fmoc-D-Val
Fmoc-S37
7.2
100
401


1798
Fmoc-D-Dap(Boc)
Fmoc-3-Azi
Fmoc-D-Val
Fmoc-S37
2.2
100
388


1799
Fmoc-Phe
Fmoc-3-Azi
Fmoc-Ile
Fmoc-S37
2.0
97
477


1800
Fmoc-Phe
Fmoc-3-Azi
Fmoc-Tyr(But)
Fmoc-S37
5.6
80
527


1801
Fmoc-Ile
Fmoc-3-Azi
Fmoc-Phe
Fmoc-S37
4.3
100
477


1802
Fmoc-Ile
Fmoc-3-Azi
Fmoc-Tyr(But)
Fmoc-S37
6.2
69
493


1803
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-Phe
Fmoc-S37
4.8
100
527


1804
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-Ile
Fmoc-S37
2.7
100
493


1805
Fmoc-D-Phe(3Cl)
Fmoc-3-Azi
Fmoc-D-Val
Fmoc-S37
2.1
100
498


1806
Fmoc-D-Phe(3Cl)
Fmoc-3-Azi
Fmoc-Nva
Fmoc-S37
3.9
100
498


1807
Fmoc-D-Val
Fmoc-3-Azi
Fmoc-D-Phe(3Cl)
Fmoc-S37
8.0
100
498


1808
Fmoc-D-Val
Fmoc-3-Azi
Fmoc-Nva
Fmoc-S37
2.6
68
415


1809
Fmoc-Nva
Fmoc-3-Azi
Fmoc-D-Phe(3Cl)
Fmoc-S37
4.5
100
498


1810
Fmoc-Nva
Fmoc-3-Azi
Fmoc-D-Val
Fmoc-S37
4.0
78
415


1811
Fmoc-D-Phe(3Cl)
Fmoc-3-Azi
Fmoc-Dap(Boc)
Fmoc-S37
4.2
91
484


1812
Fmoc-D-Val
Fmoc-3-Azi
Fmoc-Dap(Boc)
Fmoc-S37
5.4
100
402


1813
Fmoc-Dap(Boc)
Fmoc-3-Azi
Fmoc-D-Phe(3Cl)
Fmoc-S37
2.0
100
484


1814
Fmoc-Dap(Boc)
Fmoc-3-Azi
Fmoc-D-Val
Fmoc-S37
1.3
100
402


1815
Fmoc-Phe
Fmoc-4-cis-Ach
Fmoc-Ile
Fmoc-S9
na
na
na


1816
Fmoc-Phe
Fmoc-4-cis-Ach
Fmoc-D-Tyr(But)
Fmoc-S9
5.1
74
523


1817
Fmoc-Ile
Fmoc-4-cis-Ach
Fmoc-Phe
Fmoc-S9
14.1
95
473


1818
Fmoc-Ile
Fmoc-4-cis-Ach
Fmoc-Tyr(But)
Fmoc-S9
12.3
100
489


1819
Fmoc-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-D-Phe
Fmoc-S9
8.4
77
523


1820
Fmoc-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-Ile
Fmoc-S9
12.4
100
489


1823
Fmoc-D-Val
Fmoc-4-cis-Ach
Fmoc-Phe
Fmoc-S9
5.3
80
459


1826
Fmoc-Nva
Fmoc-4-cis-Ach
Fmoc-Val
Fmoc-S9
10.4
100
411


1828
Fmoc-D-Val
Fmoc-4-cis-Ach
Fmoc-D-Dap(Boc)
Fmoc-S9
20.2
100
398


1830
Fmoc-Dap(Boc)
Fmoc-4-cis-Ach
Fmoc-Val
Fmoc-S9
12.3
100
398


1831
Fmoc-Phe
Fmoc-4-cis-Ach
Fmoc-Ile
Fmoc-S9
1.6
na
487


1832
Fmoc-Phe
Fmoc-4-cis-Ach
Fmoc-D-Tyr(But)
Fmoc-S9
na
na
na


1833
Fmoc-Ile
Fmoc-4-cis-Ach
Fmoc-Phe
Fmoc-S9
na
na
na


1834
Fmoc-Ile
Fmoc-4-cis-Ach
Fmoc-Tyr(But)
Fmoc-S9
na
na
na


1835
Fmoc-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-D-Phe
Fmoc-S9
6.0
na
537


1836
Fmoc-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-Ile
Fmoc-S9
4.4
na
503


1837
Fmoc-D-Phe(3Cl)
Fmoc-4-cis-Ach
Fmoc-D-Val
Fmoc-S9
2.6
na
508


1838
Fmoc-D-Phe(3Cl)
Fmoc-4-cis-Ach
Fmoc-Nva
Fmoc-S9
na
na
na


1839
Fmoc-D-Val
Fmoc-4-cis-Ach
Fmoc-Phe
Fmoc-S9
na
na
na


1840
Fmoc-D-Val
Fmoc-4-cis-Ach
Fmoc-Nva
Fmoc-(S)-S31
1.5
na
395


1841
Fmoc-Nva
Fmoc-4-cis-Ach
Fmoc-D-Phe(3Cl)
Fmoc-S9
na
na
na


1842
Fmoc-Nva
Fmoc-4-cis-Ach
Fmoc-Val
Fmoc-S9
3.8
na
425


1843
Fmoc-D-Phe(3Cl)
Fmoc-4-cis-Ach
Fmoc-Dap(Boc)
Fmoc-S9
na
na
na


1844
Fmoc-D-Val
Fmoc-4-cis-Ach
Fmoc-D-Dap(Boc)
Fmoc-S9
na
na
na


1845
Fmoc-Dap(Boc)
Fmoc-4-cis-Ach
Fmoc-D-Phe(3Cl)
Fmoc-S9
na
na
na


1846
Fmoc-Dap(Boc)
Fmoc-4-cis-Ach
Fmoc-Val
Fmoc-S9
7.6
na
412


1847
Fmoc-Phe
Fmoc-(S)-S31
Fmoc-Ile
Fmoc-S9
1.1
100
405


1848
Fmoc-D-Phe
Fmoc-(S)-S31
Fmoc-Tyr(But)
Fmoc-S9
1.5
100
455


1849
Fmoc-Ile
Fmoc-(S)-S31
Fmoc-Phe
Fmoc-S9
0.8
100
405


1850
Fmoc-Ile
Fmoc-(S)-S31
Fmoc-Tyr(But)
Fmoc-S9
1.9
100
421


1851
Fmoc-Tyr(But)
Fmoc-(S)-S31
Fmoc-Phe
Fmoc-S9
1.5
80
455


1852
Fmoc-D-Tyr(But)
Fmoc-(S)-S31
Fmoc-Ile
Fmoc-S9
1.6
100
421


1854
Fmoc-Phe
Fmoc-(S)-S31
Fmoc-Nva
Fmoc-S9
1.0
100
391


1856
Fmoc-Val
Fmoc-(S)-S31
Fmoc-Nva
Fmoc-S9
1.3
100
343


1858
Fmoc-D-Nva
Fmoc-(S)-S31
Fmoc-D-Val
Fmoc-S9
0.9
100
343


1862
Fmoc-D-Dap(Boc)
Fmoc-(S)-S31
Fmoc-D-Val
Fmoc-S9
0.5
100
330


1863
Fmoc-Phe
Fmoc-(R)-S32
Fmoc-Ile
Fmoc-S9
1.1
90
447


1864
Fmoc-Phe
Fmoc-(R)-S32
Fmoc-Tyr(But)
Fmoc-S9
1.3
80
497


1865
Fmoc-Ile
Fmoc-(R)-S32
Fmoc-Phe
Fmoc-S9
1.0
90
447


1866
Fmoc-Ile
Fmoc-(R)-S32
Fmoc-Tyr(But)
Fmoc-S9
1.0
90
463


1867
Fmoc-Tyr(But)
Fmoc-(R)-S32
Fmoc-Ile
Fmoc-S9
1.3
90
463


1878
Fmoc-D-Trp(Boc)
Fmoc-4-Pip
Fmoc-D-Phe
Fmoc-S9
2.8
100
532


1879
Fmoc-D-Trp(Boc)
Fmoc-4-Pip
Fmoc-Leu
Fmoc-S9
6.4
100
498


1880
Fmoc-Trp(Boc)
Fmoc-4-Pip
Fmoc-Thr(But)
Fmoc-S9
2.4
100
486


1881
Fmoc-Trp(Boc)
Fmoc-4-Pip
Fmoc-D-Asn(Trt)
Fmoc-S9
14.1
100
499


1882
Fmoc-Tyr(But)
Fmoc-4-Pip
Fmoc-Asp(OBut)
Fmoc-S9
2.6
100
477


1883
Fmoc-D-Tyr(But)
Fmoc-4-Pip
Fmoc-Trp(Boc)
Fmoc-S9
2.7
100
548


1884
Fmoc-D-Tyr(But)
Fmoc-4-Pip
Fmoc-Gln(Trt)
Fmoc-S9
3.4
100
490


1885
Fmoc-D-Arg(Pbf)
Fmoc-4-Pip
Fmoc-D-Tyr(But)
Fmoc-S9
1.8
48
518


1886
Fmoc-Arg(Pbf)
Fmoc-4-Pip
Fmoc-D-Trp(Boc)
Fmoc-S9
4.4
100
541


1887
Fmoc-Arg(Pbf)
Fmoc-4-Pip
Fmoc-D-Ser(But)
Fmoc-S9
2.5
90
442


1888
Fmoc-D-Ser(But)
Fmoc-4-Pip
Fmoc-Ser(But)
Fmoc-S9
2.8
90
373


1889
Fmoc-D-Asn(Trt)
Fmoc-4-Pip
Fmoc-Phe
Fmoc-S9
8.6
100
460


1890
Fmoc-Glu(OBut)
Fmoc-4-Pip
Fmoc-Asn(Trt)
Fmoc-S9
na
na
na


1891
Fmoc-Phe
Fmoc-4-Pip
Fmoc-Thr(But)
Fmoc-S9
2.3
100
447


1892
Fmoc-Trp(Boc)
Fmoc-4-Pip
Fmoc-D-Asp(OBut)
Fmoc-S9
13.5
89
500


1893
Fmoc-D-Trp(Boc)
Fmoc-4-Pip
Fmoc-Tyr(But)
Fmoc-S9
9.4
100
548


1894
Fmoc-D-Lys(Boc)
Fmoc-4-Pip
Fmoc-Asn(Trt)
Fmoc-S9
10.5
100
441


1895
Fmoc-Ser(But)
Fmoc-4-Pip
Fmoc-D-Trp(Boc)
Fmoc-S9
9.0
100
472


1896
Fmoc-D-Ser(But)
Fmoc-4-Pip
Fmoc-Val
Fmoc-S9
2.4
100
385


1897
Fmoc-D-Leu
Fmoc-4-Pip
Fmoc-Lys(Boc)
Fmoc-S9
6.5
90
440


1898
Fmoc-Leu
Fmoc-4-Pip
Fmoc-D-Arg(Pbf)
Fmoc-S9
4.0
90
468


1899
Fmoc-D-Asp(OBut)
Fmoc-4-Pip
Fmoc-Ser(But)
Fmoc-S9
4.6
100
401


1900
Fmoc-Asp(OBut)
Fmoc-4-Pip
Fmoc-Phe
Fmoc-S9
3.2
100
461


1901
Fmoc-Asn(Trt)
Fmoc-4-Pip
Fmoc-Leu
Fmoc-S9
6.7
100
426


1902
Fmoc-D-Asn(Trt)
Fmoc-4-Pip
Fmoc-Tyr(But)
Fmoc-S9
5.9
73
476


1903
Fmoc-Val
Fmoc-4-Pip
Fmoc-Asp(OBut)
Fmoc-S9
5.4
100
413


1904
Fmoc-D-Arg(Pbf)
Fmoc-4-Pip
Fmoc-Trp(Boc)
Fmoc-S9
4.6
100
541


1905
Fmoc-Arg(Pbf)
Fmoc-4-Pip
Fmoc-D-Asn(Trt)
Fmoc-S9
8.3
100
469


1907
Fmoc-D-Phe
Fmoc-4-Pip
Fmoc-Val
Fmoc-S9
6.1
100
445


1908
Fmoc-D-Tyr(But)
Fmoc-4-Pip
Fmoc-D-Ser(But)
Fmoc-S9
2.9
81
449


1909
Fmoc-Tyr(But)
Fmoc-4-Pip
Fmoc-Arg(Pbf)
Fmoc-S9
4.0
50
518


1910
Fmoc-D-Trp(Boc)
Fmoc-Azi
Fmoc-Trp(Boc)
Fmoc-S37
6.4
100
575


1911
Fmoc-D-Trp(Boc)
Fmoc-Azi
Fmoc-Ile
Fmoc-S37
7.5
89
502


1912
Fmoc-Trp(Boc)
Fmoc-Azi
Fmoc-D-Lys(Boc)
Fmoc-S37
5.9
100
517


1914
Fmoc-D-Tyr(But)
Fmoc-Azi
Fmoc-Thr(But)
Fmoc-S37
10.4
100
467


1915
Fmoc-D-Tyr(But)
Fmoc-Azi
Fmoc-Asn(Trt)
Fmoc-S37
9.5
100
480


1916
Fmoc-D-Arg(Pbf)
Fmoc-Azi
Fmoc-Asp(OBut)
Fmoc-S37
3.0
100
474


1917
Fmoc-Arg(Pbf)
Fmoc-Azi
Fmoc-D-Trp(Boc)
Fmoc-S37
2.1
100
545


1918
Fmoc-Arg(Pbf)
Fmoc-Azi
Fmoc-Gln(Trt)
Fmoc-S37
0.8
100
487


1919
Fmoc-Ser(But)
Fmoc-Azi
Fmoc-Glu(OBut)
Fmoc-S37
na
na
na


1920
Fmoc-Thr(But)
Fmoc-Azi
Fmoc-D-Ser(But)
Fmoc-S37
10.4
93
391


1921
Fmoc-Glu(OBut)
Fmoc-Azi
Fmoc-Thr(But)
Fmoc-S37
7.9
100
433


1922
Fmoc-Phe
Fmoc-Azi
Fmoc-Glu(OBut)
Fmoc-S37
4.0
100
479


1924
Fmoc-D-Lys(Boc)
Fmoc-Azi
Fmoc-Trp(Boc)
Fmoc-S37
12.0
100
517


1925
Fmoc-Lys(Boc)
Fmoc-Azi
Fmoc-Val
Fmoc-S37
11.0
96
430


1926
Fmoc-Ser(But)
Fmoc-Azi
Fmoc-D-Lys(Boc)
Fmoc-S37
26.6
100
418


1927
Fmoc-D-Ser(But)
Fmoc-Azi
Fmoc-Arg(Pbf)
Fmoc-S37
6.9
100
446


1928
Fmoc-D-Leu
Fmoc-Azi
Fmoc-Ser(But)
Fmoc-S37
9.7
100
403


1929
Fmoc-Leu
Fmoc-Azi
Fmoc-D-Phe
Fmoc-S37
11.6
100
463


1930
Fmoc-D-Asp(OBut)
Fmoc-Azi
Fmoc-Leu
Fmoc-S37
9.1
100
431


1932
Fmoc-Asn(Trt)
Fmoc-Azi
Fmoc-Asp(OBut)
Fmoc-S37
na
na
na


1933
Fmoc-Val
Fmoc-Azi
Fmoc-D-Trp(Boc)
Fmoc-S37
8.9
100
488


1934
Fmoc-Val
Fmoc-Azi
Fmoc-Asn(Trt)
Fmoc-S37
5.1
100
416


1935
Fmoc-D-Arg(Pbf)
Fmoc-Azi
Fmoc-Lys(Boc)
Fmoc-S37
2.1
100
487


1936
Fmoc-Arg(Pbf)
Fmoc-Azi
Fmoc-Val
Fmoc-S37
2.5
100
458


1937
Fmoc-Phe
Fmoc-Azi
Fmoc-D-Ser(But)
Fmoc-S37
5.6
94
437


1940
Fmoc-Tyr(But)
Fmoc-Azi
Fmoc-Phe
Fmoc-S37
5.1
90
513


1941
Fmoc-D-Trp(Boc)
Fmoc-Azi
Fmoc-D-His(Trt)
Fmoc-S37
5.1
98
540


1942
Fmoc-D-Trp(Boc)
Fmoc-Azi
Fmoc-Glu(OBut)
Fmoc-S37
5.5
100
532


1943
Fmoc-Trp(Boc)
Fmoc-Azi
Fmoc-Val
Fmoc-S37
1.8
90
502


1944
Fmoc-Tyr(But)
Fmoc-Azi
Fmoc-D-Trp(Boc)
Fmoc-S37
4.9
53
566


1945
Fmoc-D-Tyr(But)
Fmoc-Azi
Fmoc-Lys(Boc)
Fmoc-S37
9.5
100
508


1946
Fmoc-D-Arg(Pbf)
Fmoc-Azi
Fmoc-Phe
Fmoc-S37
0.8
100
520


1947
Fmoc-D-Arg(Pbf)
Fmoc-Azi
Fmoc-Leu
Fmoc-S37
0.6
100
486


1948
Fmoc-Arg(Pbf)
Fmoc-Azi
Fmoc-Thr(But)
Fmoc-S37
0.8
100
474


1949
Fmoc-Arg(Pbf)
Fmoc-Azi
Fmoc-Asn(Trt)
Fmoc-S37
0.9
90
487


1950
Fmoc-Ser(But)
Fmoc-Azi
Fmoc-D-Phe
Fmoc-S37
10.9
80
451


1951
Fmoc-Thr(But)
Fmoc-Azi
Fmoc-Glu(OBut)
Fmoc-S37
4.1
74
447


1952
Fmoc-Glu(OBut)
Fmoc-Azi
Fmoc-Phe
Fmoc-S37
4.8
90
493


1953
Fmoc-Trp(Boc)
Fmoc-Azi
Fmoc-Lys(Boc)
Fmoc-S37
2.5
100
531


1954
Fmoc-D-Trp(Boc)
Fmoc-Azi
Fmoc-Val
Fmoc-S37
2.7
66
502


1955
Fmoc-D-Lys(Boc)
Fmoc-Azi
Fmoc-Ser(But)
Fmoc-S37
4.0
100
432


1956
Fmoc-Lys(Boc)
Fmoc-Azi
Fmoc-D-Arg(Pbf)
Fmoc-S37
1.8
90
501


1957
Fmoc-Ser(But)
Fmoc-Azi
Fmoc-Leu
Fmoc-S37
5.6
84
417


1958
Fmoc-D-Ser(But)
Fmoc-Azi
Fmoc-Phe
Fmoc-S37
13.7
100
451


1959
Fmoc-D-Leu
Fmoc-Azi
Fmoc-Asp(OBut)
Fmoc-S37
7.3
100
445


1960
Fmoc-Leu
Fmoc-Azi
Fmoc-Tyr(But)
Fmoc-S37
5.2
74
493


1961
Fmoc-D-Asp(OBut)
Fmoc-Azi
Fmoc-Asn(Trt)
Fmoc-S37
7.7
79
446


1962
Fmoc-Asn(Trt)
Fmoc-Azi
Fmoc-D-Trp(Boc)
Fmoc-S37
2.5
95
517


1963
Fmoc-D-Asn(Trt)
Fmoc-Azi
Fmoc-Val
Fmoc-S37
2.4
96
430


1964
Fmoc-Val
Fmoc-Azi
Fmoc-Lys(Boc)
Fmoc-S37
6.3
na
444


1965
Fmoc-Val
Fmoc-Azi
Fmoc-D-Arg(Pbf)
Fmoc-S37
1.3
100
472


1966
Fmoc-D-Arg(Pbf)
Fmoc-Azi
Fmoc-Ser(But)
Fmoc-S37
0.9
80
460


1967
Fmoc-Arg(Pbf)
Fmoc-Azi
Fmoc-Phe
Fmoc-S37
0.9
100
520


1968
Fmoc-Phe
Fmoc-Azi
Fmoc-Leu
Fmoc-S37
3.4
90
477


1969
Fmoc-D-Phe
Fmoc-Azi
Fmoc-Tyr(But)
Fmoc-S37
5.1
73
527


1970
Fmoc-D-Tyr(But)
Fmoc-Azi
Fmoc-D-Asp(OBut)
Fmoc-S37
3.8
50
495


1971
Fmoc-D-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-Tyr(But)
Fmoc-S9
8.9
55
562


1973
Fmoc-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-D-Ser(But)
Fmoc-S9
9.6
100
486


1974
Fmoc-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-D-His(Trt)
Fmoc-S9
16.5
100
513


1975
Fmoc-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-Glu(OBut)
Fmoc-S9
8.8
100
505


1976
Fmoc-D-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-Val
Fmoc-S9
8.3
100
475


1977
Fmoc-D-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-Trp(Boc)
Fmoc-S9
8.0
36
555


1978
Fmoc-D-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-Ile
Fmoc-S9
6.2
90
482


1979
Fmoc-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-D-Lys(Boc)
Fmoc-S9
3.6
90
497


1980
Fmoc-D-Ser(But)
Fmoc-4-cis-Ach
Fmoc-Asn(Trt)
Fmoc-S9
12.3
90
414


1981
Fmoc-Asn(Trt)
Fmoc-4-cis-Ach
Fmoc-Ser(But)
Fmoc-S9
na
na
na


1982
Fmoc-Thr(But)
Fmoc-4-cis-Ach
Fmoc-D-Phe
Fmoc-S9
4.1
100
461


1983
Fmoc-D-Phe
Fmoc-4-cis-Ach
Fmoc-Ser(But)
Fmoc-S9
11.8
90
447


1984
Fmoc-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-Ser(But)
Fmoc-S9
24.9
100
486


1985
Fmoc-D-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-D-Arg(Pbf)
Fmoc-S9
6.9
100
555


1986
Fmoc-D-Lys(Boc)
Fmoc-4-cis-Ach
Fmoc-Leu
Fmoc-S9
17.9
100
454


1987
Fmoc-Lys(Boc)
Fmoc-4-cis-Ach
Fmoc-Phe
Fmoc-S9
25.0
100
488


1988
Fmoc-Ser(But)
Fmoc-4-cis-Ach
Fmoc-Asp(OBut)
Fmoc-S9
26.1
100
415


1989
Fmoc-D-Ser(But)
Fmoc-4-cis-Ach
Fmoc-D-Tyr(But)
Fmoc-S9
9.0
100
463


1990
Fmoc-D-Leu
Fmoc-4-cis-Ach
Fmoc-Asn(Trt)
Fmoc-S9
2.7
76
440


1991
Fmoc-D-Asp(OBut)
Fmoc-4-cis-Ach
Fmoc-Trp(Boc)
Fmoc-S9
16.0
100
514


1992
Fmoc-Asp(OBut)
Fmoc-4-cis-Ach
Fmoc-Val
Fmoc-S9
13.3
100
427


1993
Fmoc-Asn(Trt)
Fmoc-4-cis-Ach
Fmoc-D-Lys(Boc)
Fmoc-S9
17.0
90
455


1994
Fmoc-D-Asn(Trt)
Fmoc-4-cis-Ach
Fmoc-Arg(Pbf)
Fmoc-S9
8.9
100
483


1995
Fmoc-Val
Fmoc-4-cis-Ach
Fmoc-Ser(But)
Fmoc-S9
17.0
100
399


1996
Fmoc-Val
Fmoc-4-cis-Ach
Fmoc-Phe
Fmoc-S9
8.0
100
459


1997
Fmoc-D-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-Leu
Fmoc-S9
9.7
100
482


1998
Fmoc-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-Tyr(But)
Fmoc-S9
4.1
90
532


1999
Fmoc-Phe
Fmoc-4-cis-Ach
Fmoc-D-Asp(OBut)
Fmoc-S9
19.9
100
475


2000
Fmoc-D-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-Trp(Boc)
Fmoc-S9
7.2
53
562


2002
Fmoc-D-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-Asp(OBut)
Fmoc-S9
na
na
na


2003
Fmoc-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-D-Trp(Boc)
Fmoc-S9
na
na
na


2004
Fmoc-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-Gln(Trt)
Fmoc-S9
0.9
67
541


2005
Fmoc-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-D-Trp(Boc)
Fmoc-S9
na
na
na


2006
Fmoc-D-Tyr(But)
Fmoc-4-cis-Ach
Arg(Pbf)
Fmoc-S9
na
na
na


2007
Fmoc-D-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-Ser(But)
Fmoc-S9
na
na
na


2008
Fmoc-D-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-D-His(Trt)
Fmoc-S9
na
na
na


2009
Fmoc-D-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-Glu(OBut)
Fmoc-S9
0.4
na
512


2010
Fmoc-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-Val
Fmoc-S9
na
na
na


2011
Fmoc-D-Ser(But)
Fmoc-4-cis-Ach
Fmoc-Thr(But)
Fmoc-S9
na
na
na


2012
Fmoc-Asn(Trt)
Fmoc-4-cis-Ach
Fmoc-Glu(OBut)
Fmoc-S9
na
na
na


2013
Fmoc-Glu(OBut)
Fmoc-4-cis-Ach
Fmoc-Ser(But)
Fmoc-S9
2.4
100
443


2014
Fmoc-D-Phe
Fmoc-4-cis-Ach
Fmoc-D-Asn(Trt)
Fmoc-S9
2.4
100
488


2015
Fmoc-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-Leu
Fmoc-S9
3.2
100
526


2016
Fmoc-D-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-Phe
Fmoc-S9
na
na
na


2017
Fmoc-D-Lys(Boc)
Fmoc-4-cis-Ach
Fmoc-Asp(OBut)
Fmoc-S9
na
na
na


2018
Fmoc-Lys(Boc)
Fmoc-4-cis-Ach
Fmoc-D-Tyr(But)
Fmoc-S9
na
na
na


2019
Fmoc-Ser(But)
Fmoc-4-cis-Ach
Fmoc-Asn(Trt)
Fmoc-S9
na
na
na


2020
Fmoc-D-Leu
Fmoc-4-cis-Ach
Fmoc-Trp(Boc)
Fmoc-S9
na
na
na


2021
Fmoc-Leu
Fmoc-4-cis-Ach
Fmoc-Val
Fmoc-S9
na
na
na


2022
Fmoc-D-Asp(OBut)
Fmoc-4-cis-Ach
Fmoc-Lys(Boc)
Fmoc-S9
na
na
na


2023
Fmoc-Asp(OBut)
Fmoc-4-cis-Ach
Fmoc-D-Arg(Pbf)
Fmoc-S9
3.4
na
498


2024
Fmoc-Asn(Trt)
Fmoc-4-cis-Ach
Fmoc-Ser(But)
Fmoc-S9
na
na
na


2025
Fmoc-D-Asn(Trt)
Fmoc-4-cis-Ach
Fmoc-Phe
Fmoc-S9
na
na
na


2026
Fmoc-Val
Fmoc-4-cis-Ach
Fmoc-Leu
Fmoc-S9
na
na
na


2027
Fmoc-Val
Fmoc-4-cis-Ach
Fmoc-D-Tyr(But)
Fmoc-S9
na
na
na


2028
Fmoc-D-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-Asp(OBut)
Fmoc-S9
na
na
na


2029
Fmoc-Phe
Fmoc-4-cis-Ach
Fmoc-Trp(Boc)
Fmoc-S9
na
na
na


2030
Fmoc-D-Phe
Fmoc-4-cis-Ach
Fmoc-Asn(Trt)
Fmoc-S9
na
na
na


2031
Fmoc-D-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-Lys(Boc)
Fmoc-S9
na
na
na


2032
Fmoc-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-Val
Fmoc-S9
3.3
100
489


2033
Fmoc-D-Trp(Boc)
Fmoc-(S)-S31
Fmoc-D-Phe
Fmoc-S9
1.6
100
478


2034
Fmoc-D-Trp(Boc)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
1.7
100
444


2035
Fmoc-Trp(Boc)
Fmoc-(S)-S31
Fmoc-Thr(But)
Fmoc-S9
na
na
na


2038
Fmoc-D-Tyr(But)
Fmoc-(S)-S31
Fmoc-D-Trp(Boc)
Fmoc-S9
2.0
100
494


2039
Fmoc-D-Tyr(But)
Fmoc-(S)-S31
Fmoc-Gln(Trt)
Fmoc-S9
2.0
100
436


2040
Fmoc-D-Arg(Pbf)
Fmoc-(S)-S31
Fmoc-Tyr(But)
Fmoc-S9
0.7
na
464


2041
Fmoc-Arg(Pbf)
Fmoc-(S)-S31
Fmoc-D-Trp(Boc)
Fmoc-S9
2.4
100
487


2042
Fmoc-Arg(Pbf)
Fmoc-(S)-S31
Fmoc-D-Ser(But)
Fmoc-S9
3.7
na
388


2043
Fmoc-D-Ser(But)
Fmoc-(S)-S31
Fmoc-Ser(But)
Fmoc-S9
11.6
100
319


2044
Fmoc-D-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Phe
Fmoc-S9
1.0
100
406


2045
Fmoc-Glu(OBut)
Fmoc-(S)-S31
Fmoc-Asn(Trt)
Fmoc-S9
na
na
388


2046
Fmoc-Phe
Fmoc-(S)-S31
Fmoc-Thr(But)
Fmoc-S9
1.2
100
393


2048
Fmoc-D-Trp(Boc)
Fmoc-(S)-S31
Fmoc-D-Tyr(But)
Fmoc-S9
1.2
100
494


2049
Fmoc-D-Lys(Boc)
Fmoc-(S)-S31
Fmoc-Asn(Trt)
Fmoc-S9
1.9
na
387


2050
Fmoc-Ser(But)
Fmoc-(S)-S31
Fmoc-Trp(Boc)
Fmoc-S9
3.2
100
418


2051
Fmoc-D-Ser(But)
Fmoc-(S)-S31
Fmoc-Val
Fmoc-S9
1.6
100
331


2052
Fmoc-D-Leu
Fmoc-(S)-S31
Fmoc-D-Lys(Boc)
Fmoc-S9
1.2
na
386


2053
Fmoc-Leu
Fmoc-(S)-S31
Fmoc-Arg(Pbf)
Fmoc-S9
1.3
100
414


2054
Fmoc-D-Asp(OBut)
Fmoc-(S)-S31
Fmoc-Ser(But)
Fmoc-S9
12.5
100
347


2055
Fmoc-Asp(OBut)
Fmoc-(S)-S31
Fmoc-Phe
Fmoc-S9
4.8
100
407


2056
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
3.0
100
372


2057
Fmoc-D-Asn(Trt)
Fmoc-(S)-S31
Fmoc-D-Tyr(But)
Fmoc-S9
3.4
100
422


2058
Fmoc-Val
Fmoc-(S)-S31
Fmoc-Asp(OBut)
Fmoc-S9
1.4
100
359


2059
Fmoc-D-Arg(Pbf)
Fmoc-(S)-S31
Fmoc-Trp(Boc)
Fmoc-S9
2.1
100
487


2060
Fmoc-Arg(Pbf)
Fmoc-(S)-S31
Fmoc-D-Asn(Trt)
Fmoc-S9
1.8
100
415


2061
Fmoc-Phe
Fmoc-(S)-S31
Fmoc-Lys(Boc)
Fmoc-S9
2.6
100
420


2062
Fmoc-D-Phe
Fmoc-(S)-S31
Fmoc-Val
Fmoc-S9
1.2
100
391


2063
Fmoc-D-Tyr(But)
Fmoc-(S)-S31
Fmoc-Ser(But)
Fmoc-S9
3.1
100
395


2064
Fmoc-Tyr(But)
Fmoc-(S)-S31
Fmoc-Arg(Pbf)
Fmoc-S9
1.0
100
464


2065
Fmoc-D-Trp(Boc)
Fmoc-(R)-S32
Fmoc-D-Trp(Boc)
Fmoc-S9
1.7
87
559


2066
Fmoc-D-Trp(Boc)
Fmoc-(R)-S32
Fmoc-Ile
Fmoc-S9
2.4
100
486


2067
Fmoc-Trp(Boc)
Fmoc-(R)-S32
Fmoc-Lys(Boc)
Fmoc-S9
2.9
100
501


2068
Fmoc-Tyr(But)
Fmoc-(R)-S32
Fmoc-Leu
Fmoc-S9
1.8
90
463


2069
Fmoc-D-Tyr(But)
Fmoc-(R)-S32
Fmoc-Thr(But)
Fmoc-S9
5.4
100
451


2070
Fmoc-D-Tyr(But)
Fmoc-(R)-S32
Fmoc-Asn(Trt)
Fmoc-S9
4.5
100
464


2071
Fmoc-D-Arg(Pbf)
Fmoc-(R)-S32
Fmoc-D-Asp(OBut)
Fmoc-S9
3.3
100
458


2072
Fmoc-Arg(Pbf)
Fmoc-(R)-S32
Fmoc-D-Trp(Boc)
Fmoc-S9
1.3
100
529


2073
Fmoc-Arg(Pbf)
Fmoc-(R)-S32
Fmoc-Gln(Trt)
Fmoc-S9
0.8
na
471


2074
Fmoc-Ser(But)
Fmoc-(R)-S32
Fmoc-Glu(OBut)
Fmoc-S9
na
na
403


2075
Fmoc-Thr(But)
Fmoc-(R)-S32
Fmoc-D-Ser(But)
Fmoc-S9
1.3
100
375


2076
Fmoc-Glu(OBut)
Fmoc-(R)-S32
Fmoc-Thr(But)
Fmoc-S37
0.8
80
449


2077
Fmoc-Phe
Fmoc-(R)-S32
Fmoc-Glu(OBut)
Fmoc-S9
4.3
91
463


2079
Fmoc-D-Lys(Boc)
Fmoc-(R)-S32
Fmoc-D-Trp(Boc)
Fmoc-S9
4.3
94
501


2080
Fmoc-Lys(Boc)
Fmoc-(R)-S32
Fmoc-Val
Fmoc-S9
2.5
100
414


2081
Fmoc-Ser(But)
Fmoc-(R)-S32
Fmoc-Lys(Boc)
Fmoc-S9
3.1
100
402


2082
Fmoc-D-Ser(But)
Fmoc-(R)-S32
Fmoc-Arg(Pbf)
Fmoc-S9
1.6
100
430


2083
Fmoc-D-Leu
Fmoc-(R)-S32
Fmoc-Ser(But)
Fmoc-S9
1.7
100
387


2084
Fmoc-Leu
Fmoc-(R)-S32
Fmoc-D-Phe
Fmoc-S9
1.3
100
447


2085
Fmoc-D-Asp(OBut)
Fmoc-(R)-S32
Fmoc-Leu
Fmoc-S9
5.3
100
415


2087
Fmoc-Asn(Trt)
Fmoc-(R)-S32
Fmoc-Asp(OBut)
Fmoc-S9
5.2
100
416


2088
Fmoc-Val
Fmoc-(R)-S32
Fmoc-Trp(Boc)
Fmoc-S9
1.7
81
472


2089
Fmoc-Val
Fmoc-(R)-S32
Fmoc-D-Asn(Trt)
Fmoc-S9
1.1
na
400


2090
Fmoc-D-Arg(Pbf)
Fmoc-(R)-S32
Fmoc-Lys(Boc)
Fmoc-S9
0.9
na
471


2091
Fmoc-Arg(Pbf)
Fmoc-(R)-S32
Fmoc-Val
Fmoc-S9
1.1
100
442


2092
Fmoc-Phe
Fmoc-(R)-S32
Fmoc-Ser(But)
Fmoc-S9
2.3
80
421


2093
Fmoc-D-Phe
Fmoc-(R)-S32
Fmoc-D-Arg(Pbf)
Fmoc-S9
0.9
na
490


2094
Fmoc-D-Tyr(But)
Fmoc-(R)-S32
Fmoc-Leu
Fmoc-S9
2.6
100
463


2095
Fmoc-Tyr(But)
Fmoc-(R)-S32
Fmoc-Phe
Fmoc-S9
2.0
90
497


2096
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-Leu
Fmoc-S9
na
na
na


2097
Fmoc-D-Tyr(But)
Fmoc-3-Azi
Fmoc-Leu
Fmoc-S9
na
na
na


2098
Fmoc-Phe
Fmoc-3-Azi
Fmoc-Lys(Boc)
Fmoc-S9
na
na
na


2099
Fmoc-D-Phe
Fmoc-3-Azi
Fmoc-Lys(Boc)
Fmoc-S9
na
na
na


2100
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-Leu
Fmoc-S37
5.3
100
479


2101
Fmoc-D-Tyr(But)
Fmoc-3-Azi
Fmoc-Leu
Fmoc-S37
5.5
96
479


2102
Fmoc-Phe
Fmoc-3-Azi
Fmoc-Lys(Boc)
Fmoc-S37
na
na
na


2103
Fmoc-D-Phe
Fmoc-3-Azi
Fmoc-Lys(Boc)
Fmoc-S37
na
na
na


2104
Fmoc-Tyr(But)
Fmoc-4-Pip
Fmoc-Leu
Fmoc-S9
na
na
na


2105
Fmoc-D-Tyr(But)
Fmoc-4-Pip
Fmoc-Leu
Fmoc-S9
na
na
na


2106
Fmoc-Phe
Fmoc-4-Pip
Fmoc-Lys(Boc)
Fmoc-S9
9.6
100
474


2107
Fmoc-D-Phe
Fmoc-4-Pip
Fmoc-Lys(Boc)
Fmoc-S9
na
na
na


2108
Fmoc-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-Leu
Fmoc-S9
na
na
na


2109
Fmoc-D-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-Leu
Fmoc-S9
na
na
na


2110
Fmoc-Phe
Fmoc-4-cis-Ach
Fmoc-Lys(Boc)
Fmoc-S9
na
na
na


2111
Fmoc-D-Phe
Fmoc-4-cis-Ach
Fmoc-Lys(Boc)
Fmoc-S9
na
na
na


2112
Fmoc-Phe
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
na
na
na


2113
Fmoc-Phe
Fmoc-(S)-S31
Fmoc-D-Nle
Fmoc-S9
na
na
na


2114
Fmoc-D-Phe
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
na
na
na


2115
Fmoc-D-Phe
Fmoc-(S)-S31
Fmoc-D-Nle
Fmoc-S9
na
na
na





na = not available



1All syntheses were carried out on the solid phase starting from 70-80 mg of 2-chlorotrityl chloride resin (typical loading 1.0 mmol/g).




2Purity is determined by analysis with LC-UV at 220 nm.














TABLE 1B









embedded image



















Cmpd
R1
Q1
R2
R6
R3
R7
R4
















1401


embedded image


C═O


embedded image




embedded image


H


embedded image







1402


embedded image


C═O


embedded image




embedded image


H


embedded image







1403


embedded image


C═O


embedded image




embedded image


H


embedded image







1404


embedded image


C═O


embedded image




embedded image


H


embedded image







1405


embedded image


C═O


embedded image




embedded image


H


embedded image







1406


embedded image


C═O


embedded image




embedded image


H


embedded image







1407


embedded image


C═O


embedded image




embedded image


H


embedded image







1408


embedded image


C═O


embedded image




embedded image


H


embedded image







1409


embedded image


C═O


embedded image




embedded image


H


embedded image







1410


embedded image


C═O


embedded image




embedded image


H


embedded image







1411


embedded image


C═O


embedded image




embedded image


H


embedded image







1412


embedded image


C═O


embedded image




embedded image


H


embedded image







1413


embedded image


C═O


embedded image




embedded image


H


embedded image







1414


embedded image


C═O


embedded image




embedded image


H


embedded image







1415


embedded image


C═O


embedded image




embedded image


H


embedded image







1416


embedded image


C═O


embedded image




embedded image


H


embedded image







1417


embedded image


C═O


embedded image




embedded image


H


embedded image







1418


embedded image


C═O


embedded image




embedded image


H


embedded image







1419


embedded image


C═O


embedded image




embedded image


H


embedded image







1420


embedded image


C═O


embedded image




embedded image


H


embedded image







1421


embedded image


C═O


embedded image




embedded image


H


embedded image







1422


embedded image


C═O


embedded image




embedded image


H


embedded image







1423


embedded image


C═O


embedded image




embedded image


H


embedded image







1424


embedded image


C═O


embedded image




embedded image


H


embedded image







1425


embedded image


C═O


embedded image




embedded image


H


embedded image







1426


embedded image


C═O


embedded image




embedded image


H


embedded image







1427


embedded image


C═O


embedded image




embedded image


H


embedded image







1428


embedded image


C═O


embedded image




embedded image


H


embedded image







1429


embedded image


C═O


embedded image




embedded image


H


embedded image







1430


embedded image


C═O


embedded image




embedded image


H


embedded image







1431


embedded image


C═O


embedded image




embedded image


H


embedded image







1432


embedded image


C═O


embedded image




embedded image


H


embedded image







1433


embedded image


C═O


embedded image




embedded image


H


embedded image







1434


embedded image


C═O


embedded image




embedded image


H


embedded image







1435


embedded image


C═O


embedded image




embedded image


H


embedded image







1436


embedded image


C═O


embedded image




embedded image


H


embedded image







1437


embedded image


C═O


embedded image




embedded image


H


embedded image







1438


embedded image


C═O


embedded image




embedded image


H


embedded image







1439


embedded image


C═O


embedded image




embedded image


H


embedded image







1440


embedded image


C═O


embedded image




embedded image


H


embedded image







1441


embedded image


C═O


embedded image




embedded image


H


embedded image







1442


embedded image


C═O


embedded image




embedded image


H


embedded image







1443


embedded image


C═O


embedded image




embedded image


H


embedded image







1444


embedded image


C═O


embedded image




embedded image


H


embedded image







1445


embedded image


C═O


embedded image




embedded image


H


embedded image







1446


embedded image


C═O


embedded image




embedded image


H


embedded image







1447


embedded image


C═O


embedded image




embedded image


H


embedded image







1448


embedded image


C═O


embedded image




embedded image


H


embedded image







1449


embedded image


C═O


embedded image




embedded image


H


embedded image







1450


embedded image


C═O


embedded image




embedded image


H


embedded image







1451


embedded image


C═O


embedded image




embedded image


H


embedded image







1452


embedded image


C═O


embedded image




embedded image


H


embedded image

















1453


embedded image


C═O


embedded image




embedded image




embedded image


















1454


embedded image


C═O


embedded image




embedded image


H


embedded image







1455


embedded image


C═O


embedded image




embedded image


H


embedded image







1456


embedded image


C═O


embedded image




embedded image


H


embedded image







1457


embedded image


C═O


embedded image




embedded image


H


embedded image

















1458


embedded image


C═O


embedded image




embedded image




embedded image


















1459


embedded image


C═O


embedded image




embedded image


H


embedded image







1460


embedded image


C═O


embedded image




embedded image


H


embedded image







1461


embedded image


C═O


embedded image




embedded image


H


embedded image

















1462


embedded image


C═O


embedded image




embedded image




embedded image


















1463


embedded image


C═O


embedded image




embedded image


H


embedded image







1464


embedded image


C═O


embedded image




embedded image


H


embedded image







1465


embedded image


C═O


embedded image




embedded image


H


embedded image



















1466


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1467


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1468


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1469


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1470


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1471


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1472


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1473


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1474


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1475


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1476


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1477


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1478


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1479


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1480


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1481


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1482


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1483


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1484


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1485


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1486


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1487


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1488


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1489


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1490


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1491


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1492


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1493


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1494


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1495


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1496


embedded image


C═O


embedded image


H


embedded image


H


embedded image


















1497


embedded image


C═O


embedded image




embedded image


H


embedded image







1498


embedded image


C═O


embedded image




embedded image


H


embedded image







1499


embedded image


C═O


embedded image




embedded image


H


embedded image







1500


embedded image


C═O


embedded image




embedded image


H


embedded image







1501


embedded image


C═O


embedded image




embedded image


H


embedded image







1502


embedded image


C═O


embedded image




embedded image


H


embedded image







1503


embedded image


C═O


embedded image




embedded image


H


embedded image







1504


embedded image


C═O


embedded image




embedded image


H


embedded image







1505


embedded image


C═O


embedded image




embedded image


H


embedded image







1506


embedded image


C═O


embedded image




embedded image


H


embedded image







1507


embedded image


C═O


embedded image




embedded image


H


embedded image







1508


embedded image


C═O


embedded image




embedded image


H


embedded image







1509


embedded image


C═O


embedded image




embedded image


H


embedded image







1510


embedded image


C═O


embedded image




embedded image


H


embedded image







1511


embedded image


C═O


embedded image




embedded image


H


embedded image







1512


embedded image


C═O


embedded image




embedded image


H


embedded image







1513


embedded image


C═O


embedded image




embedded image


H


embedded image







1514


embedded image


C═O


embedded image




embedded image


H


embedded image







1515


embedded image


C═O


embedded image




embedded image


H


embedded image







1516


embedded image


C═O


embedded image




embedded image


H


embedded image







1517


embedded image


C═O


embedded image




embedded image


H


embedded image







1518


embedded image


C═O


embedded image




embedded image


H


embedded image







1519


embedded image


C═O


embedded image




embedded image


H


embedded image







1520


embedded image


C═O


embedded image




embedded image


H


embedded image







1521


embedded image


C═O


embedded image




embedded image


H


embedded image







1522


embedded image


C═O


embedded image




embedded image


H


embedded image







1523


embedded image


C═O


embedded image




embedded image


H


embedded image







1524


embedded image


C═O


embedded image




embedded image


H


embedded image







1525


embedded image


C═O


embedded image




embedded image


H


embedded image







1526


embedded image


C═O


embedded image




embedded image


H


embedded image







1527


embedded image


C═O


embedded image




embedded image


H


embedded image







1528


embedded image


C═O


embedded image




embedded image


H


embedded image







1529


embedded image


C═O


embedded image




embedded image


H


embedded image







1530


embedded image


C═O


embedded image




embedded image


H


embedded image







1531


embedded image


C═O


embedded image




embedded image


H


embedded image







1532


embedded image


C═O


embedded image




embedded image


H


embedded image



















1533


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1534


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1535


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1536


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1537


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1538


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1539


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1540


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1541


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1542


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1543


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1544


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1545


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1546


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1547


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1548


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1549


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1550


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1551


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1552


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1553


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1554

CH2


embedded image


H


embedded image


H


embedded image







1555


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1556


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1557


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1558


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1559


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1560


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1561


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1562


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1563


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1564


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1565


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1566


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1567


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1568


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1569


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1570


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1571


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1572


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1573


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1574


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1575


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1576


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1577


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1578


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1579


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1580


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1581


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1582


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1583


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1584


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1585


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1586


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1587


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1588


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1589


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1590


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1591


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1592


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1593


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1594


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1595


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1596


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1597


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1598


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1599


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1600


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1601


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1602


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1603


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1604


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1605


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1606


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1607


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1608


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1609


embedded image


CH2


embedded image


H


embedded image


H


embedded image


















1610


embedded image


CH2


embedded image


H


embedded image




embedded image



















1611


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1612


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1613


embedded image


CH2


embedded image


H


embedded image


H


embedded image


















1614


embedded image


CH2


embedded image


H


embedded image




embedded image



















1615


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1616


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1617


embedded image


CH2


embedded image


H


embedded image


H


embedded image


















1618


embedded image


CH2


embedded image


H


embedded image




embedded image



















1619


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1620


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1621


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1622


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1623


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1624


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1625


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1626


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1627


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1628


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1629


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1630


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1631


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1632


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1633


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1634


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1635


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1636


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1637


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1638


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1639


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1640


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1641


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1642


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1643


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1644


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1645


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1646


embedded image


CH2


embedded image


H


embedded image


H


embedded image


















1647


embedded image


CH2


embedded image


H


embedded image




embedded image



















1648


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1649


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1650


embedded image


CH2


embedded image


H


embedded image


H


embedded image


















1651


embedded image


CH2


embedded image


H


embedded image




embedded image



















1652


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1653


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1654


embedded image


CH2


embedded image


H


embedded image


H


embedded image


















1655


embedded image


CH2


embedded image


H


embedded image




embedded image



















1656


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1657


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1658


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1659


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1660


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1661


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1662


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1663


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1664


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1665


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1666


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1667


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1668


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1669


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1670


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1671


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1672


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1673


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1674


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1675


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1676


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1677


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1678


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1679


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1680


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1681


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1682


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1683


embedded image


CH2


embedded image


H


embedded image


H


embedded image


















1684


embedded image


CH2


embedded image


H


embedded image




embedded image



















1685


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1686


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1687


embedded image


CH2


embedded image


H


embedded image


H


embedded image


















1688


embedded image


CH2


embedded image


H


embedded image




embedded image



















1689


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1690


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1691


embedded image


CH2


embedded image


H


embedded image


H


embedded image


















1692


embedded image


CH2


embedded image


H


embedded image




embedded image



















1693


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1694


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1695


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1696


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1697


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1698


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1699


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1700


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1701


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1702


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1703


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1704


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1705


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1706


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1707


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1708


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1709


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1710


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1711


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1712


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1713


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1714


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1715


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1716


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1717


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1718


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1719


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1720


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1721


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1722


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1723


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1724


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1725


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1726


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1727


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1728


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1729


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1730


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1731


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1732


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1733


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1734


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1735


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1736


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1737


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1738


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1739


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1740


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1741


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1742


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1743


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1744


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1745


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1746


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1747


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1748


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1749


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1750


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1751


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1752


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1753


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1754


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1755


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1756


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1757


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1758


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1759


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1760


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1761


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1762


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1763


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1764


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1765


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1766


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1767


embedded image


CH2


embedded image


H


embedded image


H


embedded image


















1768


embedded image


C═O


embedded image




embedded image


H


embedded image







1769


embedded image


C═O


embedded image




embedded image


H


embedded image







1770


embedded image


C═O


embedded image




embedded image


H


embedded image







1771


embedded image


C═O


embedded image




embedded image


H


embedded image







1772


embedded image


C═O


embedded image




embedded image


H


embedded image







1773


embedded image


C═O


embedded image




embedded image


H


embedded image







1774


embedded image


C═O


embedded image




embedded image


H


embedded image







1775


embedded image


C═O


embedded image




embedded image


H


embedded image







1776


embedded image


C═O


embedded image




embedded image


H


embedded image







1777


embedded image


C═O


embedded image




embedded image


H


embedded image







1778


embedded image


C═O


embedded image




embedded image


H


embedded image







1779


embedded image


C═O


embedded image




embedded image


H


embedded image







1780


embedded image


C═O


embedded image




embedded image


H


embedded image







1781


embedded image


C═O


embedded image




embedded image


H


embedded image







1782


embedded image


C═O


embedded image




embedded image


H


embedded image







1783


embedded image


C═O


embedded image




embedded image


H


embedded image







1784


embedded image


C═O


embedded image




embedded image


H


embedded image







1785


embedded image


C═O


embedded image




embedded image


H


embedded image







1786


embedded image


C═O


embedded image




embedded image


H


embedded image







1787


embedded image


C═O


embedded image




embedded image


H


embedded image







1788


embedded image


C═O


embedded image




embedded image


H


embedded image







1789


embedded image


C═O


embedded image




embedded image


H


embedded image







1790


embedded image


C═O


embedded image




embedded image


H


embedded image







1791


embedded image


C═O


embedded image




embedded image


H


embedded image







1792


embedded image


C═O


embedded image




embedded image


H


embedded image







1793


embedded image


C═O


embedded image




embedded image


H


embedded image







1794


embedded image


C═O


embedded image




embedded image


H


embedded image







1795


embedded image


C═O


embedded image




embedded image


H


embedded image







1796


embedded image


C═O


embedded image




embedded image


H


embedded image







1797


embedded image


C═O


embedded image




embedded image


H


embedded image







1798


embedded image


C═O


embedded image




embedded image


H


embedded image







1799


embedded image


C═O


embedded image




embedded image


Me


embedded image







1800


embedded image


C═O


embedded image




embedded image


Me


embedded image







1801


embedded image


C═O


embedded image




embedded image


Me


embedded image







1802


embedded image


C═O


embedded image




embedded image


Me


embedded image







1803


embedded image


C═O


embedded image




embedded image


Me


embedded image







1804


embedded image


C═O


embedded image




embedded image


Me


embedded image







1805


embedded image


C═O


embedded image




embedded image


Me


embedded image







1806


embedded image


C═O


embedded image




embedded image


Me


embedded image







1807


embedded image


C═O


embedded image




embedded image


Me


embedded image







1808


embedded image


C═O


embedded image




embedded image


Me


embedded image







1809


embedded image


C═O


embedded image




embedded image


Me


embedded image







1810


embedded image


C═O


embedded image




embedded image


Me


embedded image







1811


embedded image


C═O


embedded image




embedded image


Me


embedded image







1812


embedded image


C═O


embedded image




embedded image


Me


embedded image







1813


embedded image


C═O


embedded image




embedded image


Me


embedded image







1814


embedded image


C═O


embedded image




embedded image


Me


embedded image



















1815


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1816


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1817


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1818


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1819


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1820


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1821


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1822


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1823


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1824


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1825


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1826


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1827


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1828


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1829


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1830


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1831


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







1832


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







1833


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







1834


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







1835


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







1836


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







1837


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







1838


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







1839


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







1840


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







1841


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







1842


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







1843


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







1844


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







1845


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







1846


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







1847


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1848


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1849


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1850


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1851


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1852


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1853


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1854


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1855


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1856


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1857


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1858


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1859


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1860


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1861


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1862


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1863


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1864


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1865


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1866


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1867


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1868


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1869


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1870


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1871


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1872


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1873


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1874


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1875


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1876


embedded image


CH2


embedded image


H


embedded image


H


embedded image







1877


embedded image


CH2


embedded image


H


embedded image


H


embedded image


















1878


embedded image


C═O


embedded image




embedded image


H


embedded image







1879


embedded image


C═O


embedded image




embedded image


H


embedded image







1880


embedded image


C═O


embedded image




embedded image


H


embedded image







1881


embedded image


C═O


embedded image




embedded image


H


embedded image







1882


embedded image


C═O


embedded image




embedded image


H


embedded image







1883


embedded image


C═O


embedded image




embedded image


H


embedded image







1884


embedded image


C═O


embedded image




embedded image


H


embedded image







1885


embedded image


C═O


embedded image




embedded image


H


embedded image







1886


embedded image


C═O


embedded image




embedded image


H


embedded image







1887


embedded image


C═O


embedded image




embedded image


H


embedded image







1888


embedded image


C═O


embedded image




embedded image


H


embedded image







1889


embedded image


C═O


embedded image




embedded image


H


embedded image







1890


embedded image


C═O


embedded image




embedded image


H


embedded image







1891


embedded image


C═O


embedded image




embedded image


H


embedded image







1892


embedded image


C═O


embedded image




embedded image


H


embedded image







1893


embedded image


C═O


embedded image




embedded image


H


embedded image







1894


embedded image


C═O


embedded image




embedded image


H


embedded image







1895


embedded image


C═O


embedded image




embedded image


H


embedded image







1896


embedded image


C═O


embedded image




embedded image


H


embedded image







1897


embedded image


C═O


embedded image




embedded image


H


embedded image







1898


embedded image


C═O


embedded image




embedded image


H


embedded image







1899


embedded image


C═O


embedded image




embedded image


H


embedded image







1900


embedded image


C═O


embedded image




embedded image


H


embedded image







1901


embedded image


C═O


embedded image




embedded image


H


embedded image







1902


embedded image


C═O


embedded image




embedded image


H


embedded image







1903


embedded image


C═O


embedded image




embedded image


H


embedded image







1904


embedded image


C═O


embedded image




embedded image


H


embedded image







1905


embedded image


C═O


embedded image




embedded image


H


embedded image







1906


embedded image


C═O


embedded image




embedded image


H


embedded image







1907


embedded image


C═O


embedded image




embedded image


H


embedded image







1908


embedded image


C═O


embedded image




embedded image


H


embedded image







1909


embedded image


C═O


embedded image




embedded image


H


embedded image







1910


embedded image


C═O


embedded image




embedded image


H


embedded image







1911


embedded image


C═O


embedded image




embedded image


H


embedded image







1912


embedded image


C═O


embedded image




embedded image


H


embedded image







1913


embedded image


C═O


embedded image




embedded image


H


embedded image







1914


embedded image


C═O


embedded image




embedded image


H


embedded image







1915


embedded image


C═O


embedded image




embedded image


H


embedded image







1916


embedded image


C═O


embedded image




embedded image


H


embedded image







1917


embedded image


C═O


embedded image




embedded image


H


embedded image







1918


embedded image


C═O


embedded image




embedded image


H


embedded image







1919


embedded image


C═O


embedded image




embedded image


H


embedded image







1920


embedded image


C═O


embedded image




embedded image


H


embedded image







1921


embedded image


C═O


embedded image




embedded image


H


embedded image







1922


embedded image


C═O


embedded image




embedded image


H


embedded image







1923


embedded image


C═O


embedded image




embedded image


H


embedded image







1924


embedded image


C═O


embedded image




embedded image


H


embedded image







1925


embedded image


C═O


embedded image




embedded image


H


embedded image







1926


embedded image


C═O


embedded image




embedded image


H


embedded image







1927


embedded image


C═O


embedded image




embedded image


H


embedded image







1928


embedded image


C═O


embedded image




embedded image


H


embedded image







1929


embedded image


C═O


embedded image




embedded image


H


embedded image







1930


embedded image


C═O


embedded image




embedded image


H


embedded image







1931


embedded image


C═O


embedded image




embedded image


H


embedded image







1932


embedded image


C═O


embedded image




embedded image


H


embedded image







1933


embedded image


C═O


embedded image




embedded image


H


embedded image







1934


embedded image


C═O


embedded image




embedded image


H


embedded image







1935


embedded image


C═O


embedded image




embedded image


H


embedded image







1936


embedded image


C═O


embedded image




embedded image


H


embedded image







1937


embedded image


C═O


embedded image




embedded image


H


embedded image







1938


embedded image


C═O


embedded image




embedded image


H


embedded image







1939


embedded image


C═O


embedded image




embedded image


H


embedded image







1940


embedded image


C═O


embedded image




embedded image


H


embedded image







1941


embedded image


C═O


embedded image




embedded image


Me


embedded image







1942


embedded image


C═O


embedded image




embedded image


Me


embedded image







1943


embedded image


C═O


embedded image




embedded image


Me


embedded image







1944


embedded image


C═O


embedded image




embedded image


Me


embedded image







1945


embedded image


C═O


embedded image




embedded image


Me


embedded image







1946


embedded image


C═O


embedded image




embedded image


Me


embedded image







1947


embedded image


C═O


embedded image




embedded image


Me


embedded image







1948


embedded image


C═O


embedded image




embedded image


Me


embedded image







1949


embedded image


C═O


embedded image




embedded image


Me


embedded image







1950


embedded image


C═O


embedded image




embedded image


Me


embedded image







1951


embedded image


C═O


embedded image




embedded image


Me


embedded image







1952


embedded image


C═O


embedded image




embedded image


Me


embedded image







1953


embedded image


C═O


embedded image




embedded image


Me


embedded image







1954


embedded image


C═O


embedded image




embedded image


Me


embedded image







1955


embedded image


C═O


embedded image




embedded image


Me


embedded image







1956


embedded image


C═O


embedded image




embedded image


Me


embedded image







1957


embedded image


C═O


embedded image




embedded image


Me


embedded image







1958


embedded image


C═O


embedded image




embedded image


Me


embedded image







1959


embedded image


C═O


embedded image




embedded image


Me


embedded image







1960


embedded image


C═O


embedded image




embedded image


Me


embedded image







1961


embedded image


C═O


embedded image




embedded image


Me


embedded image







1962


embedded image


C═O


embedded image




embedded image


Me


embedded image







1963


embedded image


C═O


embedded image




embedded image


Me


embedded image







1964


embedded image


C═O


embedded image




embedded image


Me


embedded image







1965


embedded image


C═O


embedded image




embedded image


Me


embedded image







1966


embedded image


C═O


embedded image




embedded image


Me


embedded image







1967


embedded image


C═O


embedded image




embedded image


Me


embedded image







1968


embedded image


C═O


embedded image




embedded image


Me


embedded image







1969


embedded image


C═O


embedded image




embedded image


Me


embedded image







1970


embedded image


C═O


embedded image




embedded image


Me


embedded image



















1971


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1972


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1973


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1974


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1975


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1976


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1977


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1978


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1979


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1980


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1981


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1982


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1983


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1984


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1985


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1986


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1987


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1988


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1989


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1990


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1991


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1992


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1993


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1994


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1995


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1996


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1997


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1998


embedded image


C═O


embedded image


H


embedded image


H


embedded image







1999


embedded image


C═O


embedded image


H


embedded image


H


embedded image







2000


embedded image


C═O


embedded image


H


embedded image


H


embedded image







2001


embedded image


C═O


embedded image


H


embedded image


H


embedded image







2002


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2003


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2004


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2005


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2006


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2007


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2008


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2009


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2010


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2011


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2012


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2013


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2014


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2015


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2016


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2017


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2018


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2019


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2020


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2021


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2022


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2023


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2024


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2025


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2026


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2027


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2028


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2029


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2030


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2031


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2032


embedded image


C═O


embedded image


Me


embedded image


H


embedded image







2033


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2034


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2035


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2036


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2037


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2038


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2039


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2040


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2041


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2042


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2043


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2044


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2045


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2046


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2047


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2048


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2049


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2050


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2051


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2052


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2053


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2054


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2055


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2056


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2057


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2058


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2059


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2060


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2061


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2062


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2063


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2064


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2065


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2066


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2067


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2068


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2069


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2070


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2071


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2072


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2073


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2074


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2075


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2076


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2077


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2078


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2079


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2080


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2081


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2082


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2083


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2084


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2085


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2086


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2087


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2088


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2089


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2090


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2091


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2092


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2093


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2094


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2095


embedded image


CH2


embedded image


H


embedded image


H


embedded image


















2096


embedded image


C═O


embedded image




embedded image


H


embedded image







2097


embedded image


C═O


embedded image




embedded image


H


embedded image







2098


embedded image


C═O


embedded image




embedded image


H


embedded image







2099


embedded image


C═O


embedded image




embedded image


H


embedded image







2100


embedded image


C═O


embedded image




embedded image


H


embedded image







2101


embedded image


C═O


embedded image




embedded image


H


embedded image







2102


embedded image


C═O


embedded image




embedded image


H


embedded image







2103


embedded image


C═O


embedded image




embedded image


H


embedded image







2104


embedded image


C═O


embedded image




embedded image


H


embedded image







2105


embedded image


C═O


embedded image




embedded image


H


embedded image







2106


embedded image


C═O


embedded image




embedded image


H


embedded image







2107


embedded image


C═O


embedded image




embedded image


H


embedded image



















2108


embedded image


C═O


embedded image


H


embedded image


H


embedded image







2109


embedded image


C═O


embedded image


H


embedded image


H


embedded image







2110


embedded image


C═O


embedded image


H


embedded image


H


embedded image







2111


embedded image


C═O


embedded image


H


embedded image


H


embedded image







2112


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2113


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2114


embedded image


CH2


embedded image


H


embedded image


H


embedded image







2115


embedded image


CH2


embedded image


H


embedded image


H


embedded image












For all compounds Q2=CH2, R5═H and R8═H, except for those compounds in which Fmoc-Pro is BB1 wherein R1 and (N)R5 form a five-membered ring, including the nitrogen atom, as shown for R1 in Table 1B. Analogously, for those compounds in which Fmoc-Pro is BB3, R3 and (N)R7 form a five-membered ring, including the nitrogen atom, as shown for R3-R7 in Table 1B. In addition, for those compounds in which BB2 is Fmoc-4-Pip, (N)R6 and R2 are part of a six-membered ring, including the nitrogen atom, as shown for R2-R6 in Table 1B, Also, for those compounds in which BB2 is Fmoc-3-Azi, (N)R6 and R2 are part of a four-membered ring, including the nitrogen atom, as shown for R2-R6 in Table 1B.


Example 3
Synthesis of a Representative Library of Macrocyclic Compounds of Formula (I) Containing Four Building Blocks Including Selected Side Chain Functionalization with Additional Building Blocks

The synthetic scheme presented in Scheme 3 was used to prepare the library of macrocyclic compounds 2116-2328 on solid support. The first building block amino acid (BB1) was loaded onto the resin (Method 1D). At this point, the first of two optional steps is executed whereby the protection on the side chain of BB1 is selectively removed, then an additional building block added using one of the series of reaction sequences described in Method 1T. After this, removal of the a-N-protection (Method 1F or Method 1AA as appropriate for the group being cleaved) of BB1 is performed followed by attachment of the next building block (BB2) via amide coupling (Method 1G), reductive amination (Methods 1I or 1J), or Fukuyama-Mitsunobu alkylation (using the procedure in Method 1P, not depicted in Scheme 3). Upon removal of the Fmoc protecting group of BB2, the third building block (BB3) was connected via amide bond formation (Method 1G). A second optional step is performed after Fmoc deprotection, again with selective reaction on the side chain of BB3 involving deprotection together with one of the Method 1T transformations. The protection on the a-nitrogen of BB3 is cleaved (Method F or Method 1AA as applicable) followed by connection of BB4 using reductive amination (Methods 1I or 1J) or alkylation chemistry (procedure of Method 1P, not shown in Scheme 3). Next, Fmoc deprotection (Method 1F), removal from the resin (Method 1Q), macrocyclization (Method 1R), and removal of the side chain protecting groups (Method 1S) were sequentially performed. The resulting crude product was purified by preparative HPLC (Method 2B) with the amounts of each macrocycle obtained, the HPLC purity and confirmation of identity by mass spectrometry (MS) are provided in Table 2A, as are the particular building blocks employed, with the individual structures of the compounds thus prepared presented in Table 2B.


Further on the optional steps, at least one is executed as shown in Table 2A. Where indicated that the functionalization has occurred, the orthogonal side chain protecting group of BB1 and/or BB3 is removed using Method 1F for Lys(Fmoc), Method 1AA for Dap(Alloc), Method 1BB for Asp(OAllyl) and Glu(OAllyl) or Method 1CC for Tyr(Allyl) as appropriate, then the freed functional group reacted with the listed building block reagent using the indicated experimental Method 1T transformation prior to the addition of the subsequent BB. However, for efficiency, it will be appreciated by those skilled in the art that it is also possible to add one or more building blocks prior to executing the indicated reaction sequence if the structure and protection strategy so permits.


For compound 2328, BB1 was obtained commercially with the side chain already appropriately derivatized, although it could also be synthesized from Fmoc-Tyr(Allyl) using reagent XT-10 and Method 1T-10.


















TABLE 2A







BB1 Side


BB3 Side

Wt1

MS


Cpd
BB1
Chain
BB2
BB3
Chain
BB4
(mg)
Purity2
(M + H)
























2116
Fmoc-D-
XT-12,
Fmoc-3-Azi
Fmoc-D-

Fmoc-S9
0.6
100
517



Tyr(Allyl)
Method 1T-10

Leu


2117
Fmoc-
XT-14,
Fmoc-3-Azi
Fmoc-D-

Fmoc-S9
3.3
100
560



Tyr(Allyl)
Method 1T-11

Leu


2118
Fmoc-D-

Fmoc-3-Azi
Alloc-D-
XT-5,
Fmoc-S9
4.7
100
582



Phe


Lys(Fmoc)
Method 1T-6


2119
Fmoc-Phe

Fmoc-3-Azi
Alloc-D-
XT-4,
Fmoc-S9
2.5
100
571






Lys(Fmoc)
Method 1T-6


2120
Fmoc-Pro

Fmoc-3-Azi
Alloc-
XT-4,
Fmoc-S9
na
na
na






Lys(Fmoc)
Method 1T-6


2121
Fmoc-Ile

Fmoc-3-Azi
Fmoc-
XT-18,
Fmoc-S9
1.8
100
482






Glu(OAllyl)
Method 1T-1


2122
Fmoc-

Fmoc-3-Azi
Fmoc-
XT-12,
Fmoc-S9
na
na
na



Trp(Boc)


Tyr(Allyl)
Method 1T-10


2123
Alloc-
XT-3,
Fmoc-3-Azi
Fmoc-Pro

Fmoc-S37
3.3
100
533



Lys(Fmoc)
Method 1T-6


2124
Fmoc-
XT-18,
Fmoc-3-Azi
Fmoc-Ile

Fmoc-S9
2.2
100
482



Glu(OAllyl)
Method 1T-1


2125
Fmoc-
XT-13,
Fmoc-3-Azi
Fmoc-

Fmoc-S9
0.3
na
577



Tyr(Allyl)
Method 1T-10

Trp(Boc)


2126
Fmoc-D-
(R)-XT-15,
Fmoc-3-Azi
Fmoc-D-

Fmoc-S37
1.9
100
536



Tyr(Allyl)
Method 1T-10

Leu


2127
Fmoc-
XT-12,
Fmoc-3-Azi
Fmoc-D-

Fmoc-S37
0.8
100
549



Tyr(Allyl)
Method 1T-10

Leu


2128
Fmoc-D-

Fmoc-3-Azi
Alloc-D-
XT-1,
Fmoc-S37
5.7
100
520



Phe


Lys(Fmoc)
Method 1T-6


2129
Fmoc-Phe

Fmoc-3-Azi
Alloc-D-
XT-2,
Fmoc-S37
7.8
100
562






Lys(Fmoc)
Method 1T-6


2130
Fmoc-D-

Fmoc-3-Azi
Fmoc-
XT-5,
Fmoc-S37
1.8
100
607



Phe(3Cl)


Dap(Alloc)
Method 1T-2


2131
Fmoc-
XT-4,
Fmoc-3-Azi
Fmoc-D-

Fmoc-S37
0.8
 80
596



Dap(Alloc)
Method 1T-2

Phe(3Cl)


2132
Fmoc-
XT-3,
Fmoc-3-Azi
Fmoc-D-

Fmoc-S37
0.6
100
493



Dap(Alloc)
Method 1T-2

Val


2133
Fmoc-D-

Fmoc-3-Azi
Fmoc-
XT-1,
Fmoc-S37
2.7
100
430



Val


Dap(Alloc)
Method 1T-2


2134
Fmoc-Pro

Fmoc-3-Azi
Alloc-
XT-2,
Fmoc-S37
5.9
100
512






Lys(Fmoc)
Method 1T-6


2135
Fmoc-Ile

Fmoc-3-Azi
Fmoc-
XT-24,
Fmoc-S37
2.0
100
541






Glu(OAllyl)
Method 1T-1


2136
Fmoc-

Fmoc-3-Azi
Fmoc-
XT-14,
Fmoc-S37
na
na
na



Trp(Boc)


Tyr(Allyl)
Method 1T-10


2137
Alloc-
XT-5,
Fmoc-3-Azi
Fmoc-Pro

Fmoc-S37
2.1
100
564



Lys(Fmoc)
Method 1T-6


2138
Fmoc-
XT-24,
Fmoc-3-Azi
Fmoc-Ile

Fmoc-S37
1.6
100
541



Glu(OAllyl)
Method 1T-1


2139
Fmoc-
XT-14,
Fmoc-3-Azi
Fmoc-

Fmoc-S37
1.1
100
665



Tyr(Allyl)
Method 1T-10

Trp(Boc)


2140
Fmoc-D-
XT-13,
Fmoc-4-cis-
Fmoc-D-

Fmoc-S9
3.0
100
546



Tyr(Allyl)
Method 1T-10
Ach
Leu


2141
Fmoc-
(R)-XT-15,
Fmoc-4-cis-
Fmoc-D-

Fmoc-S9
3.4
100
546



Tyr(Allyl)
Method 1T-10
Ach
Leu


2142
Fmoc-D-

Fmoc-4-cis-
Alloc-D-
XT-4,
Fmoc-S9
3.8
100
613



Phe

Ach
Lys(Fmoc)
Method 1T-6


2143
Fmoc-Phe

Fmoc-4-cis-
Alloc-D-
XT-3,
Fmoc-S9
9.6
100
593





Ach
Lys(Fmoc)
Method 1T-6


2144
Fmoc-D-

Fmoc-4-cis-
Fmoc-
XT-1,
Fmoc-S9
2.3
100
523



Phe(3Cl)

Ach
Dap(Alloc)
Method 1T-2


2145
Fmoc-
XT-2,
Fmoc-4-cis-
Fmoc-D-

Fmoc-S9
10.9 
100
565



Dap(Alloc)
Method 1T-2
Ach
Phe(3Cl)


2146
Fmoc-
XT-5,
Fmoc-4-cis-
Fmoc-D-

Fmoc-S9
4.0
100
534



Dap(Alloc)
Method 1T-2
Ach
Val


2147
Fmoc-D-

Fmoc-4-cis-
Fmoc-
XT-4,
Fmoc-S9
1.1
100
523



Val

Ach
Dap(Alloc)
Method 1T-2


2148
Fmoc-Pro

Fmoc-4-cis-
Alloc-
XT-3,
Fmoc-S9
9.0
100
543





Ach
Lys(Fmoc)
Method 1T-6


2149
Fmoc-Ile

Fmoc-4-cis-
Fmoc-
XT-16,
Fmoc-S9
11.7 
100
510





Ach
Glu(OAllyl)
Method 1T-1


2150
Fmoc-

Fmoc-4-cis-
Fmoc-
XT-13,
Fmoc-S9
0.3
100
619



Trp(Boc)

Ach
Tyr(Allyl)
Method 1T-10


2151
Alloc-
XT-1,
Fmoc-4-cis-
Fmoc-Pro

Fmoc-S37
7.8
100
512



Lys(Fmoc)
Method 1T-6
Ach


2152
Fmoc-
XT-16,
Fmoc-4-cis-
Fmoc-Ile

Fmoc-S9
6.1
100
510



Glu(OAllyl)
Method 1T-1
Ach


2153
Fmoc-
XT-12,
Fmoc-4-cis-
Fmoc-

Fmoc-S9
0.8
100
632



Tyr(Allyl)
Method 1T-10
Ach
Trp(Boc)


2154
Fmoc-
XT-17,
Fmoc-3-Azi
Fmoc-

Fmoc-S9
0.5
100
538



Asp(OAllyl)
Method 1T-1

Tyr(But)


2155
Fmoc-

Fmoc-3-Azi
Fmoc-
XT-12,
Fmoc-S9
na
na
na



His(Trt)


Tyr(Allyl)
Method 1T-10


2156
Fmoc-

Fmoc-3-Azi
Fmoc-
XT-14,
Fmoc-S9
na
na
na



Asn(Trt)


Tyr(Allyl)
Method 1T-10


2157
Fmoc-

Fmoc-3-Azi
Fmoc-
XT-17,
Fmoc-S9
1.7
100
538



Tyr(But)


Asp(OAllyl)
Method 1T-1


2158
Fmoc-
XT-13,
Fmoc-3-Azi
Fmoc-

Fmoc-S9
0.7
na
528



Tyr(Allyl)
Method 1T-10

His(Trt)


2159
Fmoc-
(R)-XT-15,
Fmoc-3-Azi
Fmoc-

Fmoc-S9
1.0
100
505



Tyr(Allyl)
Method 1T-10

Asn(TrT)


2160
Fmoc-
XT-20,
Fmoc-3-Azi
Fmoc-
XT-13,
Fmoc-S37
na
na
na



Asp(OAllyl)
Method 1T-1

Tyr(Allyl)
Method 1T-10


2161
Fmoc-

Fmoc-3-Azi
Fmoc-
(R)-XT-15,
Fmoc-S37
2.9
100
560



His(Trt)


Tyr(Allyl)
Method 1T-10


2162
Fmoc-

Fmoc-3-Azi
Fmoc-
XT-12,
Fmoc-S37
0.3
100
550



Asn(Trt)


Tyr(Allyl)
Method 1T-10


2163
Fmoc-
XT-12,
Fmoc-3-Azi
Fmoc-

Fmoc-S37
na
na
na



Tyr(Allyl)
Method 1T-10

Asp(OBut)


2164
Fmoc-
XT-14,
Fmoc-3-Azi
Fmoc-

Fmoc-S37
na
na
na



Tyr(Allyl)
Method 1T-10

His(Trt)


2165
Fmoc-
XT-13,
Fmoc-3-Azi
Fmoc-

Fmoc-S37
1.2
100
537



Tyr(Allyl)
Method 1T-10

Asn(Trt)


2166
Fmoc-
XT-21,
Fmoc-4-cis-
Fmoc-

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1
Ach
Tyr(But)


2167
Fmoc-

Fmoc-4-cis-
Fmoc-
XT-13,
Fmoc-S9
na
na
na



His(Trt)

Ach
Tyr(Allyl)
Method 1T-10


2168
Fmoc-

Fmoc-4-cis-
Fmoc-
(R)-XT-15,
Fmoc-S9
1.6
100
547



Asn(Trt)

Ach
Tyr(Allyl)
Method 1T-10


2169
Fmoc-

Fmoc-4-cis-
Fmoc-
XT-21,
Fmoc-S9
7.6
100
596



Tyr(But)

Ach
Asp(OAllyl)
Method 1T-1


2170
Fmoc-
XT-12,
Fmoc-4-cis-
Fmoc-

Fmoc-S9
0.4
100
583



Tyr(Allyl)
Method 1T-10
Ach
His(Trt)


2171
Fmoc-
XT-14,
Fmoc-4-cis-
Fmoc-

Fmoc-S9
4.1
 46
603



Tyr(Allyl)
Method 1T-10
Ach
Asn(Trt)


2172
Fmoc-D-
XT-13,
Fmoc-(S)-S31
Fmoc-D-

Fmoc-S9
0.8
100
478



Tyr(Allyl)
Method 1T-10

Leu


2173
Fmoc-
(R)-XT-15,
Fmoc-(S)-S31
Fmoc-D-

Fmoc-S9
0.7
100
478



Tyr(Allyl)
Method 1T-10

Leu


2174
Fmoc-D-

Fmoc-(S)-S31
Alloc-D-
XT-2,
Fmoc-S9
3.3
100
504



Phe


Lys(Fmoc)
Method 1T-6


2175
Fmoc-Phe

Fmoc-(S)-S31
Alloc-D-
XT-5,
Fmoc-S9
5.7
100
556






Lys(Fmoc)
Method 1T-6


2176
Fmoc-D-

Fmoc-(S)-S31
Fmoc-
XT-4,
Fmoc-S9
1.0
100
538



Phe(3Cl)


Dap(Alloc)
Method 1T-2


2177
Fmoc-
XT-3,
Fmoc-(S)-S31
Fmoc-D-

Fmoc-S9
1.5
100
518



Dap(Alloc)
Method 1T-2

Phe(3Cl)


2178
Fmoc-
XT-1,
Fmoc-(S)-S31
Fmoc-D-

Fmoc-S9
1.2
100
372



Dap(Alloc)
Method 1T-2

Val


2179
Fmoc-D-

Fmoc-(S)-S31
Fmoc-
XT-2,
Fmoc-S9
1.9
 86
414



Val


Dap(iVal)
Method 1T-2


2180
Fmoc-Pro

Fmoc-(S)-S31
Alloc-
XT-5,
Fmoc-S9
na
na
na






Lys(Fmoc)
Method 1T-6


2181
Fmoc-Ile

Fmoc-(S)-S31
Fmoc-
XT-22,
Fmoc-S9
2.4
100
477






Glu(OAllyl)
Method 1T-1


2182
Fmoc-

Fmoc-(S)-S31
Fmoc-
XT-12,
Fmoc-S9
na
na
na



Trp(Boc)


Tyr(Allyl)
Method 1T-10


2183
Alloc-
XT-4,
Fmoc-(S)-S31
Fmoc-Pro

Fmoc-S37
na
na
na



Lys(Fmoc)
Method 1T-6


2184
Fmoc-
XT-18,
Fmoc-(S)-S31
Fmoc-Ile

Fmoc-S9
3.3
xx
456



Glu(OAllyl)
Method 1T-1


2185
Fmoc-
XT-12,
Fmoc-(S)-S31
Fmoc-

Fmoc-S9
0.6
100
564



Tyr(Allyl)
Method 1T-10

Trp(Boc)


2186
Fmoc-D-
XT-14,
Fmoc-(R)-S31
Fmoc-D-

Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10

Leu


2187
Fmoc-
XT-13,
Fmoc-(R)-S31
Fmoc-D-

Fmoc-S9
0.6
100
478



Tyr(Allyl)
Method 1T-10

Leu


2188
Fmoc-D-

Fmoc-(R)-S31
Alloc-D-
XT-3,
Fmoc-S9
2.3
 83
525



Phe


Lys(Fmoc)
Method 1T-6


2189
Fmoc-Phe

Fmoc-(R)-S31
Alloc-D-
XT-5,
Fmoc-S9
2.3
 88
556






Lys(Fmoc)
Method 1T-6


2190
Fmoc-D-

Fmoc-(R)-S31
Fmoc-
XT-3,
Fmoc-S9
3.7
100
518



Phe(3Cl)


Dap(Alloc)
Method 1T-2


2191
Fmoc-
XT-1,
Fmoc-(R)-S31
Fmoc-D-

Fmoc-S9
1.1
 93
454



Dap(Alloc)
Method 1T-2

Phe(3Cl)


2192
Fmoc-
XT-2,
Fmoc-(R)-S31
Fmoc-D-

Fmoc-S9
1.2
100
414



Dap(Alloc)
Method 1T-2

Val


2193
Fmoc-D-

Fmoc-(R)-S31
Fmoc-
XT-5,
Fmoc-S9
2.3
100
466



Val


Dap(Alloc)
Method 1T-2


2194
Fmoc-Pro

Fmoc-(R)-S31
Alloc-
XT-4,
Fmoc-S9
2.0
100
495






Lys(Fmoc)
Method 1T-6


2195
Fmoc-Ile

Fmoc-(R)-S31
Fmoc-
XT-19,
Fmoc-S9
4.2
100
444






Glu(OAllyl)
Method 1T-1


2196
Fmoc-

Fmoc-(R)-S31
Fmoc-
XT-14,
Fmoc-S9
na
na
na



Trp(Boc)


Tyr(Allyl)
Method 1T-10


2197
Alloc-
XT-3,
Fmoc-(R)-S31
Fmoc-Pro

Fmoc-S37
1.2
100
507



Lys(Fmoc)
Method 1T-6


2198
Fmoc-
XT-24,
Fmoc-(R)-S31
Fmoc-Ile

Fmoc-S9
na
na
na



Glu(OAllyl)
Method 1T-1


2199
Fmoc-
(R)-XT-15,
Fmoc-(R)-S31
Fmoc-

Fmoc-S9
0.7
100
551



Tyr(Allyl)
Method 1T-10

Trp(Boc)


2200
Fmoc-D-
XT-12,
Fmoc-(S)-S32
Fmoc-D-

Fmoc-S9
0.3
100
533



Tyr(Allyl)
Method 1T-10

Leu


2201
Fmoc-
XT-14,
Fmoc-(S)-S32
Fmoc-D-

Fmoc-S9
0.9
100
576



Tyr(Allyl)
Method 1T-10

Leu


2202
Fmoc-D-

Fmoc-(S)-S32
Alloc-D-
XT-1,
Fmoc-S9
3.2
 65
504



Phe


Lys(Fmoc)
Method 1T-6


2203
Fmoc-Phe

Fmoc-(S)-S32
Fmoc-D-
XT-2,
Fmoc-S9
6.3
 91
546






Lys((Alloc)
Method 1T-6


2204
Fmoc-Pro

Fmoc-(S)-S32
Alloc-
XT-3,
Fmoc-S9
1.4
 97
517






Lys(Fmoc)
Method 1T-6


2205
Fmoc-Ile

Fmoc-(S)-S32
Fmoc-
XT-18,
Fmoc-S9
7.6
100
498






Glu(OAllyl)
Method 1T-1


2206
Fmoc-

Fmoc-(S)-S32
Fmoc-
XT-13,
Fmoc-S9
na
na
na



Trp(Boc)


Tyr(Allyl)
Method 1T-10


2207
Alloc-
XT-1,
Fmoc-(S)-S32
Fmoc-Pro

Fmoc-S37
0.9
100
486



Lys(Fmoc)
Method 1T-6


2208
Fmoc-
XT-16,
Fmoc-(S)-S32
Fmoc-Ile

Fmoc-S9
1.4
100
484



Glu(OAllyl)
Method 1T-1


2209
Fmoc-
XT-13,
Fmoc-(S)-S32
Fmoc-

Fmoc-S9
1.0
100
593



Tyr(Allyl)
Method 1T-10

Trp(Boc)


2210
Fmoc-D-
(R)-XT-15,
Fmoc-(R)-S32
Fmoc-D-

Fmoc-S9
1.4
100
520



Tyr(Allyl)
Method 1T-10

Leu


2211
Fmoc-
XT-12,
Fmoc-(R)-S32
Fmoc-D-

Fmoc-S9
0.5
100
533



Tyr(Allyl)
Method 1T-10

Leu


2212
Fmoc-D-

Fmoc-(R)-S32
Alloc-D-
XT-2,
Fmoc-S9
2.3
 94
546



Phe


Lys(Fmoc)
Method 1T-6


2213
Fmoc-Phe

Fmoc-(R)-S32
Alloc-D-
XT-5,
Fmoc-S9
7.1
 92
598






Lys(Fmoc)
Method 1T-6


2214
Fmoc-Pro

Fmoc-(R)-S32
Alloc-
XT-5,
Fmoc-S9
1.2
 86
548






Lys(Fmoc)
Method 1T-6


2215
Fmoc-Ile

Fmoc-(R)-S32
Fmoc-
XT-24,
Fmoc-S9
1.9
100
525






Glu(OAllyl)
Method 1T-1


2216
Fmoc-

Fmoc-(R)-S32
Fmoc-
(R)-XT-15,
Fmoc-S9
na
na
na



Trp(Boc)


Tyr(Allyl)
Method 1T-10


2217
Alloc-
XT-4,
Fmoc-(R)-S32
Fmoc-Pro

Fmoc-S37
na
na
na



Lys(Fmoc)
Method 1T-6


2218
Fmoc-
XT-17,
Fmoc-(R)-S32
Fmoc-Ile

Fmoc-S9
1.0
100
518



Glu(OAllyl)
Method 1T-1


2219
Fmoc-
XT-14,
Fmoc-(R)-S32
Fmoc-

Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10

Trp(Boc)


2220
Fmoc-
XT-11,
Fmoc-3-Azi
Fmoc-Leu

Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10


2221
Fmoc-Phe

Fmoc-3-Azi
Alloc-
XT-6,
Fmoc-S9
na
na
na






Lys(Fmoc)
Method 1T-8


2222
Fmoc-Phe

Fmoc-3-Azi
Alloc-
XT-8,
Fmoc-S37
na
na
na






Lys(Fmoc)
Method 1T-9


2223
Fmoc-
XT-11,
Fmoc-3-Azi
Alloc-
XT-6,
Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10

Lys(Fmoc)
Method 1T-8


2224
Fmoc-
XT-23,
Fmoc-3-Azi
Fmoc-Leu

Fmoc-S9
na
na
na



Glu(OAllyl)
Method 1T-1


2225
Fmoc-
XT-11,
Fmoc-4-Pip
Fmoc-Leu

Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10


2226
Fmoc-Phe

Fmoc-4-Pip
Alloc-
XT-6,
Fmoc-S9
na
na
na






Lys(Fmoc)
Method 1T-8


2227
Fmoc-
XT-11,
Fmoc-4-Pip
Alloc-
XT-6,
Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10

Lys(Fmoc)
Method 1T-8


2228
Fmoc-
XT-23,
Fmoc-4-Pip
Fmoc-Leu

Fmoc-S9
na
na
na



Glu(OAllyl)
Method 1T-1


2229
Fmoc-
XT-11,
Fmoc-4-cis-
Fmoc-Leu

Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10
Ach


2230
Fmoc-Phe

Fmoc-4-cis-
Alloc-
XT-6,
Fmoc-S9
na
na
na





Ach
Lys(Fmoc)
Method 1T-8


2231
Fmoc-
XT-11,
Fmoc-(S)-S31
Fmoc-Leu

Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10


2232
Fmoc-Phe

Fmoc-(S)-S31
Alloc-
XT-6,
Fmoc-S9
na
na
na






Lys(Fmoc)
Method 1T-8


2233
Fmoc-D-
XT-13,
Fmoc-3-Azi
Alloc-D-
XT-3,
Fmoc-S9
1.2
100
624



Tyr(Allyl)
Method 1T-10

Lys(Fmoc)
Method 1T-6


2234
Fmoc-
(R)-XT-15,
Fmoc-3-Azi
Alloc-D-
XT-1,
Fmoc-S9
0.8
100
561



Tyr(Allyl)
Method 1T-10

Lys(Fmoc)
Method 1T-6


2235
Fmoc-
XT-3,
Fmoc-3-Azi
Fmoc-
XT-16,
Fmoc-S9
0.8
100
546



Dap(Nic)
Method 1T-2

Glu(OAllyl)
Method 1T-1


2236
Fmoc-
XT-12,
Fmoc-3-Azi
Fmoc-
XT-12,
Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10

Tyr(Allyl)
Method 1T-10


2237
Fmoc-
XT-20,
Fmoc-3-Azi
Fmoc-
XT-2,
Fmoc-S9
0.5
100
555



Glu(OAllyl)
Method 1T-1

Dap(iVal)
Method 1T-2


2238
Fmoc-
XT-5,
Fmoc-3-Azi
Fmoc-
XT-14,
Fmoc-S9
na
na
na



Dap(Alloc)
Method 1T-2

Tyr(Allyl)
Method 1T-10


2239
Fmoc-
XT-14,
Fmoc-3-Azi
Fmoc-
XT-4,
Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10

Dap(Alloc)
Method 1T-2


2240
Fmoc-D-
XT-13,
Fmoc-3-Azi
Alloc-D-
XT-3,
Fmoc-S37
0.7
100
656



Tyr(Allyl)
Method 1T-10

Lys(Fmoc)
Method 1T-6


2241
Fmoc-
(R)-XT-15,
Fmoc-3-Azi
Alloc-D-
XT-1,
Fmoc-S37
0.8
100
593



Tyr(Allyl)
Method 1T-10

Lys(Fmoc)
Method 1T-6


2242
Fmoc-
XT-2,
Fmoc-3-Azi
Fmoc-
XT-17,
Fmoc-S37
1.0
100
591



Dap(Alloc)
Method 1T-2

Glu(OAllyl)
Method 1T-1


2243
Fmoc-
XT-12,
Fmoc-3-Azi
Fmoc-
XT-13,
Fmoc-S37
na
na
na



Tyr(Allyl)
Method 1T-10

Tyr(Allyl)
Method 1T-10


2244
Fmoc-
XT-21,
Fmoc-3-Azi
Fmoc-
XT-5,
Fmoc-S37
0.7
100
659



Glu(OAllyl)
Method 1T-1

Dap(Alloc)
Method 1T-2


2245
Fmoc-
XT-4,
Fmoc-3-Azi
Fmoc-
(R)-XT-15,
Fmoc-S37
na
na
na



Dap(Alloc)
Method 1T-2

Tyr(Allyl)
Method 1T-10


2246
Fmoc-
XT-14,
Fmoc-3-Azi
Fmoc-
XT-3,
Fmoc-S37
na
na
na



Tyr(Allyl)
Method 1T-10

Dap(Alloc)
Method 1T-2


2247
Fmoc-D-
XT-13,
Fmoc-4-cis-
Alloc-D-
XT-1,
Fmoc-S9
1.7
100
603



Tyr(Allyl)
Method 1T-10
Ach
Lys(Fmoc)
Method 1T-6


2248
Fmoc-
(R)-XT-15,
Fmoc-4-cis-
Alloc-D-
XT-2,
Fmoc-S9
5.1
100
645



Tyr(Allyl)
Method 1T-10
Ach
Lys(Fmoc)
Method 1T-6


2249
Fmoc-
XT-4,
Fmoc-4-cis-
Alloc-
XT-5,
Fmoc-S9
1.1
100
688



Dap(Alloc)
Method 1T-2
Ach
Lys(Fmoc)
Method 1T-6


2250
Fmoc-
XT-3,
Fmoc-4-cis-
Fmoc-
XT-20,
Fmoc-S9
1.7
100
618



Dap(Alloc)
Method 1T-2
Ach
Glu(OAllyl)
Method 1T-1


2251
Fmoc-
XT-14,
Fmoc-4-cis-
Fmoc-
XT-12,
Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10
Ach
Tyr(Allyl)
Method 1T-10


2252
Alloc-
XT-1,
Fmoc-4-cis-
Fmoc-
XT-2,
Fmoc-S9
4.5
100
553



Lys(Fmoc)
Method 1T-6
Ach
Dap(Alloc)
Method 1T-2


2253
Fmoc-
XT-22,
Fmoc-4-cis-
Fmoc-
XT-5,
Fmoc-S9
0.8
100
654



Glu(OAllyl)
Method 1T-1
Ach
Dap(Alloc)
Method 1T-2


2254
Fmoc-
XT-4,
Fmoc-4-cis-
Fmoc-
XT-14,
Fmoc-S9
na
na
na



Dap(Alloc)
Method 1T-2
Ach
Tyr(Allyl)
Method 1T-10


2255
Fmoc-
XT-14,
Fmoc-4-cis-
Fmoc-
XT-3,
Fmoc-S9
1.2
 27
680



Tyr(Allyl)
Method 1T-10
Ach
Dap(Alloc)
Method 1T-2


2256
Fmoc-D-
XT-13,
Fmoc-(S)-S31
Alloc-D-
XT-1,
Fmoc-S9
0.4
100
535



Tyr(Allyl)
Method 1T-10

Lys(Fmoc)
Method 1T-6


2257
Fmoc-
(R)-XT-15,
Fmoc-(S)-S31
Alloc-D-
XT-2,
Fmoc-S9
0.4
100
577



Tyr(Allyl)
Method 1T-10

Lys(Fmoc)
Method 1T-6


2258
Fmoc-
XT-5,
Fmoc-(S)-S31
Alloc-
XT-4,
Fmoc-S9
0.8
100
620



Dap(Alloc)
Method 1T-2

Lys(Fmoc)
Method 1T-6


2259
Fmoc-
XT-3,
Fmoc-(S)-S31
Fmoc-
XT-21,
Fmoc-S9
0.4
100
570



Dap(Alloc)
Method 1T-2

Glu(OAllyl)
Method 1T-1


2260
Fmoc-
XT-12,
Fmoc-(S)-S31
Fmoc-
XT-12,
Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10

Tyr(Allyl)
Method 1T-10


2261
Alloc-
XT-5,
Fmoc-(S)-S31
Fmoc-
XT-1,
Fmoc-S9
0.3
100
537



Lys(Fmoc)
Method 1T-6

Dap(Alloc)
Method 1T-2


2262
Fmoc-
XT-19,
Fmoc-(S)-S31
Fmoc-
XT-2,
Fmoc-S9
na
na
na



Glu(OAllyl)
Method 1T-1

Dap(Alloc)
Method 1T-2


2263
Fmoc-
XT-18,
Fmoc-(S)-S31
Fmoc-
XT-14,
Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1

Tyr(Allyl)
Method 1T-10


2264
Fmoc-
XT-4,
Fmoc-(S)-S31
Fmoc-
XT-13,
Fmoc-S9
na
na
na



Dap(Alloc)
Method 1T-2

Tyr(Allyl)
Method 1T-10


2265
Fmoc-
XT-14,
Fmoc-(S)-S31
Fmoc-
XT-22,
Fmoc-S9
0.4
100
626



Tyr(Allyl)
Method 1T-10

Asp(OAllyl)
Method 1T-1


2266
Fmoc-
XT-13,
Fmoc-(S)-S31
Fmoc-
XT-3,
Fmoc-S9
0.6
na
556



Tyr(Allyl)
Method 1T-10

Dap(Alloc)
Method 1T-2


2267
Fmoc-D-
(R)-XT-15,
Fmoc-(R)-S31
Alloc-D-
XT-1,
Fmoc-S9
0.3
100
535



Tyr(Allyl)
Method 1T-10

Lys(Fmoc)
Method 1T-6


2268
Fmoc-
XT-12,
Fmoc-(R)-S31
Alloc-D-
XT-5,
Fmoc-S9
0.4
100
642



Tyr(Allyl)
Method 1T-10

Lys(Fmoc)
Method 1T-6


2269
Fmoc-
XT-3,
Fmoc-(R)-S31
Alloc-
XT-4,
Fmoc-S9
0.3
na
589



Dap(Alloc)
Method 1T-2

Lys(Fmoc)
Method 1T-6


2270
Fmoc-
XT-1,
Fmoc-(R)-S31
Fmoc-
XT-19,
Fmoc-S9
na
na
na



Dap(Alloc)
Method 1T-2

Glu(OAllyl)
Method 1T-1


2271
Fmoc-
XT-14,
Fmoc-(R)-S31
Fmoc-
(R)-XT-15,
Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10

Tyr(Allyl)
Method 1T-10


2272
Alloc-
XT-2,
Fmoc-(R)-S31
Fmoc-
XT-5,
Fmoc-S9
0.9
100
579



Lys(Fmoc)
Method 1T-6

Dap(Alloc)
Method 1T-2


2273
Fmoc-
XT-24,
Fmoc-(R)-S31
Fmoc-
XT-4,
Fmoc-S9
na
na
na



Glu(OAllyl)
Method 1T-1

Dap(Alloc)
Method 1T-2


2274
Fmoc-
XT-16,
Fmoc-(R)-S31
Fmoc-
XT-12,
Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1

Tyr(Allyl)
Method 1T-10


2275
Fmoc-
XT-3,
Fmoc-(R)-S31
Fmoc-
XT-14,
Fmoc-S9
na
na
na



Dap(Alloc)
Method 1T-2

Tyr(Allyl)
Method 1T-10


2276
Fmoc-
XT-13,
Fmoc-(R)-S31
Fmoc-
XT-18,
Fmoc-S9
0.5
100
549



Tyr(Allyl)
Method 1T-10

Asp(OAllyl)
Method 1T-1


2277
Fmoc-
(R)-XT-15,
Fmoc-(R)-S31
Fmoc-
XT-1,
Fmoc-S9
0.3
100
493



Tyr(Allyl)
Method 1T-10

Dap(Alloc)
Method 1T-2


2278
Fmoc-D-
XT-12,
Fmoc-(S)-S32
Alloc-D-
XT-2,
Fmoc-S9
0.2
100
632



Tyr(Allyl)
Method 1T-10

Lys(Fmoc)
Method 1T-6


2279
Fmoc-
XT-14,
Fmoc-(S)-S32
Alloc-D-
XT-5,
Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10

Lys(Fmoc)
Method 1T-6


2280
Fmoc-
XT-3,
Fmoc-(S)-S32
Alloc-
XT-4,
Fmoc-S9
1.0
100
631



Dap(Alloc)
Method 1T-2

Lys(Fmoc)
Method 1T-6


2281
Fmoc-
XT-1,
Fmoc-(S)-S32
Fmoc-
XT-24,
Fmoc-S9
0.2
100
540



Dap(Alloc)
Method 1T-2

Glu(OAllyl)
Method 1T-1


2282
Fmoc-
XT-13,
Fmoc-(S)-S32
Fmoc-
XT-13,
Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10

Tyr(Allyl)
Method 1T-10


2283
Alloc-
XT-2,
Fmoc-(S)-S32
Fmoc-
XT-5,
Fmoc-S9
0.8
100
621



Lys(Fmoc)
Method 1T-6

Dap(Alloc)
Method 1T-2


2284
Fmoc-
XT-17,
Fmoc-(S)-S32
Fmoc-
XT-4,
Fmoc-S9
0.5
100
616



Glu(OAllyl)
Method 1T-1

Dap(Alloc)
Method 1T-2


2285
Fmoc-
XT-20,
Fmoc-(S)-S32
Fmoc-
(R)-XT-15,
Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1

Tyr(Allyl)
Method 1T-10


2286
Fmoc-
XT-3,
Fmoc-(S)-S32
Fmoc-
XT-12,
Fmoc-S9
na
na
na



Dap(Alloc)
Method 1T-2

Tyr(Allyl)
Method 1T-10


2287
Fmoc-
(R)-XT-15,
Fmoc-(S)-S32
Fmoc-
XT-16,
Fmoc-S9
0.5
100
577



Tyr(Allyl)
Method 1T-10

Asp(OAllyl)
Method 1T-1


2288
Fmoc-
XT-12,
Fmoc-(S)-S32
Fmoc-
XT-1,
Fmoc-S9
0.2
100
548



Tyr(Allyl)
Method 1T-10

Dap(Alloc)
Method 1T-2


2289
Fmoc-D-
XT-14,
Fmoc-(R)-S32
Alloc-D-
XT-2,
Fmoc-S9
0.8
100
675



Tyr(Allyl)
Method 1T-10

Lys(Fmoc)
Method 1T-6


2290
Fmoc-
XT-13,
Fmoc-(R)-S32
Alloc-D-
XT-5,
Fmoc-S9
0.7
100
671



Tyr(Allyl)
Method 1T-10

Lys(Fmoc)
Method 1T-6


2291
Fmoc-
XT-1,
Fmoc-(R)-S32
Alloc-
XT-4,
Fmoc-S9
0.9
100
568



Dap(Alloc)
Method 1T-2

Lys(Fmoc)
Method 1T-6


2292
Fmoc-
XT-2,
Fmoc-(R)-S32
Fmoc-
XT-17,
Fmoc-S9
1.1
100
575



Dap(Alloc)
Method 1T-2

Glu(OAllyl)
Method 1T-1


2293
Fmoc-
(R)-XT-15,
Fmoc-(R)-S32
Fmoc-
XT-14,
Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10

Tyr(Allyl)
Method 1T-10


2294
Alloc-
XT-5,
Fmoc-(R)-S32
Fmoc-
XT-4,
Fmoc-S9
0.4
100
662



Lys(Fmoc)
Method 1T-6

Dap(Alloc)
Method 1T-2


2295
Fmoc-
XT-21,
Fmoc-(R)-S32
Fmoc-
XT-3,
Fmoc-S9
na
na
na



Glu(OAllyl)
Method 1T-1

Dap(Alloc)
Method 1T-2


2296
Fmoc-
XT-22,
Fmoc-(R)-S32
Fmoc-
XT-13,
Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1

Tyr(Allyl)
Method 1T-10


2297
Fmoc-
XT-1,
Fmoc-(R)-S32
Fmoc-
(R)-XT-15,
Fmoc-S9
na
na
na



Dap(Alloc)
Method 1T-2

Tyr(Allyl)
Method 1T-10


2298
Fmoc-
XT-12,
Fmoc-(R)-S32
Fmoc-
XT-20,
Fmoc-S9
0.2
100
620



Tyr(Allyl)
Method 1T-10

Asp(OAllyl)
Method 1T-1


2299
Fmoc-
XT-14,
Fmoc-(R)-S32
Fmoc-
XT-2,
Fmoc-S9
0.6
100
633



Tyr(Allyl)
Method 1T-10

Dap(Alloc)
Method 1T-2


2300
Fmoc-
XT-19,
Fmoc-3-Azi
Fmoc-

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1

Trp(Boc)


2301
Fmoc-
XT-18,
Fmoc-3-Azi
Fmoc-

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1

Arg(Pbf)


2302
Fmoc-
XT-24,
Fmoc-3-Azi
Fmoc-
XT-12,
Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1

Tyr(Allyl)
Method 1T-10


2303
Fmoc-

Fmoc-3-Azi
Fmoc-
XT-21,
Fmoc-S9
2.3
100
577



Trp(Boc)


Asp(OAllyl)
Method 1T-1


2304
Fmoc-

Fmoc-3-Azi
Fmoc-
XT-22,
Fmoc-S9
0.9
na
532



Arg(Pbf)


Asp(OAllyl)
Method 1T-1


2305
Fmoc-
XT-13,
Fmoc-3-Azi
Fmoc-
XT-19,
Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10

Asp(OAllyl)
Method 1T-1


2306
Fmoc-
XT-16,
Fmoc-3-Azi
Fmoc-

Fmoc-S37
0.8
100
559



Asp(OAllyl)
Method 1T-1

Trp(Boc)


2307
Fmoc-
XT-17,
Fmoc-3-Azi
Fmoc-

Fmoc-S37
0.3
100
563



Asp(OAllyl)
Method 1T-1

Arg(Pbf)


2308
Fmoc-
XT-20,
Fmoc-3-Azi
Fmoc-
XT-14,
Fmoc-S37
na
na
na



Asp(OAllyl)
Method 1T-1

Tyr(Allyl)
Method 1T-10


2309
Fmoc-

Fmoc-3-Azi
Fmoc-
XT-18,
Fmoc-S37
3.9
100
573



Trp(Boc)


Asp(OAllyl)
Method 1T-1


2310
Fmoc-

Fmoc-3-Azi
Fmoc-
XT-24,
Fmoc-S37
3.1
100
570



Arg(Pbf)


Asp(OAllyl)
Method 1T-1


2311
Fmoc-
(R)-XT-15,
Fmoc-3-Azi
Fmoc-
XT-16,
Fmoc-S37
1.3
100
593



Tyr(Allyl)
Method 1T-10

Asp(OAllyl)
Method 1T-1


2312
Fmoc-D-

Fmoc-3-Azi
Alloc-D-
XT-7,
Fmoc-S37
1.2
100
584



Phe


Lys(Fmoc)
Method 1T-9


2313
Fmoc-Phe

Fmoc-3-Azi
Alloc-D-
XT-8,
Fmoc-S37
3.7
100
697






Lys(Fmoc)
Method 1T-9


2314
Fmoc-D-

Fmoc-3-Azi
Alloc-D-
XT-9,
Fmoc-S37
4.3
100
624



Phe


Lys(Fmoc)
Method 1T-9


2315
Fmoc-Phe

Fmoc-3-Azi
Alloc-D-
XT-6,
Fmoc-S37
na
na
na






Lys(Fmoc)
Method 1T-8


2316
Fmoc-D-

Fmoc-3-Azi
Fmoc-
XT-7,
Fmoc-S37
0.4
100
577



Phe(3Cl)


Dap(Alloc)
Method 1T-5


2317
Fmoc-
XT-8,
Fmoc-3-Azi
Fmoc-D-

Fmoc-S37
na
na
na



Dap(Alloc)
Method 1T-5

Phe(3Cl)


2318
Fmoc-
XT-9,
Fmoc-3-Azi
Fmoc-D-

Fmoc-S37
na
na
na



Dap(Alloc)
Method 1T-5

Val


2319
Fmoc-D-

Fmoc-3-Azi
Fmoc-
XT-6,
Fmoc-S37
2.0
100
557



Val


Dap(Alloc)
Method 1T-4


2320
Fmoc-Pro

Fmoc-3-Azi
Alloc-
XT-7,
Fmoc-S37
0.7
na
534






Lys(Fmoc)
Method 1T-9


2321
Alloc-
XT-8,
Fmoc-3-Azi
Fmoc-Pro

Fmoc-S37
2.2
100
647



Lys(Fmoc)
Method 1T-9


2322
Fmoc-D-
XT-12,
Fmoc-3-Azi
Alloc-D-
XT-9,
Fmoc-S37
0.4
100
710



Tyr(Allyl)
Method 1T-10

Lys(Fmoc)
Method 1T-9


2323
Fmoc-
XT-14,
Fmoc-3-Azi
Alloc-D-
XT-6,
Fmoc-S37
na
na
na



Tyr(Allyl)
Method 1T-10

Lys(Fmoc)
Method 1T-8


2324
Fmoc-
XT-7,
Fmoc-3-Azi
Fmoc-
XT-17,
Fmoc-S37
na
na
na



Dap(Alloc)
Method 1T-5

Glu(OAllyl)
Method 1T-1


2325
Fmoc-
XT-21,
Fmoc-3-Azi
Fmoc-
XT-8,
Fmoc-S37
na
na
na



Glu(OAllyl)
Method 1T-1

Dap(Alloc)
Method 1T-5


2326
Fmoc-
XT-9,
Fmoc-3-Azi
Fmoc-
XT-13,
Fmoc-S37
na
na
na



Dap(Alloc)
Method 1T-5

Tyr(Allyl)
Method 1T-10


2327
Fmoc-
XT-13,
Fmoc-3-Azi
Fmoc-
XT-6,
Fmoc-S37
na
na
na



Tyr(Allyl)
Method 1T-10

Dap(Alloc)
Method 1T-4


2328
Fmoc-

Fmoc-3-Azi
Fmoc-
XT-8,
Fmoc-S37
2.1
100
761



Tyr(OBn)


Dap(Alloc)
Method 1T-5





na = not available



1All syntheses were carried out on the solid phase starting from 70-80 mg of 2-chlorotrityl chloride resin (typical loading 1.0 mmol/g).




2Purity is determined by analysis with LC-UV at 220 nm.














TABLE 2B









embedded image



















Cpd
R1a
R5
Q1
R2
R3b
R7
R4





2116


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2117


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2118


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2119


embedded image


H
C═O


embedded image




embedded image


H


embedded image


















2120


embedded image


C═O


embedded image




embedded image


H


embedded image



















2121


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2122


embedded image


H
C═O


embedded image




embedded image


H


embedded image


















2123


embedded image


H
C═O


embedded image




embedded image




embedded image



















2124


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2125


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2126


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2127


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2128


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2129


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2130


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2131


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2132


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2133


embedded image


H
C═O


embedded image




embedded image


H


embedded image


















2134


embedded image


C═O


embedded image




embedded image


H


embedded image



















2135


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2136


embedded image


H
C═O


embedded image




embedded image


H


embedded image


















2137


embedded image


H
C═O


embedded image




embedded image




embedded image



















2138


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2139


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2140


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2141


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2142


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2143


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2144


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2145


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2146


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2147


embedded image


H
C═O


embedded image




embedded image


H


embedded image


















2148


embedded image


C═O


embedded image




embedded image


H


embedded image



















2149


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2150


embedded image


H
C═O


embedded image




embedded image


H


embedded image


















2151


embedded image


H
C═O


embedded image




embedded image




embedded image



















2152


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2153


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2154


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2155


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2156


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2157


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2158


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2159


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2160


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2161


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2162


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2163


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2164


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2165


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2166


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2167


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2168


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2169


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2170


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2171


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2172


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2173


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2174


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2175


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2176


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2177


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2178


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2179


embedded image


H
CH2


embedded image




embedded image


H


embedded image


















2180


embedded image


CH2


embedded image




embedded image


H


embedded image



















2181


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2182


embedded image


H
CH2


embedded image




embedded image


H


embedded image


















2183


embedded image


H
CH2


embedded image




embedded image




embedded image



















2184


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2185


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2186


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2187


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2188


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2189


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2190


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2191


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2192


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2193


embedded image


H
CH2


embedded image




embedded image


H


embedded image


















2194


embedded image


CH2


embedded image




embedded image


H


embedded image



















2195


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2196


embedded image


H
CH2


embedded image




embedded image


H


embedded image


















2197


embedded image


H
CH2


embedded image




embedded image




embedded image



















2198


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2199


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2200


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2201


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2202


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2203


embedded image


H
CH2


embedded image




embedded image


H


embedded image


















2204


embedded image


CH2


embedded image




embedded image


H


embedded image



















2205


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2206


embedded image


H
CH2


embedded image




embedded image


H


embedded image


















2207


embedded image


H
CH2


embedded image




embedded image




embedded image



















2208


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2209


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2210


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2211


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2212


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2213


embedded image


H
CH2


embedded image




embedded image


H


embedded image


















2214


embedded image


CH2


embedded image




embedded image


H


embedded image



















2215


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2216


embedded image


H
CH2


embedded image




embedded image


H


embedded image


















2217


embedded image


H
CH2


embedded image




embedded image




embedded image



















2218


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2219


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2220


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2221


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2222


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2223


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2224


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2225


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2226


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2227


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2228


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2229


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2230


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2231


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2232


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2233


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2234


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2235


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2236


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2237


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2238


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2239


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2240


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2241


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2242


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2243


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2244


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2245


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2246


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2247


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2248


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2249


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2250


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2251


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2252


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2253


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2254


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2255


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2256


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2257


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2258


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2259


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2260


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2261


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2262


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2263


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2264


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2265


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2266


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2267


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2268


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2269


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2270


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2271


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2272


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2273


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2274


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2275


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2276


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2277


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2278


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2279


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2280


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2281


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2282


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2283


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2284


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2285


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2286


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2287


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2288


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2289


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2290


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2291


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2292


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2293


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2294


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2295


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2296


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2297


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2298


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2299


embedded image


H
CH2


embedded image




embedded image


H


embedded image







2300


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2301


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2302


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2303


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2304


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2305


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2306


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2307


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2308


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2309


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2310


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2311


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2312


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2313


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2314


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2315


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2316


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2317


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2318


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2319


embedded image


H
C═O


embedded image




embedded image


H


embedded image


















2320


embedded image


C═O


embedded image




embedded image


H


embedded image


















2321


embedded image


H
C═O


embedded image




embedded image




embedded image



















2322


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2323


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2324


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2325


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2326


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2327


embedded image


H
C═O


embedded image




embedded image


H


embedded image







2328


embedded image


H
C═O


embedded image




embedded image


H


embedded image









text missing or illegible when filed









For all compounds in Table 2B, Q2=CH2 and R8═H. Also, R5═H, except for those compounds in which Fmoc-Pro is BB1 wherein R1a and (N)R5 form a five-membered ring, including the nitrogen atom, as shown for R1-R2. Similarly, R7═H, except for those compounds in which Fmoc-Pro is BB3, R3b and (N)R7 form a five-membered ring, including the nitrogen atom, as shown for R3b-R7 in Table 2B. In addition, R6═H, except for those compounds in which BB2 is Fmoc-3-Azi wherein (N)R6 and R2 are part of a four-membered ring, including the nitrogen atom, as shown for R2 in Table 2B, and for those compounds in which BB2 is Fmoc-4-Pip wherein (N)R6 and R2 are part of a six-membered ring, including the nitrogen atom, as shown for R2 in Table 2B.


Example 4
Synthesis of a Representative Library of Macrocyclic Compounds of Formula (I) Containing Five Building Blocks

The synthetic scheme presented in Scheme 4 was followed to prepare the library of macrocyclic compounds 2331-2593 on solid support. The first building block amino acid (BB1) was loaded onto the resin (Method 1D), then, after removal of the Fmoc protection (Method 1F), the next building block (BB2) was connected using amide coupling chemistry (Method 1G). The third building block (BB3) was attached via reductive amination (Methods 1I or 1J) or Fukuyama-Mitsunobu alkylation chemistry (via the procedure in Method 1P, not depicted in Scheme 4), then the fourth building block (BB4) added using amide bond formation (Method 1G), both subsequent to the removal of Fmoc protection (Method 1F) on the respective BB. Connection of the last building block (BB5) by reductive amination (Methods 1I or 1J) or Fukuyama-Mitsunobu alkylation (Method 1P, not shown in Scheme 4). was followed by selective N-terminal deprotection (Method 1F), cleavage from the solid support (Method 1Q) and macrocyclization (Method 1R). The side chain protecting groups were removed (Method 1S), then the resulting crude product purified by preparative HPLC (Method 2B). The building blocks utilized, amounts of each macrocycle obtained, HPLC purity and confirmation of identity by mass spectrometry (MS) are provided in Table 3A, with the individual structures of the compounds thus prepared presented in Table 3B.


For compounds 2416-2453, 2561-2579 and 2581-2591, the procedure described in Method 1P was employed to install the methyl group after addition of BB2.


Two compounds in Table 3A actually possess an additional building block. For the first, compound 2592, the orthogonal side chain protecting group of BB1 is removed using Method 1CC, then the free phenol reacted with XT-11 utilizing Method 1T-10 prior to the addition of BB2. Analogously, for the other, compound 2593, the orthogonal side chain protecting group of BB3 is cleaved using Method 1F, then the free amine reacted with XT-6 according to Method 1T-8 prior to the addition of BB2.

















TABLE 3A











Wt1

MS


Cpd
BB1
BB2
BB3
BB4
BB5
(mg)
Purity2
(M + H)























2331
Fmoc-Phe
Fmoc-Ile
Fmoc-S9
Fmoc-Tyr(But)
Fmoc-(S)-S31
8.4
100
568


2332
Fmoc-Ile
Fmoc-Tyr(But)
Fmoc-S9
Fmoc-Phe
Fmoc-(S)-S31
11.9
100
568


2333
Fmoc-D-Tyr(But)
Fmoc-Phe
Fmoc-S9
Fmoc-Ile
Fmoc-(S)-S31
8.4
100
568


2334
Fmoc-Phe
Fmoc-Tyr(But)
Fmoc-S9
Fmoc-Ile
Fmoc-(S)-S31
7.2
100
568


2335
Fmoc-Ile
Fmoc-Phe
Fmoc-S9
Fmoc-Tyr(But)
Fmoc-(S)-S31
3.4
100
568


2336
Fmoc-Tyr(But)
Fmoc-Ile
Fmoc-S9
Fmoc-Phe
Fmoc-(S)-S31
6.7
100
568


2337
Fmoc-Phe
Fmoc-D-Val
Fmoc-S9
Fmoc-Nva
Fmoc-(S)-S31
11.8
100
490


2338
Fmoc-D-Val
Fmoc-Nva
Fmoc-S9
Fmoc-D-Phe(3Cl)
Fmoc-(S)-S31
8.7
100
525


2339
Fmoc-Nva
Fmoc-D-Phe(3Cl)
Fmoc-S9
Fmoc-D-Val
Fmoc-(S)-S31
8.2
100
525


2340
Fmoc-D-Phe(3Cl)
Fmoc-Nva
Fmoc-S9
Fmoc-D-Val
Fmoc-(S)-S31
5.1
100
525


2341
Fmoc-Val
Fmoc-D-Phe(3Cl)
Fmoc-S9
Fmoc-Nva
Fmoc-(S)-S31
8.5
97
525


2342
Fmoc-Nva
Fmoc-D-Val
Fmoc-S9
Fmoc-D-Phe(3Cl)
Fmoc-(S)-S31
12.3
100
525


2343
Fmoc-D-Phe(3Cl)
Fmoc-D-Val
Fmoc-S9
Fmoc-Dap(Boc)
Fmoc-(S)-S31
2.4
100
512


2344
Fmoc-D-Val
Fmoc-Dap(Boc)
Fmoc-S9
Fmoc-D-Phe(3Cl)
Fmoc-(S)-S31
6.3
96
512


2345
Fmoc-D-Dap(Boc)
Fmoc-D-Phe(3Cl)
Fmoc-S9
Fmoc-D-Val
Fmoc-(S)-S31
1.7
100
512


2346
Fmoc-D-Phe(3Cl)
Fmoc-Dap(Boc)
Fmoc-S9
Fmoc-D-Val
Fmoc-(S)-S31
3.7
100
512


2347
Fmoc-D-Val
Fmoc-D-Phe(3Cl)
Fmoc-S9
Fmoc-Dap(Boc)
Fmoc-(S)-S31
6.7
91
512


2348
Fmoc-Dap(Boc)
Fmoc-D-Val
Fmoc-S9
Fmoc-D-Phe(3Cl)
Fmoc-(S)-S31
3.4
100
512


2349
Fmoc-Phe
Fmoc-Ile
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-(S)-S31
4.4
100
600


2350
Fmoc-Ile
Fmoc-D-Tyr(But)
Fmoc-S37
Fmoc-Phe
Fmoc-(S)-S31
12.0
100
600


2351
Fmoc-Tyr(But)
Fmoc-Phe
Fmoc-S37
Fmoc-Ile
Fmoc-(S)-S31
2.4
95
600


2352
Fmoc-Phe
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-Ile
Fmoc-(S)-S31
6.0
100
600


2353
Fmoc-Ile
Fmoc-Phe
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-(S)-S31
7.9
87
600


2354
Fmoc-Tyr(But)
Fmoc-Ile
Fmoc-S37
Fmoc-Phe
Fmoc-(S)-S31
4.8
100
600


2355
Fmoc-D-Phe(3Cl)
Fmoc-D-Val
Fmoc-S37
Fmoc-Nva
Fmoc-(S)-S31
3.6
100
557


2356
Fmoc-D-Val
Fmoc-D-Nva
Fmoc-S37
Fmoc-D-Phe(3Cl)
Fmoc-(S)-S31
6.3
87
557


2357
Fmoc-Nva
Fmoc-D-Phe(3Cl)
Fmoc-S37
Fmoc-D-Val
Fmoc-(S)-S31
10.8
97
557


2358
Fmoc-D-Phe(3Cl)
Fmoc-Nva
Fmoc-S37
Fmoc-D-Val
Fmoc-(S)-S31
3.5
100
557


2359
Fmoc-D-Val
Fmoc-D-Phe(3Cl)
Fmoc-S37
Fmoc-Nva
Fmoc-(S)-S31
6.4
100
557


2360
Fmoc-Nva
Fmoc-D-Val
Fmoc-S37
Fmoc-D-Phe(3Cl)
Fmoc-(S)-S31
10.5
100
557


2361
Fmoc-D-Phe(3Cl)
Fmoc-D-Val
Fmoc-S37
Fmoc-Dap(Boc)
Fmoc-(S)-S31
1.5
100
544


2362
Fmoc-D-Val
Fmoc-D-Dap(Boc)
Fmoc-S37
Fmoc-D-Phe(3Cl)
Fmoc-(S)-S31
5.9
100
544


2363
Fmoc-Dap(Boc)
Fmoc-D-Phe(3Cl)
Fmoc-S37
Fmoc-D-Val
Fmoc-(S)-S31
2.9
100
544


2364
Fmoc-D-Phe(3Cl)
Fmoc-Dap(Boc)
Fmoc-S37
Fmoc-D-Val
Fmoc-(S)-S31
4.4
100
544


2365
Fmoc-D-Val
Fmoc-D-Phe(3Cl)
Fmoc-S37
Fmoc-Dap(Boc)
Fmoc-(S)-S31
1.5
100
544


2366
Fmoc-Dap(Boc)
Fmoc-Val
Fmoc-S37
Fmoc-D-Phe(3Cl)
Fmoc-(S)-S31
3.2
100
544


2367
Fmoc-Phe
Fmoc-Ile
Fmoc-S9
Fmoc-Tyr(But)
Fmoc-(R)-S31
5.4
100
568


2368
Fmoc-Ile
Fmoc-Tyr(But)
Fmoc-S9
Fmoc-Phe
Fmoc-(R)-S31
10.5
100
568


2369
Fmoc-Tyr(But)
Fmoc-Phe
Fmoc-S9
Fmoc-Ile
Fmoc-(R)-S31
5.7
100
568


2370
Fmoc-Phe
Fmoc-Tyr(But)
Fmoc-S9
Fmoc-Ile
Fmoc-(R)-S31
6.0
100
568


2371
Fmoc-Ile
Fmoc-Phe
Fmoc-S9
Fmoc-D-Tyr(But)
Fmoc-(R)-S31
11.5
100
568


2372
Fmoc-Tyr(But)
Fmoc-Ile
Fmoc-S9
Fmoc-Phe
Fmoc-(R)-S31
6.5
100
568


2373
Fmoc-D-Phe(3Cl)
Fmoc-D-Val
Fmoc-S9
Fmoc-Nva
Fmoc-(R)-S31
2.4
100
525


2374
Fmoc-D-Val
Fmoc-Nva
Fmoc-S9
Fmoc-D-Phe(3Cl)
Fmoc-(R)-S31
7.1
100
525


2375
Fmoc-Nva
Fmoc-D-Phe(3Cl)
Fmoc-S9
Fmoc-D-Val
Fmoc-(R)-S31
na
na
na


2376
Fmoc-D-Phe(3Cl)
Fmoc-Nva
Fmoc-S9
Fmoc-D-Val
Fmoc-(R)-S31
1.8
100
525


2377
Fmoc-D-Val
Fmoc-D-Phe(3Cl)
Fmoc-S9
Fmoc-Nva
Fmoc-(R)-S31
4.9
100
525


2378
Fmoc-Nva
Fmoc-D-Val
Fmoc-S9
Fmoc-Phe
Fmoc-(R)-S31
7.4
97
490


2379
Fmoc-D-Phe(3Cl)
Fmoc-D-Val
Fmoc-S9
Fmoc-Dap(Boc)
Fmoc-(R)-S31
3.8
100
512


2380
Fmoc-D-Val
Fmoc-Dap(Boc)
Fmoc-S9
Fmoc-D-Phe(3Cl)
Fmoc-(R)-S31
7.3
100
512


2381
Fmoc-Dap(Boc)
Fmoc-D-Phe(3Cl)
Fmoc-S9
Fmoc-D-Val
Fmoc-(R)-S31
2.1
100
512


2382
Fmoc-D-Phe(3Cl)
Fmoc-Dap(Boc)
Fmoc-S9
Fmoc-Val
Fmoc-(R)-S31
4.6
100
512


2383
Fmoc-D-Val
Fmoc-D-Phe(3Cl)
Fmoc-S9
Fmoc-Dap(Boc)
Fmoc-(R)-S31
1.8
100
512


2384
Fmoc-Dap(Boc)
Fmoc-D-Val
Fmoc-S9
Fmoc-D-Phe(3Cl)
Fmoc-(R)-S31
2.4
95
512


2385
Fmoc-Phe
Fmoc-Ile
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-(R)-S31
4.1
94
600


2386
Fmoc-Ile
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-Phe
Fmoc-(R)-S31
4.2
90
600


2387
Fmoc-Tyr(But)
Fmoc-Phe
Fmoc-S37
Fmoc-Ile
Fmoc-(R)-S31
4.2
95
600


2388
Fmoc-Phe
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-Ile
Fmoc-(R)-S31
5.0
87
600


2389
Fmoc-Ile
Fmoc-Phe
Fmoc-S37
Fmoc-D-Tyr(But)
Fmoc-(R)-S31
5.1
96
600


2390
Fmoc-Tyr(But)
Fmoc-Ile
Fmoc-S37
Fmoc-Phe
Fmoc-(R)-S31
5.8
86
600


2391
Fmoc-D-Phe(3Cl)
Fmoc-D-Val
Fmoc-S37
Fmoc-Nva
Fmoc-(R)-S31
1.7
100
557


2392
Fmoc-D-Val
Fmoc-Nva
Fmoc-S37
Fmoc-D-Phe(3Cl)
Fmoc-(R)-S31
8.6
100
557


2393
Fmoc-Nva
Fmoc-D-Phe(3Cl)
Fmoc-S37
Fmoc-D-Val
Fmoc-(R)-S31
8.4
100
557


2394
Fmoc-D-Phe(3Cl)
Fmoc-Nva
Fmoc-S37
Fmoc-D-Val
Fmoc-(R)-S31
5.9
100
557


2395
Fmoc-D-Val
Fmoc-D-Phe(3Cl)
Fmoc-S37
Fmoc-Nva
Fmoc-(R)-S31
2.8
100
557


2396
Fmoc-Nva
Fmoc-D-Val
Fmoc-S37
Fmoc-Phe
Fmoc-(R)-S31
5.7
100
522


2397
Fmoc-D-Phe(3Cl)
Fmoc-D-Val
Fmoc-S37
Fmoc-Dap(Boc)
Fmoc-(R)-S31
1.1
100
544


2398
Fmoc-D-Val
Fmoc-Dap(Boc)
Fmoc-S37
Fmoc-D-Phe(3Cl)
Fmoc-(R)-S31
8.4
96
544


2399
Fmoc-Dap(Boc)
Fmoc-D-Phe(3Cl)
Fmoc-S37
Fmoc-D-Val
Fmoc-(R)-S31
2.9
100
544


2400
Fmoc-D-Phe(3Cl)
Fmoc-Dap(Boc)
Fmoc-S37
Fmoc-Val
Fmoc-(R)-S31
3.5
100
544


2401
Fmoc-D-Val
Fmoc-D-Phe(3Cl)
Fmoc-S37
Fmoc-Dap(Boc)
Fmoc-(R)-S31
3.1
80
544


2402
Fmoc-Dap(Boc)
Fmoc-D-Val
Fmoc-S37
Fmoc-D-Phe(3Cl)
Fmoc-(R)-S31
3.8
100
544


2403
Fmoc-Phe
Fmoc-Leu
Fmoc-S9
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


2404
Fmoc-Phe
Fmoc-Trp(Boc)
Fmoc-S9
Fmoc-Tyr(But)
Fmoc-S29
na
na
na


2405
Fmoc-Phe
Fmoc-D-Nle
Fmoc-S9
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


2406
Fmoc-Phe
Fmoc-D-Trp(Boc)
Fmoc-S9
Fmoc-Tyr(But)
Fmoc-S29
na
na
na


2407
Fmoc-Lys(Boc)
Fmoc-Phe
Fmoc-S9
Fmoc-Leu
Fmoc-S29
na
na
na


2408
Fmoc-Lys(Boc)
Fmoc-D-Phe
Fmoc-S9
Fmoc-Leu
Fmoc-S29
na
na
na


2409
Fmoc-Phe
Fmoc-Leu
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


2410
Fmoc-Phe
Fmoc-Trp(Boc)
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-S29
na
na
na


2411
Fmoc-Phe
Fmoc-D-Nle
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


2412
Fmoc-Phe
Fmoc-D-Trp(Boc)
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-S29
na
na
na


2413
Fmoc-Lys(Boc)
Fmoc-Phe
Fmoc-S37
Fmoc-Leu
Fmoc-S29
na
na
na


2414
Fmoc-Lys(Boc)
Fmoc-D-Phe
Fmoc-S37
Fmoc-Leu
Fmoc-S29
na
na
na


2415
Fmoc-D-Phe(3CF3)
Fmoc-Ala
Fmoc-S37
Fmoc-Nle
Fmoc-(R)-S55
na
na
na


2416
Fmoc-Phe
Fmoc-Ile
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-(S)-S31
2.4
100
614


2417
Fmoc-Ile
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-Phe
Fmoc-(S)-S31
2.2
79
614


2418
Fmoc-Tyr(But)
Fmoc-Phe
Fmoc-S37
Fmoc-Ile
Fmoc-(S)-S31
2.6
100
614


2419
Fmoc-Phe
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-Ile
Fmoc-(S)-S31
3.9
100
614


2420
Fmoc-Ile
Fmoc-Phe
Fmoc-S37
Fmoc-D-Tyr(But)
Fmoc-(S)-S31
6.8
100
614


2421
Fmoc-Tyr(But)
Fmoc-Ile
Fmoc-S37
Fmoc-Phe
Fmoc-(S)-S31
1.8
100
614


2422
Fmoc-D-Phe(3Cl)
Fmoc-D-Val
Fmoc-S37
Fmoc-Nva
Fmoc-(S)-S31
1.9
90
571


2423
Fmoc-D-Val
Fmoc-Nva
Fmoc-S37
Fmoc-D-Phe(3Cl)
Fmoc-(S)-S31
8.0
100
571


2424
Fmoc-Nva
Fmoc-D-Phe(3Cl)
Fmoc-S37
Fmoc-D-Val
Fmoc-(S)-S31
8.1
100
571


2425
Fmoc-D-Phe(3Cl)
Fmoc-Nva
Fmoc-S37
Fmoc-D-Val
Fmoc-(S)-S31
4.4
100
571


2426
Fmoc-D-Val
Fmoc-D-Phe(3Cl)
Fmoc-S37
Fmoc-Nva
Fmoc-(S)-S31
3.3
100
571


2427
Fmoc-Nva
Fmoc-D-Val
Fmoc-S37
Fmoc-Phe
Fmoc-(S)-S31
5.1
100
536


2428
Fmoc-D-Phe(3Cl)
Fmoc-D-Val
Fmoc-S37
Fmoc-Dap(Boc)
Fmoc-(S)-S31
2.4
71
558


2429
Fmoc-D-Val
Fmoc-Dap(Boc)
Fmoc-S37
Fmoc-D-Phe(3Cl)
Fmoc-(S)-S31
7.6
96
558


2430
Fmoc-Dap(Boc)
Fmoc-D-Phe(3Cl)
Fmoc-S37
Fmoc-D-Val
Fmoc-(S)-S31
2.3
100
558


2431
Fmoc-D-Phe(3Cl)
Fmoc-Dap(Boc)
Fmoc-S37
Fmoc-Val
Fmoc-(S)-S31
1.3
100
558


2432
Fmoc-D-Val
Fmoc-D-Phe(3Cl)
Fmoc-S37
Fmoc-Dap(Boc)
Fmoc-(S)-S31
2.7
51
558


2433
Fmoc-Dap(Boc)
Fmoc-D-Val
Fmoc-S37
Fmoc-D-Phe(3Cl)
Fmoc-(S)-S31
3.5
100
558


2434
Fmoc-D-Trp(Boc)
Fmoc-Phe
Fmoc-S9
Fmoc-D-His(Trt)
Fmoc-(S)-S31
11.4
97
615


2435
Fmoc-D-Trp(Boc)
Fmoc-Leu
Fmoc-S9
Fmoc-D-Asp(OBut)
Fmoc-(S)-S31
7.1
100
559


2436
Fmoc-Trp(Boc)
Fmoc-Thr(But)
Fmoc-S9
Fmoc-Ser(But)
Fmoc-(S)-S31
6.9
100
519


2437
Fmoc-Trp(Boc)
Fmoc-D-Asn(Trt)
Fmoc-S9
Fmoc-His(Trt)
Fmoc-(S)-S31
9.4
100
582


2438
Fmoc-Tyr(But)
Fmoc-Leu
Fmoc-S9
Fmoc-Asp(OBut)
Fmoc-(S)-S31
8.1
100
536


2439
Fmoc-D-Tyr(But)
Fmoc-Val
Fmoc-S9
Fmoc-D-Pro
Fmoc-(S)-S31
11.4
100
504


2440
Fmoc-D-Tyr(But)
Fmoc-Val
Fmoc-S9
Fmoc-Gln(Trt)
Fmoc-(S)-S31
9.2
100
535


2441
Fmoc-D-Arg(Pbf)
Fmoc-D-Tyr(But)
Fmoc-S9
Fmoc-Ile
Fmoc-(S)-S31
3.0
100
577


2442
Fmoc-Arg(Pbf)
Fmoc-D-Trp(Boc)
Fmoc-S9
Fmoc-Val
Fmoc-(S)-S31
1.7
100
586


2443
Fmoc-Arg(Pbf)
Fmoc-Ser(But)
Fmoc-S9
Fmoc-Leu
Fmoc-(S)-S31
1.6
100
501


2444
Fmoc-Ser(But)
Fmoc-Ser(But)
Fmoc-S9
Fmoc-D-Phe
Fmoc-(S)-S31
12.7
100
466


2445
Fmoc-D-Asn(Trt)
Fmoc-Glu(OBut)
Fmoc-S9
Fmoc-Ser(But)
Fmoc-(S)-S31
15.0
90
475


2446
Fmoc-Glu(OBut)
Fmoc-D-Ser(But)
Fmoc-S9
Fmoc-Phe
Fmoc-(S)-S31
6.8
100
508


2447
Fmoc-Phe
Fmoc-Asn(Trt)
Fmoc-S9
Fmoc-Thr(But)
Fmoc-(S)-S31
8.6
100
507


2448
Fmoc-D-Trp(Boc)
Fmoc-Leu
Fmoc-S9
Fmoc-D-Tyr(But)
Fmoc-(S)-S31
4.0
100
607


2449
Fmoc-Trp(Boc)
Fmoc-Phe
Fmoc-S9
Fmoc-Sar
Fmoc-(S)-S31
4.2
100
549


2450
Fmoc-Lys(Boc)
Fmoc-D-Asp(OBut)
Fmoc-S9
Fmoc-Ser(But)
Fmoc-(S)-S31
20.8
na
na


2451
Fmoc-D-Lys(Boc)
Fmoc-Tyr(But)
Fmoc-S9
Fmoc-Sar
Fmoc-(S)-S31
12.3
100
507


2452
Fmoc-D-Ser(But)
Fmoc-Asn(Trt)
Fmoc-S9
Fmoc-Asp(OBut)
Fmoc-(S)-S31
12.9
na
na


2453
Fmoc-Leu
Fmoc-Trp(Boc)
Fmoc-S9
Fmoc-D-Ser(But)
Fmoc-(S)-S31
10.7
98
531


2454
Fmoc-D-Leu
Fmoc-Val
Fmoc-S9
Fmoc-Arg(Pbf)
Fmoc-(S)-S31
8.2
100
513


2455
Fmoc-D-Asp(OBut)
Fmoc-D-Lys(Boc)
Fmoc-S9
Fmoc-Ser(But)
Fmoc-(S)-S31
11.1
na
na


2456
Fmoc-Asp(OBut)
Fmoc-Arg(Pbf)
Fmoc-S9
Fmoc-D-Tyr(But)
Fmoc-(S)-S31
1.7
100
579


2457
Fmoc-Asn(Trt)
Fmoc-Ser(But)
Fmoc-S9
Fmoc-Leu
Fmoc-(S)-S31
13.8
100
459


2458
Fmoc-D-Asn(Trt)
Fmoc-D-Phe
Fmoc-S9
Fmoc-Asn(Trt)
Fmoc-(S)-S31
4.7
100
520


2459
Fmoc-Val
Fmoc-Leu
Fmoc-S9
Fmoc-D-Arg(Pbf)
Fmoc-(S)-S31
9.1
100
513


2460
Fmoc-Val
Fmoc-Tyr(But)
Fmoc-S9
Fmoc-Leu
Fmoc-(S)-S31
5.3
95
520


2461
Fmoc-D-Arg(Pbf)
Fmoc-D-Asp(OBut)
Fmoc-S9
Fmoc-Phe
Fmoc-(S)-S31
2.9
100
563


2462
Fmoc-Phe
Fmoc-Trp(Boc)
Fmoc-S9
Fmoc-Lys(Boc)
Fmoc-(S)-S31
9.5
100
606


2463
Fmoc-D-Phe
Fmoc-Asn(Trt)
Fmoc-S9
Fmoc-D-Lys(Boc)
Fmoc-(S)-S31
2.2
100
534


2464
Fmoc-D-Tyr(But)
Fmoc-Lys(Boc)
Fmoc-S9
Fmoc-Asp(OBut)
Fmoc-(S)-S31
7.8
100
551


2465
Fmoc-Tyr(But)
Fmoc-Val
Fmoc-S9
Fmoc-Sar
Fmoc-(S)-S31
3.5
100
478


2466
Fmoc-D-Trp(Boc)
Fmoc-D-Trp(Boc)
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-(S)-S31
3.7
45
712


2467
Fmoc-D-Trp(Boc)
Fmoc-Ile
Fmoc-S37
Fmoc-Arg(Pbf)
Fmoc-(S)-S31
8.6
100
632


2468
Fmoc-Trp(Boc)
Fmoc-Lys(Boc)
Fmoc-S37
Fmoc-Val
Fmoc-(S)-S31
4.9
83
590


2469
Fmoc-Tyr(But)
Fmoc-Asp(OBut)
Fmoc-S37
Fmoc-D-Phe
Fmoc-(S)-S31
5.3
96
602


2470
Fmoc-Tyr(But)
Fmoc-D-Trp(Boc)
Fmoc-S37
Fmoc-Leu
Fmoc-(S)-S31
5.2
91
639


2471
Fmoc-D-Tyr(But)
Fmoc-Phe
Fmoc-S37
Fmoc-Thr(But)
Fmoc-(S)-S31
4.4
100
588


2472
Fmoc-D-Tyr(But)
Fmoc-His(Trt)
Fmoc-S37
Fmoc-D-Asn(Trt)
Fmoc-(S)-S31
9.3
100
591


2473
Fmoc-D-Arg(Pbf)
Fmoc-D-Asp(OBut)
Fmoc-S37
Fmoc-Phe
Fmoc-(S)-S31
2.6
100
595


2474
Fmoc-Arg(Pbf)
Fmoc-D-Trp(Boc)
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-(S)-S31
4.2
100
705


2475
Fmoc-Arg(Pbf)
Fmoc-Gln(Trt)
Fmoc-S37
Fmoc-Asp(OBut)
Fmoc-(S)-S31
3.4
100
576


2476
Fmoc-D-Ser(But)
Fmoc-Glu(OBut)
Fmoc-S37
Fmoc-Sar
Fmoc-(S)-S31
6.3
94
464


2477
Fmoc-Asn(Trt)
Fmoc-Phe
Fmoc-S37
Fmoc-Sar
Fmoc-(S)-S31
5.2
80
509


2478
Fmoc-Glu(OBut)
Fmoc-Asn(Trt)
Fmoc-S37
Fmoc-D-Ser(But)
Fmoc-(S)-S31
5.2
100
507


2479
Fmoc-D-Phe
Fmoc-Thr(But)
Fmoc-S37
Fmoc-Asn(Trt)
Fmoc-(S)-S31
10.3
100
539


2480
Fmoc-D-Trp(Boc)
Fmoc-Asp(OBut)
Fmoc-S37
Fmoc-Leu
Fmoc-(S)-S31
6.0
100
591


2481
Fmoc-Trp(Boc)
Fmoc-D-Tyr(But)
Fmoc-S37
Fmoc-Lys(Boc)
Fmoc-(S)-S31
6.8
100
654


2482
Fmoc-Lys(Boc)
Fmoc-Asn(Trt)
Fmoc-S37
Fmoc-Asp(OBut)
Fmoc-(S)-S31
3.1
100
534


2483
Fmoc-D-Ser(But)
Fmoc-Trp(Boc)
Fmoc-S37
Fmoc-Leu
Fmoc-(S)-S31
10.8
100
563


2484
Fmoc-Ser(But)
Fmoc-Val
Fmoc-S37
Fmoc-D-Arg(Pbf)
Fmoc-(S)-S31
4.6
35
519


2485
Fmoc-Leu
Fmoc-Ser(But)
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-(S)-S31
5.5
67
563


2486
Fmoc-D-Leu
Fmoc-D-Tyr(But)
Fmoc-S37
Fmoc-Ser(But)
Fmoc-(S)-S31
8.3
100
540


2487
Fmoc-D-Asp(OBut)
Fmoc-Ser(But)
Fmoc-S37
Fmoc-D-Lys(Boc)
Fmoc-(S)-S31
4.7
100
507


2488
Fmoc-Asp(OBut)
Fmoc-Phe
Fmoc-S37
Fmoc-Arg(Pbf)
Fmoc-(S)-S31
1.9
na
na


2489
Fmoc-Asn(Trt)
Fmoc-Leu
Fmoc-S37
Fmoc-Ser(But)
Fmoc-(S)-S31
2.2
79
491


2490
Fmoc-D-Asn(Trt)
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-(S)-S31
11.6
96
640


2491
Fmoc-Val
Fmoc-D-Asp(OBut)
Fmoc-S37
Fmoc-Sar
Fmoc-(S)-S31
8.3
100
462


2492
Fmoc-D-Arg(Pbf)
Fmoc-Trp(Boc)
Fmoc-S37
Fmoc-D-Ser(But)
Fmoc-(S)-S31
1.4
100
606


2493
Fmoc-Arg(Pbf)
Fmoc-Asn(Trt)
Fmoc-S37
Fmoc-Sar
Fmoc-(S)-S31
2.0
100
518


2494
Fmoc-Phe
Fmoc-Lys(Boc)
Fmoc-S37
Fmoc-Sar
Fmoc-(S)-S31
3.1
100
523


2495
Fmoc-D-Phe
Fmoc-Val
Fmoc-S37
Fmoc-Leu
Fmoc-(S)-S31
5.9
100
536


2496
Fmoc-D-Tyr(But)
Fmoc-Ser(But)
Fmoc-S37
Fmoc-D-Trp(Boc)
Fmoc-(S)-S31
7.2
96
613


2497
Fmoc-Tyr(But)
Fmoc-D-Arg(Pbf)
Fmoc-S37
Fmoc-Val
Fmoc-(S)-S31
8.9
100
595


2498
Fmoc-D-Trp(Boc)
Fmoc-His(Trt)
Fmoc-S9
Fmoc-Leu
Fmoc-(R)-S31
8.7
100
581


2499
Fmoc-D-Trp(Boc)
Fmoc-Glu(OBut)
Fmoc-S9
Fmoc-D-Pro
Fmoc-(R)-S31
3.7
92
557


2500
Fmoc-Trp(Boc)
Fmoc-Val
Fmoc-S9
Fmoc-Gln(Trt)
Fmoc-(R)-S31
5.3
100
558


2501
Fmoc-Tyr(But)
Fmoc-Arg(Pbf)
Fmoc-S9
Fmoc-Trp(Boc)
Fmoc-(R)-S31
4.5
100
650


2502
Fmoc-Tyr(But)
Fmoc-D-Ser(But)
Fmoc-S9
Fmoc-Ile
Fmoc-(R)-S31
8.0
100
508


2503
Fmoc-D-Tyr(But)
Fmoc-Leu
Fmoc-S9
Fmoc-Lys(Boc)
Fmoc-(R)-S31
12.2
100
549


2504
Fmoc-D-Arg(Pbf)
Fmoc-Phe
Fmoc-S9
Fmoc-Trp(Boc)
Fmoc-(R)-S31
2.6
93
634


2505
Fmoc-D-Arg(Pbf)
Fmoc-Leu
Fmoc-S9
Fmoc-D-Asp(OBut)
Fmoc-(R)-S31
1.3
100
529


2506
Fmoc-Arg(Pbf)
Fmoc-Thr(But)
Fmoc-S9
Fmoc-D-Asn(Trt)
Fmoc-(R)-S31
7.8
100
516


2507
Fmoc-Arg(Pbf)
Fmoc-Asn(Trt)
Fmoc-S9
Fmoc-Pro
Fmoc-(R)-S31
3.2
100
512


2508
Fmoc-D-Ser(But)
Fmoc-D-Phe
Fmoc-S9
Fmoc-Asn(Trt)
Fmoc-(R)-S31
9.0
100
493


2509
Fmoc-Thr(But)
Fmoc-Ser(But)
Fmoc-S9
Fmoc-D-Asp(OBut)
Fmoc-(R)-S31
9.9
100
448


2510
Fmoc-Glu(OBut)
Fmoc-Thr(But)
Fmoc-S9
Fmoc-Sar
Fmoc-(R)-S31
7.0
100
446


2511
Fmoc-D-Phe
Fmoc-Glu(OBut)
Fmoc-S9
Fmoc-Ser(But)
Fmoc-(R)-S31
12.9
100
508


2512
Fmoc-D-Trp(Boc)
Fmoc-Asn(Trt)
Fmoc-S9
Fmoc-D-Lys(Boc)
Fmoc-(R)-S31
2.3
100
573


2513
Fmoc-Lys(Boc)
Fmoc-D-Trp(Boc)
Fmoc-S9
Fmoc-Leu
Fmoc-(R)-S31
9.3
100
572


2514
Fmoc-D-Lys(Boc)
Fmoc-Val
Fmoc-S9
Fmoc-Arg(Pbf)
Fmoc-(R)-S31
9.6
100
528


2515
Fmoc-D-Ser(But)
Fmoc-Lys(Boc)
Fmoc-S9
Fmoc-D-Asp(OBut)
Fmoc-(R)-S31
19.7
na
na


2516
Fmoc-Ser(But)
Fmoc-D-Arg(Pbf)
Fmoc-S9
Fmoc-Val
Fmoc-(R)-S31
14.3
100
487


2517
Fmoc-Leu
Fmoc-Ser(But)
Fmoc-S9
Fmoc-Tyr(But)
Fmoc-(R)-S31
12.5
100
508


2518
Fmoc-D-Leu
Fmoc-Trp(Boc)
Fmoc-S9
Fmoc-Tyr(But)
Fmoc-(R)-S31
12.7
100
607


2519
Fmoc-D-Asp(OBut)
Fmoc-Leu
Fmoc-S9
Fmoc-D-Trp(Boc)
Fmoc-(R)-S31
3.5
100
559


2520
Fmoc-Asp(OBut)
Fmoc-D-Tyr(But)
Fmoc-S9
Fmoc-Leu
Fmoc-(R)-S31
3.4
100
536


2521
Fmoc-Asn(Trt)
Fmoc-Asp(OBut)
Fmoc-S9
Fmoc-Lys(Boc)
Fmoc-(R)-S31
16.0
100
502


2522
Fmoc-Val
Fmoc-Trp(Boc)
Fmoc-S9
Fmoc-Ser(But)
Fmoc-(R)-S31
10.3
100
517


2523
Fmoc-Val
Fmoc-Asn(Trt)
Fmoc-S9
Fmoc-D-Phe
Fmoc-(R)-S31
5.8
100
505


2524
Fmoc-D-Arg(Pbf)
Fmoc-Lys(Boc)
Fmoc-S9
Fmoc-Val
Fmoc-(R)-S31
5.1
100
528


2525
Fmoc-Arg(Pbf)
Fmoc-Val
Fmoc-S9
Fmoc-Lys(Boc)
Fmoc-(R)-S31
2.1
na
na


2526
Fmoc-Phe
Fmoc-D-Ser(But)
Fmoc-S9
Fmoc-Trp(Boc)
Fmoc-(R)-S31
8.2
100
565


2527
Fmoc-D-Phe
Fmoc-Arg(Pbf)
Fmoc-S9
Fmoc-D-Asp(OBut)
Fmoc-(R)-S31
6.1
100
563


2528
Fmoc-D-Tyr(But)
Fmoc-Leu
Fmoc-S9
Fmoc-Ser(But)
Fmoc-(R)-S31
9.8
100
508


2529
Fmoc-Tyr(But)
Fmoc-Phe
Fmoc-S9
Fmoc-Asn(Trt)
Fmoc-(R)-S31
7.8
100
569


2530
Fmoc-D-Trp(Boc)
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-Asp(OBut)
Fmoc-(R)-S31
7.4
96
641


2531
Fmoc-Trp(Boc)
Fmoc-Arg(Pbf)
Fmoc-S37
Fmoc-Thr(But)
Fmoc-(R)-S31
6.3
100
620


2532
Fmoc-Trp(Boc)
Fmoc-Ser(But)
Fmoc-S37
Fmoc-Phe
Fmoc-(R)-S31
4.2
100
597


2533
Fmoc-Tyr(But)
Fmoc-Phe
Fmoc-S37
Fmoc-His(Trt)
Fmoc-(R)-S31
4.2
69
624


2534
Fmoc-Tyr(But)
Fmoc-Ile
Fmoc-S37
Fmoc-D-Asp(OBut)
Fmoc-(R)-S31
4.3
100
568


2535
Fmoc-D-Tyr(But)
Fmoc-His(Trt)
Fmoc-S37
Fmoc-Val
Fmoc-(R)-S31
9.2
100
576


2536
Fmoc-D-Arg(Pbf)
Fmoc-Trp(Boc)
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-(R)-S31
1.5
100
682


2537
Fmoc-D-Arg(Pbf)
Fmoc-Ile
Fmoc-S37
Fmoc-Thr(But)
Fmoc-(R)-S31
3.5
100
547


2538
Fmoc-Arg(Pbf)
Fmoc-Lys(Boc)
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-(R)-S31
3.9
100
624


2539
Fmoc-Ser(But)
Fmoc-Asn(Trt)
Fmoc-S37
Fmoc-Thr(But)
Fmoc-(R)-S31
6.4
90
479


2540
Fmoc-D-Asn(Trt)
Fmoc-Ser(But)
Fmoc-S37
Fmoc-D-Asp(OBut)
Fmoc-(R)-S31
2.9
100
493


2541
Fmoc-Thr(But)
Fmoc-Glu(OBut)
Fmoc-S37
Fmoc-Ser(But)
Fmoc-(R)-S31
0.8
na
494


2542
Fmoc-Glu(OBut)
Fmoc-Phe
Fmoc-S37
Fmoc-Asn(Trt)
Fmoc-(R)-S31
5.3
93
567


2543
Fmoc-D-Trp(Boc)
Fmoc-Lys(Boc)
Fmoc-S37
Fmoc-Ser(But)
Fmoc-(R)-S31
6.1
100
578


2544
Fmoc-Trp(Boc)
Fmoc-Val
Fmoc-S37
Fmoc-Arg(Pbf)
Fmoc-(R)-S31
2.9
84
618


2545
Fmoc-Lys(Boc)
Fmoc-Ser(But)
Fmoc-S37
Fmoc-Asp(OBut)
Fmoc-(R)-S31
8.7
100
507


2546
Fmoc-D-Lys(Boc)
Fmoc-Arg(Pbf)
Fmoc-S37
Fmoc-Val
Fmoc-(R)-S31
12.3
100
560


2547
Fmoc-D-Ser(But)
Fmoc-Leu
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-(R)-S31
6.0
100
563


2548
Fmoc-Ser(But)
Fmoc-Phe
Fmoc-S37
Fmoc-Asn(Trt)
Fmoc-(R)-S31
2.3
79
525


2549
Fmoc-Leu
Fmoc-Asp(OBut)
Fmoc-S37
Fmoc-Lys(Boc)
Fmoc-(R)-S31
8.4
95
533


2550
Fmoc-D-Leu
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-(R)-S31
11.2
100
639


2551
Fmoc-D-Asp(OBut)
Fmoc-Asn(Trt)
Fmoc-S37
Fmoc-Lys(Boc)
Fmoc-(R)-S31
6.0
100
534


2552
Fmoc-Asn(Trt)
Fmoc-Trp(Boc)
Fmoc-S37
Fmoc-Val
Fmoc-(R)-S31
5.7
88
576


2553
Fmoc-D-Asn(Trt)
Fmoc-Val
Fmoc-S37
Fmoc-Arg(Pbf)
Fmoc-(R)-S31
6.8
100
546


2554
Fmoc-Val
Fmoc-Lys(Boc)
Fmoc-S37
Fmoc-Asn(Trt)
Fmoc-(R)-S31
12.2
100
518


2555
Fmoc-Val
Fmoc-Arg(Pbf)
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-(R)-S31
8.5
100
595


2556
Fmoc-D-Arg(Pbf)
Fmoc-Ser(But)
Fmoc-S37
Fmoc-Leu
Fmoc-(R)-S31
4.4
100
533


2557
Fmoc-Arg(Pbf)
Fmoc-Phe
Fmoc-S37
Fmoc-Asp(OBut)
Fmoc-(R)-S31
3.5
100
595


2558
Fmoc-Phe
Fmoc-Leu
Fmoc-S37
Fmoc-Ser(But)
Fmoc-(R)-S31
3.6
100
524


2559
Fmoc-D-Phe
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-Asn(Trt)
Fmoc-(R)-S31
9.2
98
601


2560
Fmoc-D-Tyr(But)
Fmoc-Asp(OBut)
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-(R)-S31
5.8
97
641


2561
Fmoc-D-Trp(Boc)
Fmoc-Asp(OBut)
Fmoc-S37
Fmoc-Ile
Fmoc-(S)-S31
7.3
100
605


2562
Fmoc-Trp(Boc)
Fmoc-D-Trp(Boc)
Fmoc-S37
Fmoc-Lys(Boc)
Fmoc-(S)-S31
3.1
100
691


2563
Fmoc-Trp(Boc)
Fmoc-Gln(Trt)
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-(S)-S31
3.9
100
668


2564
Fmoc-Tyr(But)
Fmoc-Trp(Boc)
Fmoc-S37
Fmoc-Sar
Fmoc-(S)-S31
2.4
89
611


2565
Fmoc-D-Tyr(But)
Fmoc-Thr(But)
Fmoc-S37
Fmoc-Arg(Pbf)
Fmoc-(S)-S31
10.7
100
611


2566
Fmoc-D-Tyr(But)
Fmoc-Trp(Boc)
Fmoc-S37
Fmoc-Ser(But)
Fmoc-(S)-S31
6.0
97
627


2567
Fmoc-D-Arg(Pbf)
Fmoc-His(Trt)
Fmoc-S37
Fmoc-Leu
Fmoc-(S)-S31
2.0
100
597


2568
Fmoc-D-Arg(Pbf)
Fmoc-Glu(OBut)
Fmoc-S37
Fmoc-Lys(Boc)
Fmoc-(S)-S31
na
na
na


2569
Fmoc-Arg(Pbf)
Fmoc-Val
Fmoc-S37
Fmoc-Ser(But)
Fmoc-(S)-S31
1.5
100
533


2570
Fmoc-Ser(But)
Fmoc-Thr(But)
Fmoc-S37
Fmoc-D-Asp(OBut)
Fmoc-(S)-S31
2.8
100
494


2571
Fmoc-D-Asn(Trt)
Fmoc-Thr(But)
Fmoc-S37
Fmoc-Phe
Fmoc-(S)-S31
9.3
100
553


2572
Fmoc-Thr(But)
Fmoc-Phe
Fmoc-S37
Fmoc-Sar
Fmoc-(S)-S31
2.9
100
510


2573
Fmoc-Phe
Fmoc-Ser(But)
Fmoc-S37
Fmoc-D-Asp(OBut)
Fmoc-(S)-S31
4.0
100
540


2574
Fmoc-D-Trp(Boc)
Fmoc-Ser(But)
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-(S)-S31
3.2
100
627


2575
Fmoc-Trp(Boc)
Fmoc-Arg(Pbf)
Fmoc-S37
Fmoc-Phe
Fmoc-(S)-S31
1.3
100
680


2576
Fmoc-Lys(Boc)
Fmoc-Leu
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-(S)-S31
3.4
100
618


2577
Fmoc-D-Lys(Boc)
Fmoc-Phe
Fmoc-S37
Fmoc-Ser(But)
Fmoc-(S)-S31
4.9
100
553


2578
Fmoc-D-Ser(But)
Fmoc-Asp(OBut)
Fmoc-S37
Fmoc-Lys(Boc)
Fmoc-(S)-S31
5.4
100
521


2579
Fmoc-Ser(But)
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-(S)-S31
7.3
100
627


2580
Fmoc-Leu
Fmoc-Asn(Trt)
Fmoc-S37
Fmoc-Ser(But)
Fmoc-(S)-S31
7.2
100
491


2581
Fmoc-D-Asp(OBut)
Fmoc-Trp(Boc)
Fmoc-S37
Fmoc-Sar
Fmoc-(S)-S31
5.2
100
563


2582
Fmoc-Asp(OBut)
Fmoc-Val
Fmoc-S37
Fmoc-Arg(Pbf)
Fmoc-(S)-S31
3.5
100
561


2583
Fmoc-Asn(Trt)
Fmoc-Lys(Boc)
Fmoc-S37
Fmoc-Asp(OBut)
Fmoc-(S)-S31
9.7
100
548


2584
Fmoc-D-Asn(Trt)
Fmoc-Arg(Pbf)
Fmoc-S37
Fmoc-Phe
Fmoc-(S)-S31
1.5
100
608


2585
Fmoc-Val
Fmoc-Ser(But)
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-(S)-S31
2.7
100
563


2586
Fmoc-Val
Fmoc-Phe
Fmoc-S37
Fmoc-Lys(Boc)
Fmoc-(S)-S31
5.5
90
565


2587
Fmoc-D-Arg(Pbf)
Fmoc-Leu
Fmoc-S37
Fmoc-Asn(Trt)
Fmoc-(S)-S31
1.9
100
574


2588
Fmoc-Arg(Pbf)
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-(S)-S31
2.3
100
696


2589
Fmoc-Phe
Fmoc-Asp(OBut)
Fmoc-S37
Fmoc-Arg(Pbf)
Fmoc-(S)-S31
3.3
90
609


2590
Fmoc-D-Tyr(But)
Fmoc-Trp(Boc)
Fmoc-S37
Fmoc-Leu
Fmoc-(S)-S31
6.5
100
653


2591
Fmoc-Tyr(But)
Fmoc-Asn(Trt)
Fmoc-S37
Fmoc-Lys(Boc)
Fmoc-(S)-S31
5.5
100
596


2592
Fmoc-Tyr(Allyl)
Fmoc-Ala
Fmoc-S9
Fmoc-Leu
Fmoc-S29
na
na
na


2593
Fmoc-Phe
Fmoc-Ala
Fmoc-S9
Fmoc-Lys(Alloc)
Fmoc-S29
na
na
na





na = not available



1All syntheses were carried out on the solid phase starting from 70-80 mg of 2-chlorotrityl chloride resin (typical loading 1.0 mmol/g).




2Purity is determined by analysis with LC-UV at 220 nm.














TABLE 3B









embedded image



















Cmpd
R1
R2
R3
R8
R4
R9
R5





2331


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2332


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2333


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2334


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2335


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2336


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2337


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2338


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2339


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2340


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2341


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2342


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2343


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2344


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2345


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2346


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2347


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2348


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2349


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2350


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2351


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2352


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2353


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2354


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2355


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2356


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2357


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2358


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2359


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2360


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2361


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2362


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2363


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2364


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2365


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2366


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2367


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2368


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2369


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2370


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2371


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2372


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2373


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2374


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2375


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2376


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2377


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2378


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2379


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2380


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2381


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2382


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2383


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2384


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2385


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2386


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2387


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2388


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2389


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2390


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2391


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2392


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2393


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2394


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2395


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2396


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2397


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2398


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2399


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2400


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2401


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2402


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2403


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2404


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2405


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2406


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2407


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2408


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2409


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2410


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2411


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2412


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2413


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2414


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2415


embedded image


CH3


embedded image


H


embedded image


H


embedded image







2416


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2417


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2418


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2419


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2420


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2421


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2422


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2423


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2424


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2425


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2426


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2427


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2428


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2429


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2430


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2431


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2432


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2433


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2434


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2435


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2436


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2437


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2438


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2439


embedded image




embedded image




embedded image


H


embedded image





embedded image







2440


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2441


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2442


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2443


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2444


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2445


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2446


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2447


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2448


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2449


embedded image




embedded image




embedded image


H
H
Me


embedded image







2450


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2451


embedded image




embedded image




embedded image


H
H
Me


embedded image







2452


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2453


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2454


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2455


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2456


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2457


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2458


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2459


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2460


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2461


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2462


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2463


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2464


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2465


embedded image




embedded image




embedded image


H
H
Me


embedded image







2466


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2467


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2468


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2469


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2470


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2471


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2472


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2473


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2474


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2475


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2476


embedded image




embedded image




embedded image


H
H
Me


embedded image







2477


embedded image




embedded image




embedded image


H
H
Me


embedded image







2478


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2479


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2480


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2481


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2482


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2483


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2484


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2485


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2486


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2487


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2488


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2489


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2490


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2491


embedded image




embedded image




embedded image


H
H
Me


embedded image







2492


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2493


embedded image




embedded image




embedded image


H
H
Me


embedded image







2494


embedded image




embedded image




embedded image


H
H
Me


embedded image







2495


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2496


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2497


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2498


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2499


embedded image




embedded image




embedded image


H


embedded image





embedded image







2500


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2501


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2502


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2503


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2504


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2505


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2506


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2507


embedded image




embedded image




embedded image


H


embedded image





embedded image







2508


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2509


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2510


embedded image




embedded image




embedded image


H
H
Me


embedded image







2511


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2512


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2513


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2514


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2515


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2516


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2517


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2518


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2519


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2520


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2521


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2522


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2523


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2524


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2525


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2526


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2527


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2528


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2529


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2530


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2531


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2532


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2533


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2534


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2535


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2536


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2537


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2538


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2539


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2540


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2541


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2542


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2543


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2544


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2545


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2546


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2547


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2548


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2549


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2550


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2551


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2552


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2553


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2554


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2555


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2556


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2557


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2558


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2559


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2560


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2561


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2562


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2563


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2564


embedded image




embedded image




embedded image


Me
H
Me


embedded image







2565


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2566


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2567


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2568


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2569


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2570


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2571


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2572


embedded image




embedded image




embedded image


Me
H
Me


embedded image







2573


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2574


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2575


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2576


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2577


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2578


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2579


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2580


embedded image




embedded image




embedded image


H


embedded image


H


embedded image







2581


embedded image




embedded image




embedded image


Me
H
Me


embedded image







2582


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2583


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2584


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2585


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2586


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2587


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2588


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2589


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2590


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2591


embedded image




embedded image




embedded image


Me


embedded image


H


embedded image







2592


embedded image


CH3


embedded image


H


embedded image


H


embedded image







2593


embedded image


CH3


embedded image


H


embedded image


H


embedded image











Also, for those compounds in which Fmoc-Pro or Fmoc-D-Pro is BB4, R4 and (N)R9 form a five-membered ring, including the nitrogen atom, as shown for R4-R9 in Table 3B.


Example 5
Synthesis of Representative Libraries of Macrocyclic Compounds of Formula (I) Containing Three or Four Building Blocks

The synthetic scheme depicted in Scheme 5 was followed to prepare the library of macrocyclic compounds 2595-2624 on solid support, while the synthetic scheme in Scheme 6 was used for the solid phase preparation of the library of macrocyclic compounds 2625-2642. For the first library of compounds (2595-2624), the first building block amino acid (BB1) was loaded onto the resin (Method 1D). Attachment of the second building block (BB2), protected as its allyl ester, was performed with reductive amination (Method 11 or 1J) after deprotection of the Fmoc (Method 1F) of BB1 or via the Fukuyama-Mitsunobu alkylation procedure (Method 1P, not depicted in Scheme 6). The allyl ester was removed (Method 1BB), then the third and final building block (BB3) connected using amide bond formation (Method 1G). Selective cleavage of the Alloc protection (Method 1AA) of BB3 and removal from the resin (Method 1Q) was followed by macrocyclization (Method 1R). Next, the side chain protecting groups were removed (Method 1S) and the resulting crude product purified by preparative HPLC (Method 2B). The building blocks utilized for each macrocycle and confirmation of identity by mass spectrometry (MS) are provided in Table 4A. The structures of the individual compounds prepared via this route are presented in Table 4B.


The preparation of the second library of compounds (2625-2642) proceeded similarly. Initially, the first building block amino acid (BB1) was loaded onto the resin (Method 1D), followed by amide bond formation to attach the second building block (BB2). Upon removal of the Fmoc protection (Method 1F) of BB2, the third building block (BB3), as its allyl ester, was connected via reductive amination (Method 11 or 1J) or Fukuyama-Mitsunobu alkylation chemistry (via the procedure in Method 1P, not depicted in Scheme 6). Cleavage of the allyl ester (Method 1 BB) was followed by amide bond formation (Method 1G) to add the final building block (BB4). Subsequent selective removal of the Alloc protecting group (Method 1AA) of BB4, resin cleavage (Method 1Q) and macrocyclization (Method 1R) were conducted sequentially. Lastly, the side chain protecting groups were removed (Method 1S) and the resulting crude product purified by preparative HPLC (Method 2B). Table 4A also summarizes the building blocks utilized and confirmation of identity of the final macrocycle product for this set of compounds as well. The individual compound structures prepared via this route are presented in Table 4C.














TABLE 4A1










MS


Cpd
BB1
BB2
BB3
BB4
(M + H)







2595
Fmoc-Ala
(S)-BE4(Allyl)
Alloc-S57

368


2596
Fmoc-Val
(S)-BE4(Allyl)
Alloc-S57

396


2597
Fmoc-Nva
(S)-BE4(Allyl)
Alloc-S57

396


2598
Fmoc-Leu
(S)-BE4(Allyl)
Alloc-S57

410


2599
Fmoc-Ser(OMe)
(S)-BE4(Allyl)
Alloc-S57

398


2600
Fmoc-Thr(But)
(S)-BE4(Allyl)
Alloc-S57

398


2601
Fmoc-Orn(Boc)
(S)-BE4(Allyl)
Alloc-S57

411


2602
Fmoc-Phe
(S)-BE3(Allyl)
Alloc-S57

410


2603
Fmoc-Tyr(But)
(S)-BE3(Allyl)
Alloc-S57

426


2604
Fmoc-Trp(Boc)
(S)-BE3(Allyl)
Alloc-S57

449


2605
Fmoc-Nva
(S)-BE4(Allyl)
Alloc-S58

410


2606
Fmoc-D-Ala
(S)-BE4(Allyl)
Alloc-S58

382


2607
Fmoc-D-Val
(S)-BE4(Allyl)
Alloc-S58

410


2608
Fmoc-D-Nle
(S)-BE4(Allyl)
Alloc-S58

424


2609
Fmoc-D-Thr(But)
(S)-BE4(Allyl)
Alloc-S58

412


2610
Fmoc-D-Orn(Boc)
(S)-BE4(Allyl)
Alloc-S58

425


2611
Fmoc-D-Phe
(S)-BE3(Allyl)
Alloc-S58

424


2612
Fmoc-D-Tyr(But)
(S)-BE3(Allyl)
Alloc-S58

440


2613
Fmoc-D-Trp(Boc)
(S)-BE3(Allyl)
Alloc-S58

463


2614
Fmoc-Nva
(S)-BE4(Allyl)
Alloc-S50

502


2615
Fmoc-Phe
(S)-BE3(Allyl)
Alloc-S50

516


2616
Fmoc-D-Nva
(S)-BE4(Allyl)
Alloc-S50

502


2617
Fmoc-D-Phe
(S)-BE3(Allyl)
Alloc-S50

516


2618
Fmoc-Orn(Boc)
(S)-BE3(Allyl)
Alloc-S50

483


2619
Fmoc-Ala
(S)-BE3(Allyl)
Alloc-S50

440


2620
Fmoc-Ser(OMe)
(S)-BE3(Allyl)
Alloc-S50

470


2621
Fmoc-Phe
(S)-BE3(Allyl)
Alloc-S50

516


2622
Fmoc-Nva
(S)-BE4(Allyl)
Alloc-S50

502


2623
Fmoc-D-Nva
(S)-BE4(Allyl)
Alloc-S50

502


2624
Fmoc-Ala
(S)-BE4(Allyl)
Alloc-S50

474


2625
Fmoc-Orn(Boc)
Fmoc-Phe
(S)-BE4(Allyl)
Alloc-S57
558


2626
Fmoc-Orn(Boc)
Fmoc-D-Ala
(S)-BE4(Allyl)
Alloc-S57
482


2627
Fmoc-D-Orn(Boc)
Fmoc-Ala
(S)-BE4(Allyl)
Alloc-S57
482


2628
Fmoc-Nva
Fmoc-D-Val
(S)-BE4(Allyl)
Alloc-S57
495


2629
Fmoc-D-Nva
Fmoc-Val
(S)-BE4(Allyl)
Alloc-S57
495


2630
Fmoc-Nva
Fmoc-D-Val
(S)-BE3(Allyl)
Alloc-S57
461


2631
Fmoc-D-Nva
Fmoc-Val
(S)-BE3(Allyl)
Alloc-S58
475


2632
Fmoc-Orn(Boc)
Fmoc-Phe
(S)-BE4(Allyl)
Alloc-S58
572


2633
Fmoc-Orn(Boc)
Fmoc-D-Phe
(S)-BE4(Allyl)
Alloc-S58
572


2634
Fmoc-D-Orn(Boc)
Fmoc-Phe
(S)-BE4(Allyl)
Alloc-S58
572


2635
Fmoc-Nva
Fmoc-D-Val
(S)-BE4(Allyl)
Alloc-S58
509


2636
Fmoc-D-Nva
Fmoc-Val
(S)-BE4(Allyl)
Alloc-S58
509


2637
Fmoc-Nva
Fmoc-D-Val
(S)-BE3(Allyl)
Alloc-S58
475


2638
Fmoc-D-Nva
Fmoc-Val
(S)-BE3(Allyl)
Alloc-S57
461


2639
Fmoc-Nva
Fmoc-D-Val
(S)-BE4(Allyl)
Alloc-(R)-S52
585


2640
Fmoc-D-Nva
Fmoc-Val
(S)-BE4(Allyl)
Alloc-(R)-S52
585


2641
Fmoc-Ala
Fmoc-Ser(But)
(S)-BE3(Allyl)
Alloc-(R)-S52
511


2642
Fmoc-Thr(But)
Fmoc-Ala
(S)-BE3(Allyl)
Alloc-(R)-S52
525






1All syntheses were carried out on the solid phase starting from 70-80 mg of 2-chlorotrityl chloride resin (typical loading 1.0 mmol/g).














TABLE 4B









embedded image
















Cmpd
R1
R2
R3
R4





2595
(S)-CH3


embedded image




embedded image




embedded image







2596


embedded image




embedded image




embedded image




embedded image







2597


embedded image




embedded image




embedded image




embedded image







2598


embedded image




embedded image




embedded image




embedded image







2599


embedded image




embedded image




embedded image




embedded image







2600


embedded image




embedded image




embedded image




embedded image







2601


embedded image




embedded image




embedded image




embedded image







2602


embedded image




embedded image




embedded image




embedded image







2603


embedded image




embedded image




embedded image




embedded image







2604


embedded image




embedded image




embedded image




embedded image







2605


embedded image




embedded image




embedded image




embedded image







2606
(R)-CH3


embedded image




embedded image




embedded image







2607


embedded image




embedded image




embedded image




embedded image







2608


embedded image




embedded image




embedded image




embedded image







2609


embedded image




embedded image




embedded image




embedded image







2610


embedded image




embedded image




embedded image




embedded image







2611


embedded image




embedded image




embedded image




embedded image







2612


embedded image




embedded image




embedded image




embedded image







2613


embedded image




embedded image




embedded image




embedded image







2614


embedded image




embedded image




embedded image




embedded image







2615


embedded image




embedded image




embedded image




embedded image







2616


embedded image




embedded image




embedded image




embedded image







2617


embedded image




embedded image




embedded image




embedded image







2618


embedded image




embedded image




embedded image




embedded image







2619
(S)-CH3


embedded image




embedded image




embedded image







2620


embedded image




embedded image




embedded image




embedded image







2621


embedded image




embedded image




embedded image




embedded image







2622


embedded image




embedded image




embedded image




embedded image







2623


embedded image




embedded image




embedded image




embedded image







2624
(S)-CH3


embedded image




embedded image




embedded image












To differentiate between the two amide nitrogen atoms to which R4 is bonded, one has been designated with an asterisk (*).









TABLE 4C









embedded image

















Cmpd
R1
R2
R3
R4
R5





2625


embedded image




embedded image




embedded image




embedded image




embedded image







2626


embedded image


(R)-CH3


embedded image




embedded image




embedded image







2627


embedded image


(S)-CH3


embedded image




embedded image




embedded image







2628


embedded image




embedded image




embedded image




embedded image




embedded image







2629


embedded image




embedded image




embedded image




embedded image




embedded image







2630


embedded image




embedded image




embedded image




embedded image




embedded image







2631


embedded image




embedded image




embedded image




embedded image




embedded image







2632


embedded image




embedded image




embedded image




embedded image




embedded image







2633


embedded image




embedded image




embedded image




embedded image




embedded image







2634


embedded image




embedded image




embedded image




embedded image




embedded image







2635


embedded image




embedded image




embedded image




embedded image




embedded image







2636


embedded image




embedded image




embedded image




embedded image




embedded image







2637


embedded image




embedded image




embedded image




embedded image




embedded image







2638


embedded image




embedded image




embedded image




embedded image




embedded image







2639


embedded image




embedded image




embedded image




embedded image




embedded image







2640


embedded image




embedded image




embedded image




embedded image




embedded image







2641
(S)-CH3


embedded image




embedded image




embedded image




embedded image







2642


embedded image


(S)-CH3


embedded image




embedded image




embedded image












To differentiate between the two amide nitrogen atoms to which R5 is bonded, one has been designated with an asterisk (*) in the generic structure.


Example 6
Synthesis of Another Representative Library of Macrocyclic Compounds of Formula (I) Containing Four Building Blocks

The synthetic scheme presented in Scheme 2 was followed to prepare the library of macrocyclic compounds 2655-3166 on solid phase. The first building block amino acid (BB1) was loaded onto the resin (Method 1D), then, after removal of the Fmoc protection (Method 1F), the next building block (BB2) attached, using reductive amination (Methods 1I or 1J), Fukuyama-Mitsunobu chemistry (via the procedure in Method 1P, not depicted in Scheme 2) or amide coupling chemistry (Method 1G). Upon removal of the Fmoc protecting group, the third building block (BB3) was connected via amide bond formation (Method 1G). Next, the final building block (BB4) was attached, again after removal of the Fmoc protection (Method 1F), using amide coupling (Method 1G), reductive amination (Methods 1I or 1J), or Fukuyama-Mitsunobu alkylation (via Method 1P, not shown in Scheme 2). This was followed by selective N-terminal deprotection (Method 1F), cleavage from the support (Method 1Q) and macrocyclization (Method 1R). Then, the side chain protecting groups were removed (Method 1S) and the resulting crude product purified by preparative HPLC (Method 2B). Along with the specific building blocks used for each macrocycle, the amount obtained, the HPLC purity and confirmation of identity by mass spectrometry (MS) are collated in Table 5A. The individual structures of the compounds prepared in this manner are presented in Table 5B.


For compounds 2655-2707 in Table 5A, the procedure described in Method 1P was employed to install the methyl group after addition of BB4, but prior to ring closure.
















TABLE 5A










Wt1

MS


Cpd
BB1
BB2
BB3
BB4
(mg)
Purity2
(M + H)






















2655
Fmoc-D-Phe
Fmoc-4-Pip
Fmoc-Ile
Fmoc-S9
3.2
100
473


2656
Fmoc-Ile
Fmoc-4-Pip
Fmoc-Phe
Fmoc-S9
1.7
100
473


2657
Fmoc-D-Ile
Fmoc-4-Pip
Fmoc-D-Tyr(But)
Fmoc-S9
2.6
100
489


2658
Fmoc-Tyr(But)
Fmoc-4-Pip
Fmoc-Ile
Fmoc-S9
1.2
100
489


2659
Fmoc-Phe(3Cl)
Fmoc-4-Pip
Fmoc-D-Nva
Fmoc-S9
2.2
100
494


2660
Fmoc-D-Val
Fmoc-4-Pip
Fmoc-Nva
Fmoc-S9
1.7
100
411


2661
Fmoc-Nva
Fmoc-4-Pip
Fmoc-Phe(3Cl)
Fmoc-S9
2.1
100
494


2662
Fmoc-D-Nva
Fmoc-4-Pip
Fmoc-Val
Fmoc-S9
2.5
100
411


2663
Fmoc-D-Phe(3Cl)
Fmoc-4-Pip
Fmoc-Dap(Boc)
Fmoc-S9
3.0
100
481


2664
Fmoc-Dap(Boc)
Fmoc-4-Pip
Fmoc-Phe(3Cl)
Fmoc-S9
3.7
100
481


2665
Fmoc-Phe
Fmoc-3-Azi
Fmoc-Ile
Fmoc-S9
5.3
100
445


2666
Fmoc-Phe
Fmoc-3-Azi
Fmoc-Tyr(But)
Fmoc-S9
4.4
100
495


2667
Fmoc-D-Ile
Fmoc-3-Azi
Fmoc-D-Tyr(But)
Fmoc-S9
2.1
100
461


2668
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-Phe
Fmoc-S9
5.8
100
495


2669
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-D-Ile
Fmoc-S9
7.2
100
461


2670
Fmoc-D-Phe
Fmoc-3-Azi
Fmoc-D-Nva
Fmoc-S9
4.4
100
431


2671
Fmoc-D-Val
Fmoc-3-Azi
Fmoc-Nva
Fmoc-S9
6.2
100
383


2672
Fmoc-Nva
Fmoc-3-Azi
Fmoc-Phe(3Cl)
Fmoc-S9
3.6
100
465


2673
Fmoc-D-Phe(3Cl)
Fmoc-3-Azi
Fmoc-Dap(Boc)
Fmoc-S9
6.1
100
452


2674
Fmoc-D-Val
Fmoc-3-Azi
Fmoc-D-Dap(Boc)
Fmoc-S9
1.3
100
370


2675
Fmoc-Dap(Boc)
Fmoc-3-Azi
Fmoc-Val
Fmoc-S9
3.6
100
370


2676
Fmoc-Phe
Fmoc-3-Azi
Fmoc-D-Ile
Fmoc-S37
na
na
na


2677
Fmoc-Ile
Fmoc-3-Azi
Fmoc-Phe
Fmoc-S37
0.6
100
477


2678
Fmoc-Ile
Fmoc-3-Azi
Fmoc-Tyr(But)
Fmoc-S37
1.0
100
493


2679
Fmoc-D-Tyr(But)
Fmoc-3-Azi
Fmoc-Phe
Fmoc-S37
2.2
100
527


2680
Fmoc-D-Val
Fmoc-3-Azi
Fmoc-Nva
Fmoc-S37
1.7
100
415


2681
Fmoc-D-Nva
Fmoc-3-Azi
Fmoc-Val
Fmoc-S37
2.8
100
415


2682
Fmoc-D-Phe(3Cl)
Fmoc-3-Azi
Fmoc-D-Dap(Boc)
Fmoc-S37
1.1
100
484


2683
Fmoc-Val
Fmoc-3-Azi
Fmoc-Dap(Boc)
Fmoc-S37
0.6
100
402


2684
Fmoc-D-Dap(Boc)
Fmoc-3-Azi
Fmoc-Phe(3Cl)
Fmoc-S37
0.5
100
484


2685
Fmoc-Dap(Boc)
Fmoc-3-Azi
Fmoc-D-Val
Fmoc-S37
0.7
100
402


2686
Fmoc-Phe
Fmoc-4-cis-Ach
Fmoc-D-Ile
Fmoc-S9
0.9
na
487


2687
Fmoc-D-Ile
Fmoc-4-cis-Ach
Fmoc-D-Phe
Fmoc-S9
0.7
40
487


2688
Fmoc-D-Ile
Fmoc-4-cis-Ach
Fmoc-Tyr(But)
Fmoc-S9
1.6
100
503


2689
Fmoc-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-Phe
Fmoc-S9
3.2
70
537


2690
Fmoc-Phe(3Cl)
Fmoc-4-cis-Ach
Fmoc-D-Val
Fmoc-S9
0.7
69
508


2691
Fmoc-D-Val
Fmoc-4-cis-Ach
Fmoc-Nva
Fmoc-S9
0.3
100
425


2692
Fmoc-Nva
Fmoc-4-cis-Ach
Fmoc-Phe(3Cl)
Fmoc-S9
0.3
100
508


2693
Fmoc-D-Nva
Fmoc-4-cis-Ach
Fmoc-Val
Fmoc-S9
2.7
100
425


2694
Fmoc-D-Phe(3Cl)
Fmoc-4-cis-Ach
Fmoc-D-Dap(Boc)
Fmoc-S9
2.7
100
495


2695
Fmoc-Val
Fmoc-4-cis-Ach
Fmoc-D-Dap(Boc)
Fmoc-S9
na
na
na


2696
Fmoc-Phe
Fmoc-S29
Fmoc-Ile
Fmoc-S9
na
na
na


2697
Fmoc-Ile
Fmoc-S29
Fmoc-Phe
Fmoc-S9
3.1
100
405


2698
Fmoc-Ile
Fmoc-S29
Fmoc-Tyr(But)
Fmoc-S9
8.8
100
421


2699
Fmoc-Tyr(But)
Fmoc-S29
Fmoc-Phe
Fmoc-S9
na
na
na


2700
Fmoc-Tyr(But)
Fmoc-S29
Fmoc-Ile
Fmoc-S9
na
na
na


2701
Fmoc-Phe(3Cl)
Fmoc-S29
Fmoc-D-Nva
Fmoc-S9
na
na
na


2702
Fmoc-Val
Fmoc-S29
Fmoc-D-Phe
Fmoc-S9
4.9
100
391


2703
Fmoc-Val
Fmoc-S29
Fmoc-Nva
Fmoc-S9
2.7
na
343


2704
Fmoc-D-Nva
Fmoc-S29
Fmoc-Phe(3Cl)
Fmoc-S9
na
na
na


2705
Fmoc-Phe(3Cl)
Fmoc-S29
Fmoc-Dap(Boc)
Fmoc-S9
na
na
na


2706
Fmoc-Val
Fmoc-S29
Fmoc-Dap(Boc)
Fmoc-S9
4.0
na
330


2707
Fmoc-Dap(Boc)
Fmoc-S29
Fmoc-Phe(3Cl)
Fmoc-S9
na
na
na


2708
Fmoc-D-Phe
Fmoc-S30
Fmoc-Tyr(But)
Fmoc-S9
2.5
100
455


2709
Fmoc-Ile
Fmoc-S30
Fmoc-Phe
Fmoc-S9
2.8
100
405


2710
Fmoc-Ile
Fmoc-S30
Fmoc-D-Tyr(But)
Fmoc-S9
2.6
100
421


2711
Fmoc-D-Tyr(But)
Fmoc-S30
Fmoc-D-Ile
Fmoc-S9
3.1
100
421


2712
Fmoc-Phe(3Cl)
Fmoc-S30
Fmoc-Val
Fmoc-S9
2.1
100
425


2713
Fmoc-D-Phe(3Cl)
Fmoc-S30
Fmoc-Nva
Fmoc-S9
2.0
87
425


2714
Fmoc-Val
Fmoc-S30
Fmoc-Phe
Fmoc-S9
3.1
97
391


2715
Fmoc-Val
Fmoc-S30
Fmoc-Nva
Fmoc-S9
2.5
100
343


2716
Fmoc-Phe(3Cl)
Fmoc-S30
Fmoc-D-Dap(Boc)
Fmoc-S9
2.1
98
412


2717
Fmoc-Val
Fmoc-S30
Fmoc-D-Dap(Boc)
Fmoc-S9
2.5
100
330


2718
Fmoc-Dap(Boc)
Fmoc-S30
Fmoc-D-Phe(3Cl)
Fmoc-S9
3.1
97
412


2719
Fmoc-Dap(Boc)
Fmoc-S30
Fmoc-Val
Fmoc-S9
3.8
100
330


2720
Fmoc-Phe
Fmoc-3-Azi
Fmoc-D-Ile
Fmoc-S29
1.6
100
387


2721
Fmoc-Phe
Fmoc-3-Azi
Fmoc-Tyr(But)
Fmoc-S33
1.5
96
451


2722
Fmoc-D-Ile
Fmoc-3-Azi
Fmoc-D-Phe
Fmoc-S54
4.3
93
415


2723
Fmoc-Ile
Fmoc-3-Azi
Fmoc-Tyr(But)
Fmoc-S13
2.5
98
479


2724
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-Phe
Fmoc-S29
2.6
100
437


2725
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-Ile
Fmoc-S33
2.6
99
417


2726
Fmoc-D-Phe(3Cl)
Fmoc-3-Azi
Fmoc-Val
Fmoc-S54
5.4
98
435


2727
Fmoc-Phe(3Cl)
Fmoc-3-Azi
Fmoc-D-Nva
Fmoc-S13
3.2
100
484


2728
Fmoc-Val
Fmoc-3-Azi
Fmoc-Nva
Fmoc-S33
1.2
95
339


2729
Fmoc-Nva
Fmoc-3-Azi
Fmoc-Val
Fmoc-S13
2.9
80
401


2730
Fmoc-Val
Fmoc-3-Azi
Fmoc-Dap(Boc)
Fmoc-S33
1.7
100
326


2731
Fmoc-D-Phe
Fmoc-S29
Fmoc-Ile
Fmoc-3-Azi
na
na
na


2732
Fmoc-Phe
Fmoc-S33
Fmoc-Tyr(But)
Fmoc-3-Azi
na
na
na


2733
Fmoc-Ile
Fmoc-S54
Fmoc-Phe
Fmoc-3-Azi
0.3
82
415


2734
Fmoc-Ile
Fmoc-S13
Fmoc-Tyr(But)
Fmoc-3-Azi
0.4
80
479


2735
Fmoc-Tyr(But)
Fmoc-S29
Fmoc-Phe
Fmoc-3-Azi
na
na
na


2736
Fmoc-Tyr(But)
Fmoc-S33
Fmoc-Ile
Fmoc-3-Azi
0.5
94
417


2737
Fmoc-D-Phe(3Cl)
Fmoc-S54
Fmoc-Val
Fmoc-3-Azi
0.3
82
435


2738
Fmoc-Phe(3Cl)
Fmoc-S13
Fmoc-D-Nva
Fmoc-3-Azi
0.3
100
484


2739
Fmoc-Val
Fmoc-S33
Fmoc-Nva
Fmoc-3-Azi
na
na
na


2740
Fmoc-D-Nva
Fmoc-S13
Fmoc-Val
Fmoc-3-Azi
0.4
100
401


2741
Fmoc-Val
Fmoc-S33
Fmoc-Dap(Boc)
Fmoc-3-Azi
na
na
na


2742
Fmoc-Phe
Fmoc-S29
Fmoc-Ile
Fmoc-S29
na
na
na


2743
Fmoc-Phe
Fmoc-S29
Fmoc-Tyr(But)
Fmoc-S33
na
na
na


2744
Fmoc-Ile
Fmoc-S29
Fmoc-D-Phe
Fmoc-S54
1.2
90
375


2745
Fmoc-Ile
Fmoc-S29
Fmoc-D-Tyr(But)
Fmoc-S13
2.9
100
439


2746
Fmoc-Tyr(But)
Fmoc-S29
Fmoc-D-Phe
Fmoc-S29
na
na
na


2747
Fmoc-Tyr(But)
Fmoc-S29
Fmoc-D-Ile
Fmoc-S33
na
na
na


2748
Fmoc-Phe(3Cl)
Fmoc-S29
Fmoc-Val
Fmoc-S54
na
na
na


2749
Fmoc-Phe(3Cl)
Fmoc-S29
Fmoc-Nva
Fmoc-S13
na
na
na


2750
Fmoc-Nva
Fmoc-S29
Fmoc-Val
Fmoc-S13
0.4
85
361


2751
Fmoc-Phe(3Cl)
Fmoc-S29
Fmoc-D-Dap(Boc)
Fmoc-S29
na
na
na


2752
Fmoc-D-Phe
Fmoc-S29
Fmoc-Ile
Fmoc-S29
na
na
na


2753
Fmoc-D-Phe
Fmoc-S33
Fmoc-Tyr(But)
Fmoc-S29
4.0
100
411


2754
Fmoc-Ile
Fmoc-S54
Fmoc-Phe
Fmoc-S29
2.8
100
375


2755
Fmoc-Ile
Fmoc-S13
Fmoc-Tyr(But)
Fmoc-S29
2.7
100
439


2756
Fmoc-D-Tyr(But)
Fmoc-S29
Fmoc-Phe
Fmoc-S29
na
na
na


2757
Fmoc-Tyr(But)
Fmoc-S33
Fmoc-Ile
Fmoc-S29
2.7
100
377


2758
Fmoc-Phe(3Cl)
Fmoc-S13
Fmoc-Nva
Fmoc-S29
1.1
100
443


2759
Fmoc-Nva
Fmoc-S54
Fmoc-D-Phe(3Cl)
Fmoc-S29
1.8
100
395


2760
Fmoc-Val
Fmoc-S33
Fmoc-D-Dap(Boc)
Fmoc-S29
na
na
na


2761
Fmoc-D-Dap(Boc)
Fmoc-S13
Fmoc-D-Val
Fmoc-S29
na
na
na


2762
Fmoc-Trp(Boc)
Fmoc-4-Pip
Fmoc-His(Trt)
Fmoc-S9
4.1
100
522


2763
Fmoc-Trp(Boc)
Fmoc-4-Pip
Fmoc-Ile
Fmoc-S9
3.3
100
498


2764
Fmoc-Trp(Boc)
Fmoc-4-Pip
Fmoc-Arg(Pbf)
Fmoc-S9
1.6
100
541


2765
Fmoc-Trp(Boc)
Fmoc-4-Pip
Fmoc-Pro
Fmoc-S37
2.7
100
514


2766
Fmoc-Trp(Boc)
Fmoc-4-Pip
Fmoc-D-Thr(But)
Fmoc-S9
8.4
100
486


2767
Fmoc-Trp(Boc)
Fmoc-4-Pip
Fmoc-Lys(Boc)
Fmoc-S9
2.9
na
513


2768
Fmoc-D-Trp(Boc)
Fmoc-4-Pip
Fmoc-Asn(Trt)
Fmoc-S9
8.1
100
499


2769
Fmoc-D-Tyr(But)
Fmoc-4-Pip
Fmoc-Sar
Fmoc-S37
3.1
100
465


2770
Fmoc-Tyr(But)
Fmoc-4-Pip
Fmoc-D-Asp(OBut)
Fmoc-S9
15.2
100
477


2771
Fmoc-D-Tyr(But)
Fmoc-4-Pip
Fmoc-Ile
Fmoc-S9
6.6
100
475


2772
Fmoc-D-Tyr(But)
Fmoc-4-Pip
Fmoc-Glu(OBut)
Fmoc-S9
8.0
100
491


2773
Fmoc-Tyr(But)
Fmoc-4-Pip
Fmoc-D-Arg(Pbf)
Fmoc-S9
4.0
100
518


2774
Fmoc-Tyr(But)
Fmoc-4-Pip
Fmoc-Pro
Fmoc-S37
3.1
100
491


2775
Fmoc-Tyr(But)
Fmoc-4-Pip
Fmoc-Thr(But)
Fmoc-S9
3.3
91
463


2776
Fmoc-Tyr(But)
Fmoc-4-Pip
Fmoc-D-Val
Fmoc-S9
9.9
100
461


2777
Fmoc-Tyr(But)
Fmoc-4-Pip
Fmoc-D-Gln(Trt)
Fmoc-S9
0.8
100
490


2778
Fmoc-D-Tyr(But)
Fmoc-4-Pip
Fmoc-Asn(Trt)
Fmoc-S9
12.4
100
476


2779
Fmoc-Arg(Pbf)
Fmoc-4-Pip
Fmoc-His(Trt)
Fmoc-S9
1.3
100
492


2780
Fmoc-Arg(Pbf)
Fmoc-4-Pip
Fmoc-D-Tyr(But)
Fmoc-S9
3.9
78
518


2781
Fmoc-Arg(Pbf)
Fmoc-4-Pip
Fmoc-D-Leu
Fmoc-S9
4.1
100
468


2782
Fmoc-Arg(Pbf)
Fmoc-4-Pip
Fmoc-D-Ile
Fmoc-S9
3.2
na
468


2783
Fmoc-Arg(Pbf)
Fmoc-4-Pip
Fmoc-Pro
Fmoc-S37
1.6
na
484


2784
Fmoc-Arg(Pbf)
Fmoc-4-Pip
Fmoc-D-Thr(But)
Fmoc-S9
1.4
100
456


2785
Fmoc-Ser(But)
Fmoc-4-Pip
Fmoc-Thr(But)
Fmoc-S9
2.0
100
387


2786
Fmoc-Ser(But)
Fmoc-4-Pip
Fmoc-D-Ser(But)
Fmoc-S9
9.3
100
373


2787
Fmoc-Ser(But)
Fmoc-4-Pip
Fmoc-Glu(OBut)
Fmoc-S9
0.6
na
415


2788
Fmoc-Ser(But)
Fmoc-4-Pip
Fmoc-Phe
Fmoc-S9
2.6
100
433


2789
Fmoc-Thr(But)
Fmoc-4-Pip
Fmoc-Glu(OBut)
Fmoc-S9
1.2
92
429


2790
Fmoc-Thr(But)
Fmoc-4-Pip
Fmoc-D-Phe
Fmoc-S9
13.9
100
447


2791
Fmoc-Glu(OBut)
Fmoc-4-Pip
Fmoc-Ser(But)
Fmoc-S9
1.4
100
415


2792
Fmoc-D-Glu(OBut)
Fmoc-4-Pip
Fmoc-D-Asn(Trt)
Fmoc-S9
1.2
100
442


2793
Fmoc-Glu(OBut)
Fmoc-4-Pip
Fmoc-Thr(But)
Fmoc-S9
2.0
100
429


2794
Fmoc-Glu(OBut)
Fmoc-4-Pip
Fmoc-Phe
Fmoc-S9
4.5
100
475


2795
Fmoc-Phe
Fmoc-4-Pip
Fmoc-D-Thr(But)
Fmoc-S9
6.9
100
447


2796
Fmoc-D-Phe
Fmoc-4-Pip
Fmoc-Glu(OBut)
Fmoc-S9
0.3
na
475


2797
Fmoc-Trp(Boc)
Fmoc-4-Pip
Fmoc-D-Lys(Boc)
Fmoc-S9
6.2
94
513


2798
Fmoc-Trp(Boc)
Fmoc-4-Pip
Fmoc-Ser(But)
Fmoc-S9
2.5
100
472


2799
Fmoc-Trp(Boc)
Fmoc-4-Pip
Fmoc-Asp(OBut)
Fmoc-S9
6.6
100
500


2800
Fmoc-Trp(Boc)
Fmoc-4-Pip
Fmoc-Asn(Trt)
Fmoc-S9
3.2
89
499


2801
Fmoc-Trp(Boc)
Fmoc-4-Pip
Fmoc-Val
Fmoc-S9
1.6
100
484


2802
Fmoc-Trp(Boc)
Fmoc-4-Pip
Fmoc-Phe
Fmoc-S9
1.6
100
532


2803
Fmoc-Lys(Boc)
Fmoc-4-Pip
Fmoc-Ser(But)
Fmoc-S9
1.0
100
414


2804
Fmoc-Lys(Boc)
Fmoc-4-Pip
Fmoc-Leu
Fmoc-S9
2.1
100
440


2805
Fmoc-D-Lys(Boc)
Fmoc-4-Pip
Fmoc-D-Asp(OBut)
Fmoc-S9
0.5
100
442


2806
Fmoc-Lys(Boc)
Fmoc-4-Pip
Fmoc-Asn(Trt)
Fmoc-S9
1.1
100
441


2807
Fmoc-Lys(Boc)
Fmoc-4-Pip
Fmoc-D-Tyr(But)
Fmoc-S9
3.8
na
490


2808
Fmoc-Ser(But)
Fmoc-4-Pip
Fmoc-Asp(OBut)
Fmoc-S9
7.9
100
401


2809
Fmoc-Ser(But)
Fmoc-4-Pip
Fmoc-Val
Fmoc-S9
0.8
na
385


2810
Fmoc-Ser(But)
Fmoc-4-Pip
Fmoc-Arg(Pbf)
Fmoc-S9
0.4
na
442


2811
Fmoc-D-Ser(But)
Fmoc-4-Pip
Fmoc-Phe
Fmoc-S9
4.8
100
433


2812
Fmoc-Ser(But)
Fmoc-4-Pip
Fmoc-D-Tyr(But)
Fmoc-S9
1.1
100
449


2813
Fmoc-Leu
Fmoc-4-Pip
Fmoc-Trp(Boc)
Fmoc-S9
1.7
100
498


2814
Fmoc-Leu
Fmoc-4-Pip
Fmoc-Lys(Boc)
Fmoc-S9
8.4
100
440


2815
Fmoc-D-Leu
Fmoc-4-Pip
Fmoc-Ser(But)
Fmoc-S9
8.7
100
399


2816
Fmoc-Leu
Fmoc-4-Pip
Fmoc-Asp(OBut)
Fmoc-S9
4.8
100
427


2817
Fmoc-Leu
Fmoc-4-Pip
Fmoc-Asn(Trt)
Fmoc-S9
4.3
92
426


2818
Fmoc-D-Leu
Fmoc-4-Pip
Fmoc-Val
Fmoc-S9
6.4
100
411


2819
Fmoc-Leu
Fmoc-4-Pip
Fmoc-Arg(Pbf)
Fmoc-S9
2.8
36
468


2820
Fmoc-D-Leu
Fmoc-4-Pip
Fmoc-D-Phe
Fmoc-S9
2.7
100
459


2821
Fmoc-Leu
Fmoc-4-Pip
Fmoc-Tyr(But)
Fmoc-S9
2.9
93
475


2822
Fmoc-Asp(OBut)
Fmoc-4-Pip
Fmoc-Trp(Boc)
Fmoc-S9
0.6
67
500


2823
Fmoc-Asp(OBut)
Fmoc-4-Pip
Fmoc-D-Lys(Boc)
Fmoc-S9
5.1
100
442


2824
Fmoc-Asp(OBut)
Fmoc-4-Pip
Fmoc-Leu
Fmoc-S9
0.5
100
427


2825
Fmoc-Asp(OBut)
Fmoc-4-Pip
Fmoc-D-Asn(Trt)
Fmoc-S9
2.4
100
428


2826
Fmoc-Asp(OBut)
Fmoc-4-Pip
Fmoc-D-Val
Fmoc-S9
na
na
na


2827
Fmoc-Asp(OBut)
Fmoc-4-Pip
Fmoc-Arg(Pbf)
Fmoc-S9
na
na
na


2828
Fmoc-D-Asp(OBut)
Fmoc-4-Pip
Fmoc-Phe
Fmoc-S9
12.1
100
461


2829
Fmoc-Asp(OBut)
Fmoc-4-Pip
Fmoc-Tyr(But)
Fmoc-S9
0.5
100
477


2830
Fmoc-D-Asn(Trt)
Fmoc-4-Pip
Fmoc-Trp(Boc)
Fmoc-S9
10.6
100
499


2831
Fmoc-D-Asn(Trt)
Fmoc-4-Pip
Fmoc-Lys(Boc)
Fmoc-S9
3.3
100
441


2832
Fmoc-D-Asn(Trt)
Fmoc-4-Pip
Fmoc-Ser(But)
Fmoc-S9
9.6
100
400


2833
Fmoc-Asn(Trt)
Fmoc-4-Pip
Fmoc-Val
Fmoc-S9
2.9
100
412


2834
Fmoc-Val
Fmoc-4-Pip
Fmoc-D-Leu
Fmoc-S9
4.8
100
411


2835
Fmoc-Val
Fmoc-4-Pip
Fmoc-Phe
Fmoc-S9
2.4
91
445


2836
Fmoc-Arg(Pbf)
Fmoc-4-Pip
Fmoc-Trp(Boc)
Fmoc-S9
1.8
100
541


2837
Fmoc-D-Arg(Pbf)
Fmoc-4-Pip
Fmoc-Lys(Boc)
Fmoc-S9
0.5
na
483


2838
Fmoc-Arg(Pbf)
Fmoc-4-Pip
Fmoc-Ser(But)
Fmoc-S9
0.4
100
442


2839
Fmoc-Arg(Pbf)
Fmoc-4-Pip
Fmoc-Leu
Fmoc-S9
0.6
100
468


2840
Fmoc-Arg(Pbf)
Fmoc-4-Pip
Fmoc-Asn(Trt)
Fmoc-S9
0.5
na
469


2841
Fmoc-D-Phe
Fmoc-4-Pip
Fmoc-Trp(Boc)
Fmoc-S9
4.5
100
532


2842
Fmoc-Phe
Fmoc-4-Pip
Fmoc-Ser(But)
Fmoc-S9
4.1
100
433


2843
Fmoc-Phe
Fmoc-4-Pip
Fmoc-Leu
Fmoc-S9
3.8
94
459


2844
Fmoc-Phe
Fmoc-4-Pip
Fmoc-Asp(OBut)
Fmoc-S9
3.7
100
461


2845
Fmoc-D-Phe
Fmoc-4-Pip
Fmoc-D-Val
Fmoc-S9
3.6
94
445


2846
Fmoc-Tyr(But)
Fmoc-4-Pip
Fmoc-D-Trp(Boc)
Fmoc-S9
11.5
100
548


2847
Fmoc-Tyr(But)
Fmoc-4-Pip
Fmoc-Lys(Boc)
Fmoc-S9
2.2
100
490


2848
Fmoc-Tyr(But)
Fmoc-4-Pip
Fmoc-Asn(Trt)
Fmoc-S9
3.5
85
476


2849
Fmoc-D-Trp(Boc)
Fmoc-3-Azi
Fmoc-D-Phe
Fmoc-S37
0.6
100
536


2850
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-Sar
Fmoc-S37
1.9
100
460


2851
Fmoc-D-Trp(Boc)
Fmoc-3-Azi
Fmoc-D-Ile
Fmoc-S37
0.7
100
502


2852
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-D-Glu(OBut)
Fmoc-S37
0.8
83
518


2853
Fmoc-D-Trp(Boc)
Fmoc-3-Azi
Fmoc-D-Arg(Pbf)
Fmoc-S37
0.5
100
545


2854
Fmoc-D-Trp(Boc)
Fmoc-3-Azi
Fmoc-D-Lys(Boc)
Fmoc-S37
1.0
100
517


2855
Fmoc-D-Trp(Boc)
Fmoc-3-Azi
Fmoc-Val
Fmoc-S37
1.9
100
488


2856
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-Ser(But)
Fmoc-S37
0.8
100
476


2857
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-Gln(Trt)
Fmoc-S37
na
na
na


2858
Fmoc-D-Tyr(But)
Fmoc-3-Azi
Fmoc-Trp(Boc)
Fmoc-S37
4.0
100
552


2859
Fmoc-D-Tyr(But)
Fmoc-3-Azi
Fmoc-D-His(Trt)
Fmoc-S37
3.0
100
503


2860
Fmoc-D-Tyr(But)
Fmoc-3-Azi
Fmoc-D-Glu(OBut)
Fmoc-S37
na
na
na


2861
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-Arg(Pbf)
Fmoc-S37
1.1
100
522


2862
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-Pro
Fmoc-S37
3.0
95
463


2863
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-Thr(But)
Fmoc-S37
5.4
100
467


2864
Fmoc-D-Tyr(But)
Fmoc-3-Azi
Fmoc-D-Val
Fmoc-S37
4.6
100
465


2865
Fmoc-D-Tyr(But)
Fmoc-3-Azi
Fmoc-Ser(But)
Fmoc-S37
4.6
100
453


2866
Fmoc-Arg(Pbf)
Fmoc-3-Azi
Fmoc-Phe
Fmoc-S37
0.8
100
506


2867
Fmoc-D-Arg(Pbf)
Fmoc-3-Azi
Fmoc-Tyr(But)
Fmoc-S37
1.6
90
522


2868
Fmoc-Arg(Pbf)
Fmoc-3-Azi
Fmoc-Lys(Boc)
Fmoc-S37
0.7
100
487


2869
Fmoc-D-Arg(Pbf)
Fmoc-3-Azi
Fmoc-Gln(Trt)
Fmoc-S37
na
na
na


2870
Fmoc-D-Ser(But)
Fmoc-3-Azi
Fmoc-Ser(But)
Fmoc-S37
9.3
100
377


2871
Fmoc-D-Ser(But)
Fmoc-3-Azi
Fmoc-Glu(OBut)
Fmoc-S37
3.2
na
419


2872
Fmoc-Asn(Trt)
Fmoc-3-Azi
Fmoc-Ser(But)
Fmoc-S37
1.5
100
404


2873
Fmoc-Thr(But)
Fmoc-3-Azi
Fmoc-Glu(OBut)
Fmoc-S37
na
na
na


2874
Fmoc-Thr(But)
Fmoc-3-Azi
Fmoc-Phe
Fmoc-S37
2.6
100
451


2875
Fmoc-Glu(OBut)
Fmoc-3-Azi
Fmoc-Ser(But)
Fmoc-S37
3.3
100
419


2876
Fmoc-D-Glu(OBut)
Fmoc-3-Azi
Fmoc-Thr(But)
Fmoc-S37
5.8
95
433


2877
Fmoc-Phe
Fmoc-3-Azi
Fmoc-Asn(Trt)
Fmoc-S37
2.8
96
464


2878
Fmoc-Phe
Fmoc-3-Azi
Fmoc-D-Glu(OBut)
Fmoc-S37
1.6
77
479


2879
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-D-Ser(But)
Fmoc-S37
1.8
100
476


2880
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-Leu
Fmoc-S37
1.0
91
502


2881
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-D-Asp(OBut)
Fmoc-S37
5.5
100
504


2882
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-Val
Fmoc-S37
2.7
100
488


2883
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-Phe
Fmoc-S37
0.7
100
536


2884
Fmoc-Lys(Boc)
Fmoc-3-Azi
Fmoc-Ser(But)
Fmoc-S37
5.4
100
418


2885
Fmoc-Lys(Boc)
Fmoc-3-Azi
Fmoc-Leu
Fmoc-S37
4.4
92
444


2886
Fmoc-Lys(Boc)
Fmoc-3-Azi
Fmoc-D-Asp(OBut)
Fmoc-S37
4.4
100
446


2887
Fmoc-Lys(Boc)
Fmoc-3-Azi
Fmoc-Asn(Trt)
Fmoc-S37
na
na
na


2888
Fmoc-Lys(Boc)
Fmoc-3-Azi
Fmoc-Arg(Pbf)
Fmoc-S37
2.4
90
487


2889
Fmoc-D-Ser(But)
Fmoc-3-Azi
Fmoc-Trp(Boc)
Fmoc-S37
8.7
100
476


2890
Fmoc-Ser(But)
Fmoc-3-Azi
Fmoc-D-Leu
Fmoc-S37
8.6
100
403


2891
Fmoc-Ser(But)
Fmoc-3-Azi
Fmoc-Asp(OBut)
Fmoc-S37
2.0
100
405


2892
Fmoc-D-Ser(But)
Fmoc-3-Azi
Fmoc-Asn(Trt)
Fmoc-S37
5.8
100
404


2893
Fmoc-Ser(But)
Fmoc-3-Azi
Fmoc-Val
Fmoc-S37
7.8
100
389


2894
Fmoc-Ser(But)
Fmoc-3-Azi
Fmoc-Arg(Pbf)
Fmoc-S37
2.5
100
446


2895
Fmoc-D-Ser(But)
Fmoc-3-Azi
Fmoc-D-Phe
Fmoc-S37
4.4
92
437


2896
Fmoc-Leu
Fmoc-3-Azi
Fmoc-D-Asp(OBut)
Fmoc-S37
6.8
100
431


2897
Fmoc-Leu
Fmoc-3-Azi
Fmoc-Asn(Trt)
Fmoc-S37
5.0
100
430


2898
Fmoc-Leu
Fmoc-3-Azi
Fmoc-Val
Fmoc-S37
5.7
100
415


2899
Fmoc-D-Leu
Fmoc-3-Azi
Fmoc-Phe
Fmoc-S37
8.8
100
463


2900
Fmoc-Leu
Fmoc-3-Azi
Fmoc-Tyr(But)
Fmoc-S37
5.4
100
479


2901
Fmoc-Asp(OBut)
Fmoc-3-Azi
Fmoc-Lys(Boc)
Fmoc-S37
0.3
100
446


2902
Fmoc-Asp(OBut)
Fmoc-3-Azi
Fmoc-D-Leu
Fmoc-S37
4.5
100
431


2903
Fmoc-D-Asp(OBut)
Fmoc-3-Azi
Fmoc-Asn(Trt)
Fmoc-S37
5.9
100
432


2904
Fmoc-D-Asn(Trt)
Fmoc-3-Azi
Fmoc-Trp(Boc)
Fmoc-S37
5.7
100
503


2905
Fmoc-Asn(Trt)
Fmoc-3-Azi
Fmoc-Lys(Boc)
Fmoc-S37
3.6
100
445


2906
Fmoc-D-Asn(Trt)
Fmoc-3-Azi
Fmoc-D-Ser(But)
Fmoc-S37
na
na
na


2907
Fmoc-Asn(Trt)
Fmoc-3-Azi
Fmoc-Leu
Fmoc-S37
3.0
100
430


2908
Fmoc-D-Asn(Trt)
Fmoc-3-Azi
Fmoc-D-Asp(OBut)
Fmoc-S37
0.8
100
432


2909
Fmoc-Asn(Trt)
Fmoc-3-Azi
Fmoc-Val
Fmoc-S37
4.5
100
416


2910
Fmoc-Val
Fmoc-3-Azi
Fmoc-Lys(Boc)
Fmoc-S37
2.7
100
430


2911
Fmoc-Val
Fmoc-3-Azi
Fmoc-D-Ser(But)
Fmoc-S37
3.8
100
389


2912
Fmoc-Val
Fmoc-3-Azi
Fmoc-D-Leu
Fmoc-S37
5.9
100
415


2913
Fmoc-D-Val
Fmoc-3-Azi
Fmoc-D-Asp(OBut)
Fmoc-S37
1.6
100
417


2914
Fmoc-D-Val
Fmoc-3-Azi
Fmoc-Asn(Trt)
Fmoc-S37
6.5
100
416


2915
Fmoc-D-Val
Fmoc-3-Azi
Fmoc-Arg(Pbf)
Fmoc-S37
3.1
100
458


2916
Fmoc-Arg(Pbf)
Fmoc-3-Azi
Fmoc-D-Leu
Fmoc-S37
0.8
100
472


2917
Fmoc-D-Arg(Pbf)
Fmoc-3-Azi
Fmoc-Asn(Trt)
Fmoc-S37
1.0
100
473


2918
Fmoc-D-Arg(Pbf)
Fmoc-3-Azi
Fmoc-D-Phe
Fmoc-S37
0.9
100
506


2919
Fmoc-Phe
Fmoc-3-Azi
Fmoc-Ser(But)
Fmoc-S37
2.3
100
437


2920
Fmoc-Phe
Fmoc-3-Azi
Fmoc-D-Leu
Fmoc-S37
3.9
100
463


2921
Fmoc-D-Phe
Fmoc-3-Azi
Fmoc-D-Asn(Trt)
Fmoc-S37
3.7
100
464


2922
Fmoc-D-Phe
Fmoc-3-Azi
Fmoc-Val
Fmoc-S37
4.5
100
449


2923
Fmoc-Phe
Fmoc-3-Azi
Fmoc-Arg(Pbf)
Fmoc-S37
1.2
100
506


2924
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-Ser(But)
Fmoc-S37
4.1
100
453


2925
Fmoc-D-Tyr(But)
Fmoc-3-Azi
Fmoc-D-Asp(OBut)
Fmoc-S37
2.9
100
481


2926
Fmoc-D-Trp(Boc)
Fmoc-3-Azi
Fmoc-Sar
Fmoc-S37
1.6
100
460


2927
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-D-Ile
Fmoc-S9
6.9
100
470


2928
Fmoc-D-Trp(Boc)
Fmoc-3-Azi
Fmoc-D-Arg(Pbf)
Fmoc-S9
3.8
100
513


2929
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-Lys(Boc)
Fmoc-S9
3.2
100
485


2930
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-Val
Fmoc-S9
2.3
100
456


2931
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-Sar
Fmoc-S37
0.4
100
437


2932
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-D-Glu(OBut)
Fmoc-S9
na
na
na


2933
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-Arg(Pbf)
Fmoc-S9
2.5
100
490


2934
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-D-Gln(Trt)
Fmoc-S9
na
na
na


2935
Fmoc-Arg(Pbf)
Fmoc-3-Azi
Fmoc-Tyr(But)
Fmoc-S9
1.7
100
490


2936
Fmoc-Arg(Pbf)
Fmoc-3-Azi
Fmoc-Ile
Fmoc-S9
1.4
na
440


2937
Fmoc-D-Arg(Pbf)
Fmoc-3-Azi
Fmoc-D-Trp(Boc)
Fmoc-S9
na
na
na


2938
Fmoc-D-Arg(Pbf)
Fmoc-3-Azi
Fmoc-D-Pro
Fmoc-S37
2.1
na
456


2939
Fmoc-Arg(Pbf)
Fmoc-3-Azi
Fmoc-Val
Fmoc-S9
4.9
100
426


2940
Fmoc-Arg(Pbf)
Fmoc-3-Azi
Fmoc-Gln(Trt)
Fmoc-S9
na
na
na


2941
Fmoc-D-Arg(Pbf)
Fmoc-3-Azi
Fmoc-Asn(Trt)
Fmoc-S9
1.6
100
441


2942
Fmoc-Ser(But)
Fmoc-3-Azi
Fmoc-Phe
Fmoc-S9
5.4
100
405


2943
Fmoc-D-Asn(Trt)
Fmoc-3-Azi
Fmoc-Ser(But)
Fmoc-S9
na
na
na


2944
Fmoc-Asn(Trt)
Fmoc-3-Azi
Fmoc-Glu(OBut)
Fmoc-S9
na
na
na


2945
Fmoc-Thr(But)
Fmoc-3-Azi
Fmoc-Glu(OBut)
Fmoc-S9
na
na
na


2946
Fmoc-Thr(But)
Fmoc-3-Azi
Fmoc-Phe
Fmoc-S9
0.8
100
419


2947
Fmoc-Glu(OBut)
Fmoc-3-Azi
Fmoc-Ser(But)
Fmoc-S9
na
na
na


2948
Fmoc-Glu(OBut)
Fmoc-3-Azi
Fmoc-Thr(But)
Fmoc-S9
na
na
na


2949
Fmoc-Phe
Fmoc-3-Azi
Fmoc-Asn(Trt)
Fmoc-S9
3.3
100
432


2950
Fmoc-Phe
Fmoc-3-Azi
Fmoc-D-Thr(But)
Fmoc-S9
6.5
100
419


2951
Fmoc-D-Trp(Boc)
Fmoc-3-Azi
Fmoc-D-Lys(Boc)
Fmoc-S9
3.4
100
485


2952
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-Ser(But)
Fmoc-S9
2.1
100
444


2953
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-Leu
Fmoc-S9
2.3
100
470


2954
Fmoc-D-Trp(Boc)
Fmoc-3-Azi
Fmoc-Asn(Trt)
Fmoc-S9
9.5
100
471


2955
Fmoc-Trp(Boc)
Fmoc-3-Azi
Fmoc-D-Arg(Pbf)
Fmoc-S9
2.8
100
513


2956
Fmoc-D-Trp(Boc)
Fmoc-3-Azi
Fmoc-Phe
Fmoc-S9
2.3
100
504


2957
Fmoc-Lys(Boc)
Fmoc-3-Azi
Fmoc-D-Trp(Boc)
Fmoc-S9
3.2
100
485


2958
Fmoc-Lys(Boc)
Fmoc-3-Azi
Fmoc-Ser(But)
Fmoc-S9
5.9
na
386


2959
Fmoc-Lys(Boc)
Fmoc-3-Azi
Fmoc-D-Asp(OBut)
Fmoc-S9
na
na
na


2960
Fmoc-Lys(Boc)
Fmoc-3-Azi
Fmoc-D-Val
Fmoc-S9
11.0
100
398


2961
Fmoc-D-Lys(Boc)
Fmoc-3-Azi
Fmoc-Arg(Pbf)
Fmoc-S9
4.2
na
455


2962
Fmoc-Lys(Boc)
Fmoc-3-Azi
Fmoc-Phe
Fmoc-S9
2.3
100
446


2963
Fmoc-Ser(But)
Fmoc-3-Azi
Fmoc-Lys(Boc)
Fmoc-S9
5.9
na
386


2964
Fmoc-Ser(But)
Fmoc-3-Azi
Fmoc-Asp(OBut)
Fmoc-S9
na
na
na


2965
Fmoc-Ser(But)
Fmoc-3-Azi
Fmoc-Val
Fmoc-S9
7.6
100
357


2966
Fmoc-Leu
Fmoc-3-Azi
Fmoc-Lys(Boc)
Fmoc-S9
3.8
100
412


2967
Fmoc-D-Leu
Fmoc-3-Azi
Fmoc-Asp(OBut)
Fmoc-S9
11.0
90
399


2968
Fmoc-Leu
Fmoc-3-Azi
Fmoc-Val
Fmoc-S9
7.7
100
383


2969
Fmoc-Leu
Fmoc-3-Azi
Fmoc-D-Phe
Fmoc-S9
8.3
100
431


2970
Fmoc-D-Leu
Fmoc-3-Azi
Fmoc-D-Tyr(But)
Fmoc-S9
4.8
100
447


2971
Fmoc-Asp(OBut)
Fmoc-3-Azi
Fmoc-D-Leu
Fmoc-S9
3.1
100
399


2972
Fmoc-D-Asp(OBut)
Fmoc-3-Azi
Fmoc-D-Asn(Trt)
Fmoc-S9
na
na
na


2973
Fmoc-D-Asp(OBut)
Fmoc-3-Azi
Fmoc-Val
Fmoc-S9
8.1
100
385


2974
Fmoc-D-Asp(OBut)
Fmoc-3-Azi
Fmoc-Arg(Pbf)
Fmoc-S9
na
na
na


2975
Fmoc-D-Asp(OBut)
Fmoc-3-Azi
Fmoc-Phe
Fmoc-S9
8.8
100
433


2976
Fmoc-Asn(Trt)
Fmoc-3-Azi
Fmoc-Lys(Boc)
Fmoc-S9
na
na
na


2977
Fmoc-D-Asn(Trt)
Fmoc-3-Azi
Fmoc-Leu
Fmoc-S9
3.2
100
398


2978
Fmoc-Asn(Trt)
Fmoc-3-Azi
Fmoc-D-Tyr(But)
Fmoc-S9
2.7
100
448


2979
Fmoc-Val
Fmoc-3-Azi
Fmoc-D-Trp(Boc)
Fmoc-S9
1.5
100
456


2980
Fmoc-D-Val
Fmoc-3-Azi
Fmoc-D-Lys(Boc)
Fmoc-S9
5.7
100
398


2981
Fmoc-Val
Fmoc-3-Azi
Fmoc-Ser(But)
Fmoc-S9
5.0
100
357


2982
Fmoc-Val
Fmoc-3-Azi
Fmoc-Leu
Fmoc-S9
5.5
100
383


2983
Fmoc-Val
Fmoc-3-Azi
Fmoc-Asp(OBut)
Fmoc-S9
8.5
100
385


2984
Fmoc-D-Val
Fmoc-3-Azi
Fmoc-Asn(Trt)
Fmoc-S9
4.2
100
384


2985
Fmoc-Val
Fmoc-3-Azi
Fmoc-Arg(Pbf)
Fmoc-S9
1.0
100
426


2986
Fmoc-Val
Fmoc-3-Azi
Fmoc-Phe
Fmoc-S9
3.9
100
417


2987
Fmoc-D-Val
Fmoc-3-Azi
Fmoc-D-Tyr(But)
Fmoc-S9
5.9
100
433


2988
Fmoc-Arg(Pbf)
Fmoc-3-Azi
Fmoc-Ser(But)
Fmoc-S9
na
na
na


2989
Fmoc-Arg(Pbf)
Fmoc-3-Azi
Fmoc-D-Val
Fmoc-S9
3.3
100
426


2990
Fmoc-Arg(Pbf)
Fmoc-3-Azi
Fmoc-Phe
Fmoc-S9
3.1
100
474


2991
Fmoc-Phe
Fmoc-3-Azi
Fmoc-D-Ser(But)
Fmoc-S9
5.5
100
405


2992
Fmoc-D-Phe
Fmoc-3-Azi
Fmoc-D-Arg(Pbf)
Fmoc-S9
2.4
100
474


2993
Fmoc-D-Phe
Fmoc-3-Azi
Fmoc-Tyr(But)
Fmoc-S9
9.0
100
481


2994
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-D-Trp(Boc)
Fmoc-S9
5.0
100
520


2995
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-D-Lys(Boc)
Fmoc-S9
5.4
100
462


2996
Fmoc-D-Tyr(But)
Fmoc-3-Azi
Fmoc-Ser(But)
Fmoc-S9
8.4
100
421


2997
Fmoc-D-Tyr(But)
Fmoc-3-Azi
Fmoc-Val
Fmoc-S9
9.1
100
433


2998
Fmoc-Tyr(But)
Fmoc-3-Azi
Fmoc-D-Arg(Pbf)
Fmoc-S9
3.6
na
490


2999
Fmoc-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-Sar
Fmoc-S37
2.0
100
502


3000
Fmoc-D-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-D-Glu(OBut)
Fmoc-S9
0.5
na
528


3001
Fmoc-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-D-Pro
Fmoc-S37
2.4
100
528


3002
Fmoc-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-D-Lys(Boc)
Fmoc-S9
0.7
100
527


3003
Fmoc-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-Phe
Fmoc-S9
8.9
89
523


3004
Fmoc-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-D-Pro
Fmoc-S37
11.5
100
505


3005
Fmoc-D-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-Thr(But)
Fmoc-S9
5.8
100
477


3006
Fmoc-D-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-Gln(Trt)
Fmoc-S9
na
na
na


3007
Fmoc-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-D-Tyr(But)
Fmoc-S9
5.3
100
532


3008
Fmoc-D-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-Asp(OBut)
Fmoc-S9
5.0
100
484


3009
Fmoc-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-Leu
Fmoc-S9
7.0
100
482


3010
Fmoc-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-Ile
Fmoc-S9
4.8
88
482


3011
Fmoc-D-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-Glu(OBut)
Fmoc-S9
1.4
na
498


3012
Fmoc-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-D-Trp(Boc)
Fmoc-S9
3.7
100
555


3013
Fmoc-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-D-Thr(But)
Fmoc-S9
2.4
na
470


3014
Fmoc-D-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-D-Lys(Boc)
Fmoc-S9
6.6
100
497


3015
Fmoc-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-Gln(Trt)
Fmoc-S9
na
na
na


3016
Fmoc-Ser(But)
Fmoc-4-cis-Ach
Fmoc-Glu(OBut)
Fmoc-S9
na
na
na


3017
Fmoc-D-Asn(Trt)
Fmoc-4-cis-Ach
Fmoc-Glu(OBut)
Fmoc-S9
7.4
100
456


3018
Fmoc-Asn(Trt)
Fmoc-4-cis-Ach
Fmoc-Phe
Fmoc-S9
11.0
100
474


3019
Fmoc-Thr(But)
Fmoc-4-cis-Ach
Fmoc-D-Ser(But)
Fmoc-S9
16.0
100
401


3020
Fmoc-Thr(But)
Fmoc-4-cis-Ach
Fmoc-D-Glu(OBut)
Fmoc-S9
2.7
100
443


3021
Fmoc-Thr(But)
Fmoc-4-cis-Ach
Fmoc-Phe
Fmoc-S9
11.1
100
461


3022
Fmoc-Glu(OBut)
Fmoc-4-cis-Ach
Fmoc-Ser(But)
Fmoc-S9
16.2
100
429


3023
Fmoc-Glu(OBut)
Fmoc-4-cis-Ach
Fmoc-Asn(Trt)
Fmoc-S9
15.9
100
456


3024
Fmoc-Glu(OBut)
Fmoc-4-cis-Ach
Fmoc-Phe
Fmoc-S9
15.6
100
489


3025
Fmoc-Phe
Fmoc-4-cis-Ach
Fmoc-D-Glu(OBut)
Fmoc-S9
4.9
100
489


3026
Fmoc-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-Lys(Boc)
Fmoc-S9
1.2
100
527


3027
Fmoc-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-Leu
Fmoc-S9
3.3
100
512


3028
Fmoc-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-D-Val
Fmoc-S9
6.6
100
498


3029
Fmoc-D-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-Phe
Fmoc-S9
1.4
100
546


3030
Fmoc-Trp(Boc)
Fmoc-4-cis-Ach
Fmoc-D-Tyr(But)
Fmoc-S9
3.2
83
562


3031
Fmoc-Lys(Boc)
Fmoc-4-cis-Ach
Fmoc-D-Trp(Boc)
Fmoc-S9
8.0
100
527


3032
Fmoc-Lys(Boc)
Fmoc-4-cis-Ach
Fmoc-Leu
Fmoc-S9
7.9
100
454


3033
Fmoc-Lys(Boc)
Fmoc-4-cis-Ach
Fmoc-Asp(OBut)
Fmoc-S9
3.2
100
456


3034
Fmoc-Lys(Boc)
Fmoc-4-cis-Ach
Fmoc-Asn(Trt)
Fmoc-S9
11.9
100
455


3035
Fmoc-Lys(Boc)
Fmoc-4-cis-Ach
Fmoc-Val
Fmoc-S9
11.3
100
440


3036
Fmoc-Lys(Boc)
Fmoc-4-cis-Ach
Fmoc-D-Tyr(But)
Fmoc-S9
7.8
100
504


3037
Fmoc-D-Ser(But)
Fmoc-4-cis-Ach
Fmoc-Lys(Boc)
Fmoc-S9
11.5
100
428


3038
Fmoc-Ser(But)
Fmoc-4-cis-Ach
Fmoc-D-Asp(OBut)
Fmoc-S9
13.6
100
415


3039
Fmoc-Ser(But)
Fmoc-4-cis-Ach
Fmoc-Val
Fmoc-S9
12.4
100
399


3040
Fmoc-D-Ser(But)
Fmoc-4-cis-Ach
Fmoc-Phe
Fmoc-S9
8.7
78
447


3041
Fmoc-Ser(But)
Fmoc-4-cis-Ach
Fmoc-Tyr(But)
Fmoc-S9
8.2
100
463


3042
Fmoc-Leu
Fmoc-4-cis-Ach
Fmoc-D-Trp(Boc)
Fmoc-S9
9.4
63
512


3043
Fmoc-D-Leu
Fmoc-4-cis-Ach
Fmoc-Lys(Boc)
Fmoc-S9
15.5
93
454


3044
Fmoc-Leu
Fmoc-4-cis-Ach
Fmoc-Ser(But)
Fmoc-S9
12.5
100
413


3045
Fmoc-Leu
Fmoc-4-cis-Ach
Fmoc-Asn(Trt)
Fmoc-S9
15.4
100
440


3046
Fmoc-Leu
Fmoc-4-cis-Ach
Fmoc-D-Val
Fmoc-S9
10.2
94
425


3047
Fmoc-Leu
Fmoc-4-cis-Ach
Fmoc-D-Arg(Pbf)
Fmoc-S9
6.3
100
482


3048
Fmoc-Leu
Fmoc-4-cis-Ach
Fmoc-Tyr(But)
Fmoc-S9
12.2
100
489


3049
Fmoc-Asp(OBut)
Fmoc-4-cis-Ach
Fmoc-Lys(Boc)
Fmoc-S9
3.3
100
456


3050
Fmoc-D-Asp(OBut)
Fmoc-4-cis-Ach
Fmoc-Ser(But)
Fmoc-S9
15.2
100
415


3051
Fmoc-Asp(OBut)
Fmoc-4-cis-Ach
Fmoc-Leu
Fmoc-S9
8.1
100
441


3052
Fmoc-Asp(OBut)
Fmoc-4-cis-Ach
Fmoc-Asn(Trt)
Fmoc-S9
3.9
100
442


3053
Fmoc-Asp(OBut)
Fmoc-4-cis-Ach
Fmoc-D-Arg(Pbf)
Fmoc-S9
2.7
100
484


3054
Fmoc-Asp(OBut)
Fmoc-4-cis-Ach
Fmoc-Phe
Fmoc-S9
6.7
100
475


3055
Fmoc-D-Asn(Trt)
Fmoc-4-cis-Ach
Fmoc-D-Trp(Boc)
Fmoc-S9
14.5
100
513


3056
Fmoc-Asn(Trt)
Fmoc-4-cis-Ach
Fmoc-Lys(Boc)
Fmoc-S9
16.6
100
455


3057
Fmoc-Asn(Trt)
Fmoc-4-cis-Ach
Fmoc-D-Ser(But)
Fmoc-S9
na
na
414


3058
Fmoc-Asn(Trt)
Fmoc-4-cis-Ach
Fmoc-D-Val
Fmoc-S9
15.4
100
426


3059
Fmoc-D-Val
Fmoc-4-cis-Ach
Fmoc-Lys(Boc)
Fmoc-S9
8.7
100
440


3060
Fmoc-D-Val
Fmoc-4-cis-Ach
Fmoc-Leu
Fmoc-S9
7.5
90
425


3061
Fmoc-Val
Fmoc-4-cis-Ach
Fmoc-Asn(Trt)
Fmoc-S9
10.0
100
426


3062
Fmoc-D-Val
Fmoc-4-cis-Ach
Fmoc-D-Arg(Pbf)
Fmoc-S9
5.9
100
468


3063
Fmoc-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-D-Leu
Fmoc-S9
3.3
42
482


3064
Fmoc-D-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-D-Phe
Fmoc-S9
9.2
100
516


3065
Fmoc-D-Arg(Pbf)
Fmoc-4-cis-Ach
Fmoc-Tyr(But)
Fmoc-S9
7.5
na
532


3066
Fmoc-Phe
Fmoc-4-cis-Ach
Fmoc-Trp(Boc)
Fmoc-S9
11.7
95
546


3067
Fmoc-Phe
Fmoc-4-cis-Ach
Fmoc-Ser(But)
Fmoc-S9
17.9
100
447


3068
Fmoc-Phe
Fmoc-4-cis-Ach
Fmoc-Asn(Trt)
Fmoc-S9
13.5
100
474


3069
Fmoc-Phe
Fmoc-4-cis-Ach
Fmoc-Arg(Pbf)
Fmoc-S9
6.6
100
516


3070
Fmoc-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-Lys(Boc)
Fmoc-S9
14.9
100
504


3071
Fmoc-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-Ser(But)
Fmoc-S9
16.6
100
463


3072
Fmoc-D-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-Asp(OBut)
Fmoc-S9
15.6
100
491


3073
Fmoc-Tyr(But)
Fmoc-4-cis-Ach
Fmoc-Arg(Pbf)
Fmoc-S9
6.9
100
532


3074
Fmoc-Trp(Boc)
Fmoc-S29
Fmoc-Sar
Fmoc-S37
na
na
na


3075
Fmoc-D-Trp(Boc)
Fmoc-S29
Fmoc-His(Trt)
Fmoc-S9
na
na
na


3076
Fmoc-Trp(Boc)
Fmoc-S29
Fmoc-Ile
Fmoc-S9
na
na
na


3077
Fmoc-Trp(Boc)
Fmoc-S29
Fmoc-Pro
Fmoc-S37
na
na
na


3078
Fmoc-D-Trp(Boc)
Fmoc-S29
Fmoc-Val
Fmoc-S9
na
na
na


3079
Fmoc-Trp(Boc)
Fmoc-S29
Fmoc-D-Ser(But)
Fmoc-S9
na
na
na


3080
Fmoc-Trp(Boc)
Fmoc-S29
Fmoc-D-Gln(Trt)
Fmoc-S9
na
na
na


3081
Fmoc-Tyr(But)
Fmoc-S29
Fmoc-D-Trp(Boc)
Fmoc-S9
na
na
na


3082
Fmoc-Tyr(But)
Fmoc-S29
Fmoc-His(Trt)
Fmoc-S9
na
na
na


3083
Fmoc-Tyr(But)
Fmoc-S29
Fmoc-D-Asp(OBut)
Fmoc-S9
na
na
na


3084
Fmoc-Tyr(But)
Fmoc-S29
Fmoc-Glu(OBut)
Fmoc-S9
na
na
na


3085
Fmoc-Tyr(But)
Fmoc-S29
Fmoc-D-Arg(Pbf)
Fmoc-S9
na
na
na


3086
Fmoc-Tyr(But)
Fmoc-S29
Fmoc-D-Pro
Fmoc-S37
na
na
na


3087
Fmoc-Tyr(But)
Fmoc-S29
Fmoc-Thr(But)
Fmoc-S9
na
na
na


3088
Fmoc-D-Tyr(But)
Fmoc-S29
Fmoc-Lys(Boc)
Fmoc-S9
na
na
na


3089
Fmoc-Tyr(But)
Fmoc-S29
Fmoc-D-Val
Fmoc-S9
na
na
na


3090
Fmoc-Tyr(But)
Fmoc-S29
Fmoc-Ser(But)
Fmoc-S9
na
na
na


3091
Fmoc-Tyr(But)
Fmoc-S29
Fmoc-D-Gln(Trt)
Fmoc-S9
na
na
na


3092
Fmoc-Arg(Pbf)
Fmoc-S29
Fmoc-D-His(Trt)
Fmoc-S9
na
na
na


3093
Fmoc-Arg(Pbf)
Fmoc-S29
Fmoc-Trp(Boc)
Fmoc-S9
na
na
na


3094
Fmoc-D-Arg(Pbf)
Fmoc-S29
Fmoc-Pro
Fmoc-S37
na
na
na


3095
Fmoc-D-Arg(Pbf)
Fmoc-S29
Fmoc-Thr(But)
Fmoc-S9
na
na
na


3096
Fmoc-Arg(Pbf)
Fmoc-S29
Fmoc-Ser(But)
Fmoc-S9
na
na
na


3097
Fmoc-Ser(But)
Fmoc-S29
Fmoc-D-Asn(Trt)
Fmoc-S9
na
na
na


3098
Fmoc-D-Ser(But)
Fmoc-S29
Fmoc-D-Ser(But)
Fmoc-S9
na
na
na


3099
Fmoc-D-Ser(But)
Fmoc-S29
Fmoc-Glu(OBut)
Fmoc-S9
na
na
na


3100
Fmoc-D-Ser(But)
Fmoc-S29
Fmoc-Phe
Fmoc-S9
na
na
na


3101
Fmoc-D-Asn(Trt)
Fmoc-S29
Fmoc-Ser(But)
Fmoc-S9
na
na
na


3102
Fmoc-Asn(Trt)
Fmoc-S29
Fmoc-Glu(OBut)
Fmoc-S9
na
na
na


3103
Fmoc-Thr(But)
Fmoc-S29
Fmoc-Ser(But)
Fmoc-S9
na
na
na


3104
Fmoc-D-Thr(But)
Fmoc-S29
Fmoc-Phe
Fmoc-S9
3.2
100
379


3105
Fmoc-Glu(OBut)
Fmoc-S29
Fmoc-Ser(But)
Fmoc-S9
na
na
na


3106
Fmoc-Glu(OBut)
Fmoc-S29
Fmoc-D-Asn(Trt)
Fmoc-S9
na
na
na


3107
Fmoc-Glu(OBut)
Fmoc-S29
Fmoc-D-Thr(But)
Fmoc-S9
na
na
na


3108
Fmoc-D-Glu(OBut)
Fmoc-S29
Fmoc-D-Phe
Fmoc-S9
na
na
na


3109
Fmoc-D-Phe
Fmoc-S29
Fmoc-Ser(But)
Fmoc-S9
na
na
na


3110
Fmoc-D-Phe
Fmoc-S29
Fmoc-Thr(But)
Fmoc-S9
na
na
na


3111
Fmoc-Trp(Boc)
Fmoc-S29
Fmoc-D-Lys(Boc)
Fmoc-S9
na
na
na


3112
Fmoc-Trp(Boc)
Fmoc-S29
Fmoc-Ser(But)
Fmoc-S9
na
na
na


3113
Fmoc-Trp(Boc)
Fmoc-S29
Fmoc-Leu
Fmoc-S9
na
na
na


3114
Fmoc-D-Trp(Boc)
Fmoc-S29
Fmoc-Asp(OBut)
Fmoc-S9
na
na
na


3115
Fmoc-D-Trp(Boc)
Fmoc-S29
Fmoc-D-Val
Fmoc-S9
na
na
na


3116
Fmoc-Lys(Boc)
Fmoc-S29
Fmoc-Trp(Boc)
Fmoc-S9
na
na
na


3117
Fmoc-Lys(Boc)
Fmoc-S29
Fmoc-D-Ser(But)
Fmoc-S9
na
na
na


3118
Fmoc-D-Lys(Boc)
Fmoc-S29
Fmoc-D-Asn(Trt)
Fmoc-S9
na
na
na


3119
Fmoc-Lys(Boc)
Fmoc-S29
Fmoc-Val
Fmoc-S9
na
na
na


3120
Fmoc-Lys(Boc)
Fmoc-S29
Fmoc-Arg(Pbf)
Fmoc-S9
na
na
na


3121
Fmoc-Lys(Boc)
Fmoc-S29
Fmoc-Phe
Fmoc-S9
0.7
100
406


3122
Fmoc-D-Ser(But)
Fmoc-S29
Fmoc-D-Lys(Boc)
Fmoc-S9
na
na
na


3123
Fmoc-Ser(But)
Fmoc-S29
Fmoc-D-Asp(OBut)
Fmoc-S9
na
na
na


3124
Fmoc-Ser(But)
Fmoc-S29
Fmoc-Asn(Trt)
Fmoc-S9
na
na
na


3125
Fmoc-Ser(But)
Fmoc-S29
Fmoc-Val
Fmoc-S9
na
na
na


3126
Fmoc-Ser(But)
Fmoc-S29
Fmoc-Arg(Pbf)
Fmoc-S9
na
na
na


3127
Fmoc-Ser(But)
Fmoc-S29
Fmoc-Tyr(But)
Fmoc-S9
na
na
na


3128
Fmoc-Leu
Fmoc-S29
Fmoc-Trp(Boc)
Fmoc-S9
0.5
100
430


3129
Fmoc-D-Leu
Fmoc-S29
Fmoc-Lys(Boc)
Fmoc-S9
na
na
na


3130
Fmoc-Leu
Fmoc-S29
Fmoc-D-Ser(But)
Fmoc-S9
0.1
na
331


3131
Fmoc-Leu
Fmoc-S29
Fmoc-D-Arg(Pbf)
Fmoc-S9
na
na
na


3132
Fmoc-D-Leu
Fmoc-S29
Fmoc-D-Phe
Fmoc-S9
0.2
na
391


3133
Fmoc-D-Leu
Fmoc-S29
Fmoc-Tyr(But)
Fmoc-S9
0.2
na
407


3134
Fmoc-Asp(OBut)
Fmoc-S29
Fmoc-D-Trp(Boc)
Fmoc-S9
na
na
na


3135
Fmoc-Asp(OBut)
Fmoc-S29
Fmoc-Lys(Boc)
Fmoc-S9
na
na
374


3136
Fmoc-D-Asp(OBut)
Fmoc-S29
Fmoc-Ser(But)
Fmoc-S9
na
na
na


3137
Fmoc-D-Asp(OBut)
Fmoc-S29
Fmoc-D-Leu
Fmoc-S9
na
na
na


3138
Fmoc-Asp(OBut)
Fmoc-S29
Fmoc-Asn(Trt)
Fmoc-S9
na
na
na


3139
Fmoc-D-Asp(OBut)
Fmoc-S29
Fmoc-Val
Fmoc-S9
na
na
na


3140
Fmoc-Asp(OBut)
Fmoc-S29
Fmoc-Tyr(But)
Fmoc-S9
na
na
na


3141
Fmoc-Asn(Trt)
Fmoc-S29
Fmoc-D-Trp(Boc)
Fmoc-S9
na
na
na


3142
Fmoc-Asn(Trt)
Fmoc-S29
Fmoc-Lys(Boc)
Fmoc-S9
na
na
na


3143
Fmoc-Asn(Trt)
Fmoc-S29
Fmoc-D-Ser(But)
Fmoc-S9
na
na
na


3144
Fmoc-D-Asn(Trt)
Fmoc-S29
Fmoc-D-Leu
Fmoc-S9
na
na
na


3145
Fmoc-Asn(Trt)
Fmoc-S29
Fmoc-Val
Fmoc-S9
na
na
na


3146
Fmoc-D-Asn(Trt)
Fmoc-S29
Fmoc-Arg(Pbf)
Fmoc-S9
na
na
na


3147
Fmoc-D-Asn(Trt)
Fmoc-S29
Fmoc-Phe
Fmoc-S9
na
na
na


3148
Fmoc-Asn(Trt)
Fmoc-S29
Fmoc-Tyr(But)
Fmoc-S9
na
na
na


3149
Fmoc-Val
Fmoc-S29
Fmoc-D-Lys(Boc)
Fmoc-S9
5.1
100
358


3150
Fmoc-Val
Fmoc-S29
Fmoc-Asp(OBut)
Fmoc-S9
na
na
na


3151
Fmoc-Val
Fmoc-S29
Fmoc-Arg(Pbf)
Fmoc-S9
1.4
100
386


3152
Fmoc-Val
Fmoc-S29
Fmoc-Tyr(But)
Fmoc-S9
2.3
100
393


3153
Fmoc-Arg(Pbf)
Fmoc-S29
Fmoc-D-Lys(Boc)
Fmoc-S9
na
na
na


3154
Fmoc-D-Arg(Pbf)
Fmoc-S29
Fmoc-Leu
Fmoc-S9
na
na
na


3155
Fmoc-Arg(Pbf)
Fmoc-S29
Fmoc-D-Val
Fmoc-S9
na
na
na


3156
Fmoc-D-Arg(Pbf)
Fmoc-S29
Fmoc-Phe
Fmoc-S9
na
na
na


3157
Fmoc-Phe
Fmoc-S29
Fmoc-Lys(Boc)
Fmoc-S9
na
na
na


3158
Fmoc-Phe
Fmoc-S29
Fmoc-D-Ser(But)
Fmoc-S9
na
na
na


3159
Fmoc-Phe
Fmoc-S29
Fmoc-D-Leu
Fmoc-S9
na
na
na


3160
Fmoc-Phe
Fmoc-S29
Fmoc-D-Asp(OBut)
Fmoc-S9
0.4
100
393


3161
Fmoc-D-Phe
Fmoc-S29
Fmoc-Asn(Trt)
Fmoc-S9
na
na
na


3162
Fmoc-Phe
Fmoc-S29
Fmoc-Arg(Pbf)
Fmoc-S9
na
na
na


3163
Fmoc-Tyr(But)
Fmoc-S29
Fmoc-D-Lys(Boc)
Fmoc-S9
na
na
na


3164
Fmoc-Tyr(But)
Fmoc-S29
Fmoc-Asn(Trt)
Fmoc-S9
na
na
na


3165
Fmoc-Tyr(But)
Fmoc-S29
Fmoc-Val
Fmoc-S9
na
na
na


3166
Fmoc-D-Tyr(But)
Fmoc-S29
Fmoc-Phe
Fmoc-S9
na
na
na





na = not available



1All syntheses were carried out on the solid phase starting from 70-80 mg of 2-chlorotrityl chloride resin (typical loading 1.0 mmol/g).




2Purity is determined by analysis with LC-UV at 220 nm.














TABLE 5B









embedded image



















Cmpd
R1
Q1
R2
R3
Q2
R4
R8





2655


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2656


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2657


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2658


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2659


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2660


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2661


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2662


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2663


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2664


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2665


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2666


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2667


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2668


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2669


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2670


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2671


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2672


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2673


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2674


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2675


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2676


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2677


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2678


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2679


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2680


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2681


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2682


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2683


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2684


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2685


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2686


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2687


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2688


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2689


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2690


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2691


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2692


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2693


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2694


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2695


embedded image


C═O


embedded image




embedded image


CH2


embedded image


CH3





2696


embedded image


CH2


embedded image




embedded image


CH2


embedded image


CH3





2697


embedded image


CH2


embedded image




embedded image


CH2


embedded image


CH3





2698


embedded image


CH2


embedded image




embedded image


CH2


embedded image


CH3





2699


embedded image


CH2


embedded image




embedded image


CH2


embedded image


CH3





2700


embedded image


CH2


embedded image




embedded image


CH2


embedded image


CH3





2701


embedded image


CH2


embedded image




embedded image


CH2


embedded image


CH3





2702


embedded image


CH2


embedded image




embedded image


CH2


embedded image


CH3





2703


embedded image


CH2


embedded image




embedded image


CH2


embedded image


CH3





2704


embedded image


CH2


embedded image




embedded image


CH2


embedded image


CH3





2705


embedded image


CH2


embedded image




embedded image


CH2


embedded image


CH3





2706


embedded image


CH2


embedded image




embedded image


CH2


embedded image


CH3





2707


embedded image


CH2


embedded image




embedded image


CH2


embedded image


CH3





2708


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2709


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2710


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2711


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2712


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2713


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2714


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2715


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2716


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2717


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2718


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2719


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2720


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2721


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2722


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2723


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2724


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2725


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2726


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2727


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2728


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2729


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2730


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2731


embedded image


CH2


embedded image




embedded image


C═O


embedded image


H





2732


embedded image


CH2


embedded image




embedded image


C═O


embedded image


H





2733


embedded image


CH2


embedded image




embedded image


C═O


embedded image


H





2734


embedded image


CH2


embedded image




embedded image


C═O


embedded image


H





2735


embedded image


CH2


embedded image




embedded image


C═O


embedded image


H





2736


embedded image


CH2


embedded image




embedded image


C═O


embedded image


H





2737


embedded image


CH2


embedded image




embedded image


C═O


embedded image


H





2738


embedded image


CH2


embedded image




embedded image


C═O


embedded image


H





2739


embedded image


CH2


embedded image




embedded image


C═O


embedded image


H





2740


embedded image


CH2


embedded image




embedded image


C═O


embedded image


H





2741


embedded image


CH2


embedded image




embedded image


C═O


embedded image


H





2742


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2743


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2744


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2745


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2746


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2747


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2748


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2749


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2750


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2751


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2752


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2753


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2754


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2755


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2756


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2757


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2758


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2759


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2760


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2761


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





2762


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2763


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2764


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2765


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2766


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2767


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2768


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2769


embedded image


C═O


embedded image


H—(CH)
CH2


embedded image


H





2770


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2771


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2772


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2773


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2774


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2775


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2776


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2777


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2778


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2779


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2780


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2781


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2782


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2783


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2784


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2785


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2786


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2787


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2788


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2789


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2790


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2791


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2792


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2793


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2794


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2795


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2796


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2797


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2798


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2799


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2800


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2801


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2802


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2803


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2804


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2805


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2806


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2807


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2808


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2809


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2810


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2811


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2812


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2813


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2814


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2815


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2816


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2817


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2818


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2819


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2820


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2821


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2822


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2823


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2824


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2825


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2826


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2827


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2828


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2829


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2830


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2831


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2832


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2833


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2834


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2835


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2836


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2837


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2838


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2839


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2840


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2841


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2842


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2843


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2844


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2845


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2846


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2847


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2848


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2849


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2850


embedded image


C═O


embedded image


H—(CH)
CH2


embedded image


H





2851


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2852


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2853


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2854


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2855


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2856


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2857


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2858


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2859


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2860


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2861


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2862


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2863


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2864


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2865


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2866


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2867


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2868


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2869


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2870


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2871


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2872


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H


2873


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2874


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2875


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2876


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2877


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2878


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2879


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2880


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2881


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2882


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2883


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2884


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2885


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2886


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2887


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2888


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2889


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2890


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2891


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2892


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2893


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2894


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2895


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2896


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2897


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2898


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2899


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2900


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2901


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2902


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2903


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2904


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2905


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2906


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2907


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2908


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2909


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2910


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2911


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2912


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2913


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2914


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2915


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2916


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2917


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2918


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2919


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2920


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2921


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2922


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2923


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2924


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2925


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2926


embedded image


C═O


embedded image


H—(CH)
CH2


embedded image


H





2927


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2928


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2929


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2930


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2931


embedded image


C═O


embedded image


H—(CH)
CH2


embedded image


H





2932


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2933


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2934


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2935


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2936


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2937


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2938


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2939


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2940


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2941


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2942


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2943


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2944


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2945


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2946


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2947


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2948


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2949


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2950


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2951


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2952


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2953


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2954


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2955


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2956


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2957


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2958


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2959


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2960


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2961


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2962


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2963


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2964


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2965


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2966


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2967


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2968


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2969


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2970


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2971


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2972


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2973


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2974


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2975


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2976


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2977


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2978


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2979


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2980


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2981


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2982


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2983


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2984


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2985


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2986


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2987


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2988


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2989


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2990


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2991


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2992


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2993


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2994


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2995


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2996


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2997


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2998


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





2999


embedded image


C═O


embedded image


H—(CH)
CH2


embedded image


H





3000


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3001


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3002


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3003


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3004


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3005


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3006


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3007


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3008


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3009


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3010


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3011


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3012


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3013


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3014


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3015


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3016


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3017


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3018


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3019


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3020


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3021


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3022


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3023


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3024


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3025


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3026


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3027


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3028


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3029


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3030


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3031


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3032


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3033


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3034


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3035


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3036


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3037


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3038


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3039


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3040


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3041


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3042


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3043


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3044


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3045


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3046


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3047


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3048


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3049


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3050


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3051


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3052


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3053


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3054


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3055


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3056


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3057


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3058


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3059


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3060


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3061


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3062


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3063


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3064


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3065


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3066


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3067


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3068


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3069


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3070


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3071


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3072


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3073


embedded image


C═O


embedded image




embedded image


CH2


embedded image


H





3074


embedded image


CH2


embedded image


H—(CH)
CH2


embedded image


H





3075


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3076


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3077


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3078


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3079


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3080


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3081


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3082


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3083


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3084


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3085


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3086


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3087


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3088


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3089


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3090


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3091


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3092


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3093


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3094


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3095


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3096


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3097


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3098


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3099


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3100


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3101


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3102


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3103


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3104


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3105


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3106


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3107


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3108


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3109


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3110


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3111


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3112


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3113


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3114


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3115


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3116


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3117


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3118


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3119


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3120


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3121


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3122


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3123


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3124


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3125


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3126


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3127


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3128


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3129


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3130


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3131


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3132


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3133


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3134


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3135


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3136


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3137


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3138


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3139


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3140


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3141


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3142


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3143


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3144


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3145


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3146


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3147


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3148


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3149


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3150


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3151


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3152


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3153


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3154


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3155


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3156


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3157


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3158


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3159


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3160


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3161


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3162


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3163


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3164


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3165


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H





3166


embedded image


CH2


embedded image




embedded image


CH2


embedded image


H










For all compounds in Table 5B, R5═H, R6═H and R7═H, except for compounds 2708-2719, wherein R6═CH3, compounds 2769, 2850, 2926, 2931, 2999, 3074, wherein R7═CH3 and for those compounds in which Fmoc-Pro or Fmoc-D-Pro is BB3 wherein R3 and (N)R7 form a five-membered ring, including the nitrogen atom as shown for R3. In addition, for those compounds in which BB2 is Fmoc-3-Azi, (N)R6 and R2 are part of a four-membered ring, including the nitrogen atom, as shown for R2 in Table 5B. Similarly, for compounds in which BB4 is Fmoc-3-Azi, (N)R8 and R4 are part of a four-membered ring, including the nitrogen atom, as shown for R4 in Table 5B. Lastly, for those compounds in which BB2 is Fmoc-4-Pip, (N)R6 and R2 are part of a six-membered ring, including the nitrogen atom, as shown for R2 in Table 5B.


Example 7
Synthesis of Another Representative Library of Macrocyclic Compounds of Formula (I) Containing Four Building Blocks with Selected Side Chain Functionalization with Additional Building Blocks

The synthetic scheme presented in Scheme 3 was followed to prepare the library of macrocyclic compounds 3167-3300 on solid support. The first building block amino acid (BB1) was loaded onto the resin (Method 1D). At this point, the first of two optional steps is executed whereby the BB1 side chain protecting group is selectively removed, then an additional building block added using one of the series of reaction sequences described in Method 1T as indicated. After this, removal of the a-N-protection (Method 1F) of BB1 is performed followed by connection of the next building block (BB2) via amide bond formation. Likewise, upon Fmoc cleavage of BB2, the third building block (BB3) was attached via amide coupling (Method 1G). After Fmoc deprotection, a second optional step is performed at this stage, again with reaction on the side chain of BB3 involving selective deprotection followed by the indicated Method 1T transformation. Deprotection of the a-nitrogen of BB3 (Method 1F) is followed by connection of BB4 using reductive amination (Methods 1I or 1J) or Fukuyama-Mitsunobu alkylation chemistry (via the procedure in Method 1P, not depicted in Scheme 3). Next, sequential Fmoc deprotection (Method 1F), cleavage from resin (Method 1Q), macrocyclization (Method 1R), and removal of the side chain protecting groups (Method 1S) were performed. The crude product that resulted was purified by preparative HPLC (Method 2B). The building blocks employed, as well as, when available, the quantities of each macrocycle obtained, the HPLC purity and confirmation of identity by mass spectrometry (MS) provided in Table 6A. Lastly, the individual structures of the compounds prepared are presented in Table 6B.


For the optional steps, one or both are executed as specified in Table 6A. When indicated that the functionalization has occurred, the orthogonal side chain protecting group of BB1 and/or BB3 is cleaved using Method 1F for Lys(Fmoc), Method 1AA for Dap(Alloc), Method 1BB for Asp(OAllyl) and Glu(OAllyl) or Method 1CC for Tyr(Allyl) as appropriate, then the freed functional group reacted with the indicated building block reagent using the listed experimental Method 1T transformation prior to the addition of the subsequent BB. However, for efficiency, it will be appreciated by those skilled in the art that it is also possible to add one or more building blocks prior to executing the indicated reaction sequence if the structure and protection strategy so permits.


















TABLE 6A







BB1 Side


BB3 Side

Wt1

MS


Cpd
BB1
Chain
BB2
BB3
Chain
BB4
(mg)
Purity2
(M + H)
























3167
Fmoc-D-
XT-13,
Fmoc-3-Azi
Fmoc-D-

Fmoc-S37
na
na
na



Tyr(Allyl)
Method 1T-10

His(Trt)


3168
Fmoc-
XT-12,
Fmoc-3-Azi
Fmoc-Sar

Fmoc-S37
na
na
na



Tyr(Allyl)
Method 1T-10


3169
Fmoc-
(R)-XT-15,
Fmoc-3-Azi
Fmoc-

Fmoc-S37
na
na
na



Tyr(Allyl)
Method 1T-10

Asp(OBut)


3170
Fmoc-
XT-14,
Fmoc-3-Azi
Fmoc-Ile

Fmoc-S37
na
na
na



Tyr(Allyl)
Method 1T-10


3171
Fmoc-
XT-10,
Fmoc-3-Azi
Fmoc-Pro

Fmoc-S37
na
na
na



Tyr(Allyl)
Method 1T-10


3172
Fmoc-
XT-13,
Fmoc-3-Azi
Fmoc-

Fmoc-S37
na
na
na



Tyr(Allyl)
Method 1T-10

Thr(But)


3173
Fmoc-D-
XT-11,
Fmoc-3-Azi
Fmoc-

Fmoc-S37
na
na
na



Tyr(Allyl)
Method 1T-10

Lys(Boc)


3174
Fmoc-D-
(R)-XT-15,
Fmoc-3-Azi
Fmoc-

Fmoc-S37
na
na
na



Tyr(Allyl)
Method 1T-10

Ser(But)


3175
Fmoc-D-
XT-11,
Fmoc-3-Azi
Fmoc-D-

Fmoc-S37
na
na
na



Tyr(Allyl)
Method 1T-10

Asp(OBut)


3176
Fmoc-D-
XT-13,
Fmoc-3-Azi
Fmoc-D-

Fmoc-S37
na
na
na



Tyr(Allyl)
Method 1T-10

Asp(OBut)


3177
Fmoc-
XT-14,
Fmoc-3-Azi
Fmoc-D-

Fmoc-S37
na
na
na



Tyr(Allyl)
Method 1T-10

Asn(Trt)


3178
Fmoc-
XT-14,
Fmoc-3-Azi
Fmoc-Val

Fmoc-S37
na
na
na



Tyr(Allyl)
Method 1T-10


3179
Fmoc-
XT-10,
Fmoc-3-Azi
Fmoc-Sar

Fmoc-S37
na
na
na



Tyr(Allyl)
Method 1T-10


3180
Fmoc-
XT-12,
Fmoc-3-Azi
Fmoc-Leu

Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10


3181
Fmoc-
(R)-XT-15,
Fmoc-3-Azi
Fmoc-D-

Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10

Ile


3182
Fmoc-
XT-13,
Fmoc-3-Azi
Fmoc-D-

Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10

Glu(OBut)


3183
Fmoc-D-
(R)-XT-15,
Fmoc-3-Azi
Fmoc-Pro

Fmoc-S37
na
na
na



Tyr(Allyl)
Method 1T-10


3184
Fmoc-D-
XT-13,
Fmoc-3-Azi
Fmoc-

Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10

Thr(But)


3185
Fmoc-
XT-12,
Fmoc-3-Azi
Fmoc-D-

Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10

Trp(Boc)


3186
Fmoc-D-
XT-13,
Fmoc-3-Azi
Fmoc-

Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10

Ser(But)


3187
Fmoc-
(R)-XT-15,
Fmoc-3-Azi
Fmoc-Leu

Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10


3188
Fmoc-
XT-13,
Fmoc-4-cis-
Fmoc-Phe

Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10
Ach


3189
Fmoc-
XT-11,
Fmoc-4-cis-
Fmoc-Sar

Fmoc-S37
na
na
na



Tyr(Allyl)
Method 1T-10
Ach


3190
Fmoc-
XT-11,
Fmoc-4-cis-
Fmoc-

Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10
Ach
Asp(OBut)


3191
Fmoc-
XT-12,
Fmoc-4-cis-
Fmoc-Ile

Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10
Ach


3192
Fmoc-D-
XT-14,
Fmoc-4-cis-
Fmoc-

Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10
Ach
Thr(But)


3193
Fmoc-
XT-11,
Fmoc-4-cis-
Fmoc-D-

Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10
Ach
Lys(Boc)


3194
Fmoc-D-
XT-11,
Fmoc-4-cis-
Fmoc-Met

Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10
Ach


3195
Fmoc-
XT-10,
Fmoc-4-cis-
Fmoc-

Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10
Ach
Asp(OBut)


3196
Fmoc-D-
XT-14,
Fmoc-4-cis-
Fmoc-

Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10
Ach
Asp(OBut)


3197
Fmoc-
(R)-XT-15,
Fmoc-4-cis-
Fmoc-

Fmoc-S9
na
na
na



Tyr(Allyl)
Method 1T-10
Ach
Arg(Pbf)


3198
Fmoc-
XT-17,
Fmoc-3-Azi
Fmoc-

Fmoc-S37
na
na
na



Glu(OAllyl)
Method 1T-1

Ser(But)


3199
Fmoc-D-
XT-23,
Fmoc-3-Azi
Fmoc-

Fmoc-S37
na
na
na



Glu(OAllyl)
Method 1T-1

Thr(But)


3200
Fmoc-D-
XT-22,
Fmoc-3-Azi
Fmoc-

Fmoc-S37
na
na
na



Asp(OAllyl)
Method 1T-1

Asn (Trt)


3201
Fmoc-
XT-22,
Fmoc-3-Azi
Fmoc-D-

Fmoc-S37
na
na
na



Asp(OAllyl)
Method 1T-1

Val


3202
Fmoc-
XT-16,
Fmoc-3-Azi
Fmoc-D-

Fmoc-S37
na
na
na



Asp(OAllyl)
Method 1T-1

Arg(Pbf)


3203
Fmoc-
XT-23,
Fmoc-3-Azi
Fmoc-Phe

Fmoc-S37
na
na
na



Asp(OAllyl)
Method 1T-1


3204
Fmoc-
XT-17,
Fmoc-3-Azi
Fmoc-Leu

Fmoc-S37
na
na
na



Asp(OAllyl)
Method 1T-1


3205
Fmoc-D-
XT-17,
Fmoc-3-Azi
Fmoc-D-

Fmoc-S37
na
na
na



Asp(OAllyl)
Method 1T-1

Asp(OBut)


3206
Fmoc-
XT-20,
Fmoc-3-Azi
Fmoc-Val

Fmoc-S37
na
na
na



Asp(OAllyl)
Method 1T-1


3207
Fmoc-D-
XT-22,
Fmoc-3-Azi
Fmoc-

Fmoc-S37
na
na
na



Asp(OAllyl)
Method 1T-1

Arg(Pbf)


3208
Fmoc-D-
XT-23,
Fmoc-3-Azi
Fmoc-Phe

Fmoc-S37
na
na
na



Asp(OAllyl)
Method 1T-1


3209
Fmoc-D-
XT-20,
Fmoc-3-Azi
Fmoc-

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1

Ser(But)


3210
Fmoc-
XT-17,
Fmoc-3-Azi
Fmoc-

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1

Glu(OBut)


3211
Fmoc-
XT-21,
Fmoc-3-Azi
Fmoc-

Fmoc-S9
na
na
na



Glu(OAllyl)
Method 1T-1

Ser(But)


3212
Fmoc-D-
XT-22,
Fmoc-3-Azi
Fmoc-D-

Fmoc-S9
na
na
na



Glu(OAllyl)
Method 1T-1

Asn(Trt)


3213
Fmoc-
XT-20,
Fmoc-3-Azi
Fmoc-

Fmoc-S9
na
na
na



Glu(OAllyl)
Method 1T-1

Thr(But)


3214
Fmoc-
XT-24,
Fmoc-3-Azi
Fmoc-Phe

Fmoc-S9
na
na
na



Glu(OAllyl)
Method 1T-1


3215
Fmoc-D-
XT-18,
Fmoc-3-Azi
Fmoc-Val

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1


3216
Fmoc-D-
XT-23,
Fmoc-3-Azi
Fmoc-

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1

Tyr(But)


3217
Fmoc-
XT-18,
Fmoc-3-Azi
Fmoc-

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1

Ser(But)


3218
Fmoc-D-
XT-24,
Fmoc-3-Azi
Fmoc-Leu

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1


3219
Fmoc-D-
XT-19,
Fmoc-3-Azi
Fmoc-

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1

Asp(OBut)


3220
Fmoc-
XT-24,
Fmoc-3-Azi
Fmoc-Val

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1


3221
Fmoc-
XT-19,
Fmoc-3-Azi
Fmoc-

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1

Arg(Pbf)


3222
Fmoc-
XT-22,
Fmoc-3-Azi
Fmoc-Phe

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1


3223
Fmoc-
XT-18,
Fmoc-4-cis-
Fmoc-D-

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1
Ach
Ser(But)


3224
Fmoc-
XT-21,
Fmoc-4-cis-
Fmoc-

Fmoc-S9
na
na
na



Glu(OAllyl)
Method 1T-1
Ach
Ser(But)


3225
Fmoc-
XT-22,
Fmoc-4-cis-
Fmoc-

Fmoc-S9
na
na
na



Glu(OAllyl)
Method 1T-1
Ach
Asn (Trt)


3226
Fmoc-
XT-21,
Fmoc-4-cis-
Fmoc-

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1
Ach
Trp(Boc)


3227
Fmoc-
XT-23,
Fmoc-4-cis-
Fmoc-

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1
Ach
Lys(Boc)


3228
Fmoc-
XT-20,
Fmoc-4-cis-
Fmoc-

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1
Ach
Asn (Trt)


3229
Fmoc-
XT-18,
Fmoc-4-cis-
Fmoc-D-

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1
Ach
Arg(Pbf)


3230
Fmoc-
XT-20,
Fmoc-4-cis-
Fmoc-Phe

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1
Ach


3231
Fmoc-
XT-16,
Fmoc-4-cis-
Fmoc-

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1
Ach
Lys(Boc)


3232
Fmoc-
XT-22,
Fmoc-4-cis-
Fmoc-

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1
Ach
Asp(OBut)


3233
Fmoc-
XT-22,
Fmoc-4-cis-
Fmoc-D-

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1
Ach
Val


3234
Fmoc-
XT-20,
Fmoc-4-cis-
Fmoc-D-

Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1
Ach
Tyr(But)


3235
Fmoc-

Fmoc-3-Azi
Fmoc-
XT-21,
Fmoc-S37
na
na
na



Trp(Boc)


Asp(OAllyl)
Method 1T-1


3236
Fmoc-D-

Fmoc-3-Azi
Fmoc-D-
XT-19,
Fmoc-S37
na
na
na



Tyr(But)


Asp(OAllyl)
Method 1T-1


3237
Fmoc-

Fmoc-3-Azi
Fmoc-D-
XT-20,
Fmoc-S37
na
na
na



Arg(Pbf)


Asp(OAllyl)
Method 1T-1


3238
Fmoc-D-

Fmoc-3-Azi
Fmoc-
XT-24,
Fmoc-S37
na
na
na



Arg(Pbf)


Glu(OAllyl)
Method 1T-1


3239
Fmoc-

Fmoc-3-Azi
Fmoc-
XT-23,
Fmoc-S37
na
na
na



Arg(Pbf)


Asp(OAllyl)
Method 1T-1


3240
Fmoc-

Fmoc-3-Azi
Fmoc-
XT-20,
Fmoc-S37
na
na
na



Ser(But)


Asp(OAllyl)
Method 1T-1


3241
Fmoc-D-

Fmoc-3-Azi
Fmoc-
XT-20,
Fmoc-S37
na
na
na



Ser(But)


Glu(OAllyl)
Method 1T-1


3242
Fmoc-

Fmoc-3-Azi
Fmoc-
XT-21,
Fmoc-S37
na
na
na



Thr(But)


Glu(OAllyl)
Method 1T-1


3243
Fmoc-Phe

Fmoc-3-Azi
Fmoc-
XT-24,
Fmoc-S37
na
na
na






Asp(OAllyl)
Method 1T-1


3244
Fmoc-Phe

Fmoc-3-Azi
Fmoc-D-
XT-24,
Fmoc-S37
na
na
na






Glu(OAllyl)
Method 1T-1


3245
Fmoc-

Fmoc-3-Azi
Fmoc-D-
XT-21,
Fmoc-S37
na
na
na



Trp(Boc)


Asp(OAllyl)
Method 1T-1


3246
Fmoc-

Fmoc-3-Azi
Fmoc-D-
XT-21,
Fmoc-S37
na
na
na



Lys(Boc)


Asp(OAllyl)
Method 1T-1


3247
Fmoc-D-

Fmoc-3-Azi
Fmoc-
XT-20,
Fmoc-S37
na
na
na



Ser(But)


Asp(OAllyl)
Method 1T-1


3248
Fmoc-Leu

Fmoc-3-Azi
Fmoc-D-
XT-18,
Fmoc-S37
na
na
na






Asp(OAllyl)
Method 1T-1


3249
Fmoc-Leu

Fmoc-3-Azi
Fmoc-
XT-16,
Fmoc-S37
na
na
na






Asp(OAllyl)
Method 1T-1


3250
Fmoc-D-

Fmoc-3-Azi
Fmoc-
XT-16,
Fmoc-S37
na
na
na



Asp(OBut)


Asp(OAllyl)
Method 1T-1


3251
Fmoc-D-

Fmoc-3-Azi
Fmoc-D-
XT-21,
Fmoc-S37
na
na
na



Asn (Trt)


Asp(OAllyl)
Method 1T-1


3252
Fmoc-

Fmoc-3-Azi
Fmoc-D-
XT-16,
Fmoc-S37
na
na
na



Tyr(But)


Asp(OAllyl)
Method 1T-1


3253
Fmoc-

Fmoc-3-Azi
Fmoc-D-
XT-16,
Fmoc-S9
na
na
na



Trp(Boc)


Glu(OAllyl)
Method 1T-1


3254
Fmoc-

Fmoc-3-Azi
Fmoc-
XT-20,
Fmoc-S9
na
na
na



Trp(Boc)


Asp(OAllyl)
Method 1T-1


3255
Fmoc-

Fmoc-3-Azi
Fmoc-
XT-20,
Fmoc-S9
na
na
na



Tyr(But)


Asp(OAllyl)
Method 1T-1


3256
Fmoc-D-

Fmoc-3-Azi
Fmoc-
XT-19,
Fmoc-S9
na
na
na



Arg(Pbf)


Glu(OAllyl)
Method 1T-1


3257
Fmoc-

Fmoc-3-Azi
Fmoc-
XT-17,
Fmoc-S9
na
na
na



Ser(But)


Glu(OAllyl)
Method 1T-1


3258
Fmoc-

Fmoc-3-Azi
Fmoc-
XT-22,
Fmoc-S9
na
na
na



Thr(But)


Glu(OAllyl)
Method 1T-1


3259
Fmoc-Phe

Fmoc-3-Azi
Fmoc-
XT-17,
Fmoc-S9
na
na
na






Glu(OAllyl)
Method 1T-1


3260
Fmoc-

Fmoc-3-Azi
Fmoc-
XT-22,
Fmoc-S9
na
na
na



Trp(Boc)


Asp(OAllyl)
Method 1T-1


3261
Fmoc-D-

Fmoc-3-Azi
Fmoc-
XT-20,
Fmoc-S9
na
na
na



Trp(Boc)


Asp(OAllyl)
Method 1T-1


3262
Fmoc-D-

Fmoc-3-Azi
Fmoc-
XT-24,
Fmoc-S9
na
na
na



Ser(But)


Asp(OAllyl)
Method 1T-1


3263
Fmoc-D-

Fmoc-3-Azi
Fmoc-
XT-21,
Fmoc-S9
na
na
na



Leu


Asp(OAllyl)
Method 1T-1


3264
Fmoc-D-

Fmoc-3-Azi
Fmoc-D-
XT-17,
Fmoc-S9
na
na
na



Asp(OBut)


Asp(OAllyl)
Method 1T-1


3265
Fmoc-D-

Fmoc-3-Azi
Fmoc-
XT-16,
Fmoc-S9
na
na
na



Asn(Trt)


Asp(OAllyl)
Method 1T-1


3266
Fmoc-Val

Fmoc-3-Azi
Fmoc-
XT-23,
Fmoc-S9
na
na
na






Asp(OAllyl)
Method 1T-1


3267
Fmoc-D-

Fmoc-3-Azi
Fmoc-D-
XT-23,
Fmoc-S9
na
na
na



Arg(Pbf)


Asp(OAllyl)
Method 1T-1


3268
Fmoc-

Fmoc-3-Azi
Fmoc-
XT-17,
Fmoc-S9
na
na
na



Arg(Pbf)


Asp(OAllyl)
Method 1T-1


3269
Fmoc-D-

Fmoc-3-Azi
Fmoc-
XT-24,
Fmoc-S9
na
na
na



Phe


Asp(OAllyl)
Method 1T-1


3270
Fmoc-

Fmoc-3-Azi
Fmoc-
XT-18,
Fmoc-S9
na
na
na



Tyr(But)


Asp(OAllyl)
Method 1T-1


3271
Fmoc-

Fmoc-4-cis-
Fmoc-
XT-18,
Fmoc-S9
na
na
na



Trp(Boc)

Ach
Asp(OAllyl)
Method 1T-1


3272
Fmoc-D-

Fmoc-4-cis-
Fmoc-
XT-24,
Fmoc-S9
na
na
na



Trp(Boc)

Ach
Glu(OAllyl)
Method 1T-1


3273
Fmoc-D-

Fmoc-4-cis-
Fmoc-
XT-22,
Fmoc-S9
na
na
na



Arg(Pbf)

Ach
Glu(OAllyl)
Method 1T-1


3274
Fmoc-

Fmoc-4-cis-
Fmoc-
XT-24,
Fmoc-S9
na
na
na



Arg(Pbf)

Ach
Glu(OAllyl)
Method 1T-1


3275
Fmoc-

Fmoc-4-cis-
Fmoc-
XT-17,
Fmoc-S9
na
na
na



Arg(Pbf)

Ach
Asp(OAllyl)
Method 1T-1


3276
Fmoc-

Fmoc-4-cis-
Fmoc-
XT-18,
Fmoc-S9
na
na
na



Ser(But)

Ach
Glu(OAllyl)
Method 1T-1


3277
Fmoc-

Fmoc-4-cis-
Fmoc-D-
XT-21,
Fmoc-S9
na
na
na



Thr(But)

Ach
Glu(OAllyl)
Method 1T-1


3278
Fmoc-

Fmoc-4-cis-
Fmoc-
XT-16,
Fmoc-S9
na
na
na



Glu(OBut)

Ach
Asp(OAllyl)
Method 1T-1


3279
Fmoc-Phe

Fmoc-4-cis-
Fmoc-D-
XT-18,
Fmoc-S9
na
na
na





Ach
Glu(OAllyl)
Method 1T-1


3280
Fmoc-

Fmoc-4-cis-
Fmoc-
XT-20,
Fmoc-S9
na
na
na



Lys(Boc)

Ach
Asp(OAllyl)
Method 1T-1


3281
Fmoc-

Fmoc-4-cis-
Fmoc-D-
XT-17,
Fmoc-S9
na
na
na



Ser(But)

Ach
Asp(OAllyl)
Method 1T-1


3282
Fmoc-

Fmoc-4-cis-
Fmoc-
XT-23,
Fmoc-S9
na
na
na



Asn(Trt)

Ach
Asp(OAllyl)
Method 1T-1


3283
Fmoc-Val

Fmoc-4-cis-
Fmoc-
XT-18,
Fmoc-S9
na
na
na





Ach
Asp(OAllyl)
Method 1T-1


3284
Fmoc-Val

Fmoc-4-cis-
Fmoc-
XT-17,
Fmoc-S9
na
na
na





Ach
Asp(OAllyl)
Method 1T-1


3285
Fmoc-

Fmoc-4-cis-
Fmoc-
XT-23,
Fmoc-S9
na
na
na



Arg(Pbf)

Ach
Asp(OAllyl)
Method 1T-1


3286
Fmoc-D-

Fmoc-4-cis-
Fmoc-D-
XT-20,
Fmoc-S9
na
na
na



Arg(Pbf)

Ach
Asp(OAllyl)
Method 1T-1


3287
Fmoc-Phe

Fmoc-4-cis-
Fmoc-
XT-21,
Fmoc-S9
na
na
na





Ach
Asp(OAllyl)
Method 1T-1


3288
Fmoc-D-

Fmoc-4-cis-
Fmoc-
XT-19,
Fmoc-S9
na
na
na



Tyr(But)

Ach
Asp(OAllyl)
Method 1T-1


3289
Fmoc-
XT-17,
Fmoc-3-Azi
Fmoc-
XT-18,
Fmoc-S37
na
na
na



Asp(OAllyl)
Method 1T-1

Glu(OAllyl)
Method 1T-1


3290
Fmoc-D-
XT-16,
Fmoc-3-Azi
Fmoc-D-
XT-18,
Fmoc-S37
na
na
na



Glu(OAllyl)
Method 1T-1

Asp(OAllyl)
Method 1T-1


3291
Fmoc-D-
XT-18,
Fmoc-3-Azi
Fmoc-
XT-21,
Fmoc-S37
na
na
na



Asp(OAllyl)
Method 1T-1

Asp(OAllyl)
Method 1T-1


3292
Fmoc-D-
XT-24,
Fmoc-3-Azi
Fmoc-D-
XT-20,
Fmoc-S37
na
na
na



Asp(OAllyl)
Method 1T-1

Asp(OAllyl)
Method 1T-1


3293
Fmoc-
XT-23,
Fmoc-3-Azi
Fmoc-
XT-22,
Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1

Glu(OAllyl)
Method 1T-1


3294
Fmoc-D-
XT-22,
Fmoc-3-Azi
Fmoc-D-
XT-23,
Fmoc-S9
na
na
na



Glu(OAllyl)
Method 1T-1

Asp(OAllyl)
Method 1T-1


3295
Fmoc-D-
XT-21,
Fmoc-3-Azi
Fmoc-D-
XT-23,
Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1

Asp(OAllyl)
Method 1T-1


3296
Fmoc-D-
XT-19,
Fmoc-3-Azi
Fmoc-
XT-19,
Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1

Asp(OAllyl)
Method 1T-1


3297
Fmoc-D-
XT-20,
Fmoc-4-cis-
Fmoc-
XT-19,
Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1
Ach
Glu(OAllyl)
Method 1T-1


3298
Fmoc-
XT-16,
Fmoc-4-cis-
Fmoc-
XT-20,
Fmoc-S9
na
na
na



Glu(OAllyl)
Method 1T-1
Ach
Asp(OAllyl)
Method 1T-1


3299
Fmoc-
XT-24,
Fmoc-4-cis-
Fmoc-
XT-24,
Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1
Ach
Asp(OAllyl)
Method 1T-1


3300
Fmoc-
XT-18,
Fmoc-4-cis-
Fmoc-
XT-21,
Fmoc-S9
na
na
na



Asp(OAllyl)
Method 1T-1
Ach
Asp(OAllyl)
Method 1T-1





na = not available



1All syntheses were carried out on the solid phase starting from 70-80 mg of 2-chlorotrityl chloride resin (typical loading 1.0 mmol/g).




2Purity is determined by analysis with LC-UV at 220 nm.














TABLE 6B









embedded image



















Cpd
R1a
Q1
R2
R3b
R7
R4
Q2

















3167


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3168


embedded image


C═O


embedded image


H—(CH)
CH3


embedded image


CH2





3169


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3170


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3171


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3172


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3173


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3174


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3175


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3176


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3177


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3178


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3179


embedded image


C═O


embedded image


H—(CH)
CH3


embedded image


CH2





3180


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3181


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3182


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3183


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3184


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3185


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3186


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3187


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3188


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3189


embedded image


C═O


embedded image


H—(CH)
CH3


embedded image


CH2





3190


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3191


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3192


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3193


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3194


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3195


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3196


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3197


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3198


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3199


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3200


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3201


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3202


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3203


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3204


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3205


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3206


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3207


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3208


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3209


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3210


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3211


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3212


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3213


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3214


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3215


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3216


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3217


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3218


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3219


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3220


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3221


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3222


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3223


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3224


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3225


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3226


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3227


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3328


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3229


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3230


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3231


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3232


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3233


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3234


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3235


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3236


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3237


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3238


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3239


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3240


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3241


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3242


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3243


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3244


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3245


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3246


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3247


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3248


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3249


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3250


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3251


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3252


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3253


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3254


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3255


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3256


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3257


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3258


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3259


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3260


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3261


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3262


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3263


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3264


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3265


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3266


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3267


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3268


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3269


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3270


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3271


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3272


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3273


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3274


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3275


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3276


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3277


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3278


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3279


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3280


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3281


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3282


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3283


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3284


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3285


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3286


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3287


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3288


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3289


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3290


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3291


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3292


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3293


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3294


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3295


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3296


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3297


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3298


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3299


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2





3300


embedded image


C═O


embedded image




embedded image


H


embedded image


CH2










For all the above compounds, R5═H and R8═H. Additionally, for those compounds in which Fmoc-Pro is BB3, R7 and (N)R3b form a five-membered ring, including the nitrogen atom, as shown for R3b in Table 6B. Also, for those compounds in which BB2 is Fmoc-3-Azi, (N)R6 and R2 are part of a four-membered ring, including the nitrogen atom, as shown for R2 in Table 6B.


Example 8
Synthesis of Another Representative Library of Macrocyclic Compounds of Formula (I) Containing Five Building Blocks

The synthetic scheme presented in Scheme 4 was followed to prepare the library of macrocyclic compounds 3301-3654 on solid support. The first building block amino acid (BB1) was loaded onto the resin (Method 1D), then, after removal of the Fmoc protection (Method 1F), the next building block (BB2) attached, using reductive amination (Methods 1I or 1J) or Fukuyama-Mitsunobu alkylation chemistry (via the procedure in Method 1P, not depicted in Scheme 4). Upon removal of the Fmoc protecting group, the third building block (BB3) was connected via amide bond formation (Method 1G), while the final building block (BB4) was attached, again after removal of Fmoc (Method 1F), using reductive amination (Methods 1I or 1J) or Fukuyama-Mitsunobu chemistry (via Method 1P, not shown in Scheme 4). Fmoc deprotection and amide bond coupling (method 1G) of BB5, the final component, completed the precursor construction. This was then followed by selective N-terminal deprotection (Method 1F), cleavage from the resin (Method 1Q) and macrocyclization (Method 1R). The side chain protecting groups were then removed (Method 1S) and the resulting crude product purified by preparative HPLC (Method 2B). The specific building blocks used for each macrocycle, the amount obtained, the HPLC purity and confirmation of identity by mass spectrometry (MS) are given in Table 7A, with the individual structures of the compounds thus prepared presented in Table 7B. The amounts of each macrocycle obtained, their HPLC purity and confirmation of their identity by mass spectrometry (MS) are provided in Table 7A. The individual structures of the compounds thus prepared are delineated in Table 7B.


For compounds 3315-3325, 3336-3348, 3365-3369 and 3551-3654 in Table 7A, the procedure described in Method 1P was employed to install the methyl group after addition of BB2. However, for compounds 3365-3367 and 3369, the N-Me amino acids indicated for BB1 are available commercially, while for compound 3368, the procedure described in Method 1P was used to attach the methyl group after incorporation of the corresponding non-methylated BB1.

















TABLE 7A











Wt1

MS


Cpd
BB1
BB2
BB3
BB4
BB5
(mg)
Purity2
(M + H)























3301
Fmoc-Phe
Fmoc-Ile
Fmoc-S9
Fmoc-D-Tyr(But)
Fmoc-S30
11.0
100
568


3302
Fmoc-Ile
Fmoc-D-Tyr(But)
Fmoc-S9
Fmoc-Phe
Fmoc-S30
13.0
100
568


3303
Fmoc-Tyr(But)
Fmoc-Phe
Fmoc-S9
Fmoc-Ile
Fmoc-S30
6.4
100
568


3304
Fmoc-Phe
Fmoc-Tyr(But)
Fmoc-S9
Fmoc-Ile
Fmoc-S30
2.6
94
568


3305
Fmoc-D-Ile
Fmoc-Phe
Fmoc-S9
Fmoc-Tyr(But)
Fmoc-S30
12.2
100
568


3306
Fmoc-D-Phe
Fmoc-Val
Fmoc-S9
Fmoc-D-Nva
Fmoc-S30
7.8
100
490


3307
Fmoc-D-Val
Fmoc-Nva
Fmoc-S9
Fmoc-Phe(3Cl)
Fmoc-S30
14.1
91
525


3308
Fmoc-Phe(3Cl)
Fmoc-Nva
Fmoc-S9
Fmoc-Val
Fmoc-S30
4.9
100
525


3309
Fmoc-Val
Fmoc-Phe(3Cl)
Fmoc-S9
Fmoc-Nva
Fmoc-S30
3.6
100
525


3310
Fmoc-Nva
Fmoc-D-Val
Fmoc-S9
Fmoc-Phe(3Cl)
Fmoc-S30
8.5
96
525


3311
Fmoc-Dap(Boc)
Fmoc-Phe(3Cl)
Fmoc-S9
Fmoc-Val
Fmoc-S30
5.5
100
512


3312
Fmoc-D-Phe(3Cl)
Fmoc-Dap(Boc)
Fmoc-S9
Fmoc-Val
Fmoc-S30
7.0
100
512


3313
Fmoc-Val
Fmoc-Phe(3Cl)
Fmoc-S9
Fmoc-Dap(Boc)
Fmoc-S30
5.7
100
512


3314
Fmoc-Dap(Boc)
Fmoc-Val
Fmoc-S9
Fmoc-Phe(3Cl)
Fmoc-S30
11.6
100
512


3315
Fmoc-D-Phe
Fmoc-D-Tyr(But)
Fmoc-S9
Fmoc-Ile
Fmoc-S29
7.3
93
568


3316
Fmoc-Ile
Fmoc-D-Phe
Fmoc-S9
Fmoc-D-Tyr(But)
Fmoc-S29
5.1
100
568


3317
Fmoc-Phe
Fmoc-D-Val
Fmoc-S9
Fmoc-Nva
Fmoc-S29
6.7
100
490


3318
Fmoc-Val
Fmoc-Nva
Fmoc-S9
Fmoc-Phe(3Cl)
Fmoc-S29
7.2
100
525


3319
Fmoc-Nva
Fmoc-Phe(3Cl)
Fmoc-S9
Fmoc-Val
Fmoc-S29
7.3
100
525


3320
Fmoc-D-Phe(3Cl)
Fmoc-Nva
Fmoc-S9
Fmoc-Val
Fmoc-S29
6.6
100
525


3321
Fmoc-Val
Fmoc-Phe(3Cl)
Fmoc-S9
Fmoc-Nva
Fmoc-S29
5.8
95
525


3322
Fmoc-Nva
Fmoc-D-Val
Fmoc-S9
Fmoc-Phe(3Cl)
Fmoc-S29
3.5
56
525


3323
Fmoc-Val
Fmoc-D-Dap(Boc)
Fmoc-S9
Fmoc-Phe(3Cl)
Fmoc-S29
9.9
94
512


3324
Fmoc-Phe(3Cl)
Fmoc-Dap(Boc)
Fmoc-S9
Fmoc-D-Val
Fmoc-S29
1.4
76
512


3325
Fmoc-Dap(Boc)
Fmoc-Val
Fmoc-S9
Fmoc-D-Phe(3Cl)
Fmoc-S29
3.9
na
512


3326
Fmoc-Tyr(But)
Fmoc-Phe
Fmoc-S37
Fmoc-Ile
Fmoc-S30
3.5
98
600


3327
Fmoc-Phe
Fmoc-D-Tyr(But)
Fmoc-S37
Fmoc-Ile
Fmoc-S30
9.2
100
600


3328
Fmoc-Ile
Fmoc-Phe
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-S30
6.0
100
600


3329
Fmoc-D-Nva
Fmoc-D-Phe(3Cl)
Fmoc-S37
Fmoc-Val
Fmoc-S30
9.6
100
557


3330
Fmoc-Phe(3Cl)
Fmoc-Nva
Fmoc-S37
Fmoc-Val
Fmoc-S30
4.3
100
557


3331
Fmoc-D-Nva
Fmoc-D-Val
Fmoc-S37
Fmoc-Phe(3Cl)
Fmoc-S30
10.3
100
557


3332
Fmoc-Phe(3Cl)
Fmoc-D-Val
Fmoc-S37
Fmoc-D-Dap(Boc)
Fmoc-S30
8.3
95
544


3333
Fmoc-Val
Fmoc-Dap(Boc)
Fmoc-S37
Fmoc-Phe(3Cl)
Fmoc-S30
10.2
97
544


3334
Fmoc-D-Dap(Boc)
Fmoc-Phe(3Cl)
Fmoc-S37
Fmoc-D-Val
Fmoc-S30
5.5
100
544


3335
Fmoc-Phe(3Cl)
Fmoc-Dap(Boc)
Fmoc-S37
Fmoc-D-Val
Fmoc-S30
5.4
96
544


3336
Fmoc-D-Phe
Fmoc-D-Ile
Fmoc-S37
Fmoc-D-Tyr(But)
Fmoc-S29
4.2
100
600


3337
Fmoc-Ile
Fmoc-D-Tyr(But)
Fmoc-S37
Fmoc-Phe
Fmoc-S29
5.0
100
600


3338
Fmoc-Tyr(But)
Fmoc-D-Phe
Fmoc-S37
Fmoc-Ile
Fmoc-S29
5.5
100
600


3339
Fmoc-D-Phe
Fmoc-D-Tyr(But)
Fmoc-S37
Fmoc-Ile
Fmoc-S29
3.3
100
600


3340
Fmoc-Ile
Fmoc-D-Phe
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-S29
5.8
100
600


3341
Fmoc-Tyr(But)
Fmoc-D-Ile
Fmoc-S37
Fmoc-Phe
Fmoc-S29
8.7
100
600


3342
Fmoc-Phe(3Cl)
Fmoc-Val
Fmoc-S37
Fmoc-Nva
Fmoc-S29
3.4
100
557


3343
Fmoc-Val
Fmoc-Nva
Fmoc-S37
Fmoc-Phe(3Cl)
Fmoc-S29
5.5
98
557


3344
Fmoc-D-Nva
Fmoc-D-Phe(3Cl)
Fmoc-S37
Fmoc-Val
Fmoc-S29
4.7
100
557


3345
Fmoc-Phe(3Cl)
Fmoc-D-Nva
Fmoc-S37
Fmoc-Val
Fmoc-S29
2.5
100
557


3346
Fmoc-Nva
Fmoc-Val
Fmoc-S37
Fmoc-D-Phe(3Cl)
Fmoc-S29
5.5
100
557


3347
Fmoc-D-Val
Fmoc-D-Dap(Boc)
Fmoc-S37
Fmoc-D-Phe(3Cl)
Fmoc-S29
6.7
100
544


3348
Fmoc-D-Val
Fmoc-Phe(3Cl)
Fmoc-S37
Fmoc-Dap(Boc)
Fmoc-S29
4.5
100
544


3349
Fmoc-Trp(Boc)
Tyr
Fmoc-S9
Fmoc-Asp(OBut)
Fmoc-S29
7.3
100
595


3350
Fmoc-D-Trp(Boc)
Fmoc-Asp(OBut)
Fmoc-S9
Fmoc-Ile
Fmoc-S29
8.3
100
545


3351
Fmoc-Trp(Boc)
Fmoc-D-Leu
Fmoc-S9
Fmoc-Glu(OBut)
Fmoc-S29
4.6
100
559


3352
Fmoc-D-Trp(Boc)
Fmoc-D-Ile
Fmoc-S9
Fmoc-D-Arg(Pbf)
Fmoc-S29
6.9
100
586


3353
Fmoc-Trp(Boc)
Fmoc-Glu(OBut)
Fmoc-S9
Fmoc-D-Pro
Fmoc-(S)-S31
5.8
100
557


3354
Fmoc-D-Trp(Boc)
Fmoc-D-Val
Fmoc-S9
Fmoc-Gln(Trt)
Fmoc-S29
4.0
100
544


3355
Fmoc-Trp(Boc)
Fmoc-D-Asn(Trt)
Fmoc-S9
Fmoc-D-His(Trt)
Fmoc-S29
5.1
100
568


3356
Fmoc-Tyr(But)
Fmoc-Arg(Pbf)
Fmoc-S9
Fmoc-Trp(Boc)
Fmoc-S29
4.6
100
636


3357
Fmoc-Tyr(But)
Fmoc-Phe
Fmoc-S9
Fmoc-His(Trt)
Fmoc-S29
3.2
100
578


3358
Fmoc-D-Tyr(But)
Fmoc-Trp(Boc)
Fmoc-S9
Fmoc-Sar
Fmoc-(S)-S31
7.5
100
565


3359
Fmoc-Tyr(But)
Fmoc-Pro
Fmoc-S37
Fmoc-Leu
Fmoc-S29
9.4
100
536


3360
Fmoc-D-Tyr(But)
Fmoc-Ser(But)
Fmoc-S9
Fmoc-Ile
Fmoc-S29
5.0
100
494


3361
Fmoc-Tyr(But)
Fmoc-Ile
Fmoc-S9
Fmoc-Glu(OBut)
Fmoc-S29
3.0
100
536


3362
Fmoc-D-Tyr(But)
Fmoc-D-Thr(But)
Fmoc-S9
Fmoc-Arg(Pbf)
Fmoc-S29
5.0
100
551


3363
Fmoc-Tyr(But)
Fmoc-His(Trt)
Fmoc-S9
Fmoc-D-Val
Fmoc-S29
5.5
100
530


3364
Fmoc-Tyr(But)
Fmoc-Val
Fmoc-S9
Fmoc-Gln(Trt)
Fmoc-S29
3.0
100
521


3365
Fmoc-N-Me-Tyr
Fmoc-D-Phe
Fmoc-S37
Fmoc-Ile
Fmoc-S29
2.3
95
614


3366
Fmoc-N-Me-Ile
Fmoc-D-Phe
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-S29
5.1
100
614


3367
Fmoc-N-Me-Val
Fmoc-Nva
Fmoc-S38
Fmoc-Phe(3Cl)
Fmoc-S29
1.2
100
571


3368
Fmoc-Phe(3Cl)
Fmoc-D-Nva
Fmoc-S39
Fmoc-Val
Fmoc-S29
3.5
100
571


3369
Fmoc-N-Me-D-Val
Fmoc-Phe(3Cl)
Fmoc-S40
Fmoc-Dap(Boc)
Fmoc-S29
6.4
92
558


3370
Fmoc-Arg(Pbf)
Fmoc-Trp(Boc)
Fmoc-S9
Fmoc-Tyr(But)
Fmoc-S29
na
na
na


3371
Fmoc-D-Arg(Pbf)
Fmoc-Tyr(But)
Fmoc-S9
Fmoc-D-Ile
Fmoc-S29
na
na
na


3372
Fmoc-Arg(Pbf)
Fmoc-D-Asp(OBut)
Fmoc-S9
Fmoc-Phe
Fmoc-S29
na
na
na


3373
Fmoc-Arg(Pbf)
Fmoc-D-Ile
Fmoc-S9
Fmoc-Thr(But)
Fmoc-S29
na
na
na


3374
Fmoc-Arg(Pbf)
Fmoc-Glu(OBut)
Fmoc-S9
Fmoc-Lys(Boc)
Fmoc-S29
na
na
na


3375
Fmoc-Arg(Pbf)
Fmoc-Sar
Fmoc-S37
Fmoc-D-Val
Fmoc-S29
na
na
na


3376
Fmoc-Arg(Pbf)
Fmoc-Pro
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


3377
Fmoc-Arg(Pbf)
Fmoc-Thr(But)
Fmoc-S9
Fmoc-Asn(Trt)
Fmoc-S29
na
na
na


3378
Fmoc-Arg(Pbf)
Fmoc-Val
Fmoc-S9
Fmoc-Ser(But)
Fmoc-S29
na
na
na


3379
Fmoc-Arg(Pbf)
Fmoc-D-Gln(Trt)
Fmoc-S9
Fmoc-D-Asp(OBut)
Fmoc-S29
na
na
na


3380
Fmoc-D-Arg(Pbf)
Fmoc-D-Asn(Trt)
Fmoc-S9
Fmoc-Pro
Fmoc-(S)-S31
na
na
na


3381
Fmoc-Ser(But)
Fmoc-Asn(Trt)
Fmoc-S9
Fmoc-D-Thr(But)
Fmoc-S29
na
na
na


3382
Fmoc-Ser(But)
Fmoc-Ser(But)
Fmoc-S9
Fmoc-Phe
Fmoc-S29
na
na
na


3383
Fmoc-Ser(But)
Fmoc-Glu(OBut)
Fmoc-S9
Fmoc-Sar
Fmoc-S29
na
na
na


3384
Fmoc-Asn(Trt)
Fmoc-Ser(But)
Fmoc-S9
Fmoc-Glu(OBut)
Fmoc-S29
na
na
na


3385
Fmoc-Asn(Trt)
Fmoc-Glu(OBut)
Fmoc-S9
Fmoc-D-Ser(But)
Fmoc-S29
na
na
na


3386
Fmoc-D-Thr(But)
Fmoc-Ser(But)
Fmoc-S9
Fmoc-Glu(OBut)
Fmoc-S29
na
na
na


3387
Fmoc-Glu(OBut)
Fmoc-Ser(But)
Fmoc-S9
Fmoc-Phe
Fmoc-S29
na
na
na


3388
Fmoc-Glu(OBut)
Fmoc-Thr(But)
Fmoc-S9
Fmoc-Sar
Fmoc-(S)-S31
na
na
na


3389
Fmoc-Glu(OBut)
Fmoc-Phe
Fmoc-S9
Fmoc-Asn(Trt)
Fmoc-S29
na
na
na


3390
Fmoc-Phe
Fmoc-Ser(But)
Fmoc-S9
Fmoc-Glu(OBut)
Fmoc-S29
na
na
na


3391
Fmoc-Phe
Fmoc-Thr(But)
Fmoc-S9
Fmoc-Asn(Trt)
Fmoc-S29
na
na
na


3392
Fmoc-D-Phe
Fmoc-Glu(OBut)
Fmoc-S9
Fmoc-D-Ser(But)
Fmoc-S29
na
na
na


3393
Fmoc-Trp(Boc)
Fmoc-Lys(Boc)
Fmoc-S9
Fmoc-Ser(But)
Fmoc-S29
na
na
na


3394
Fmoc-Trp(Boc)
Fmoc-Leu
Fmoc-S9
Fmoc-Tyr(But)
Fmoc-S29
na
na
na


3395
Fmoc-Trp(Boc)
Fmoc-D-Asp(OBut)
Fmoc-S9
Fmoc-Leu
Fmoc-S29
na
na
na


3396
Fmoc-Trp(Boc)
Fmoc-Val
Fmoc-S9
Fmoc-Arg(Pbf)
Fmoc-S29
na
na
na


3397
Fmoc-Trp(Boc)
Fmoc-Arg(Pbf)
Fmoc-S9
Fmoc-Phe
Fmoc-S29
na
na
na


3398
Fmoc-D-Trp(Boc)
Fmoc-Tyr(But)
Fmoc-S9
Fmoc-Lys(Boc)
Fmoc-S29
na
na
na


3399
Fmoc-D-Lys(Boc)
Fmoc-Ser(But)
Fmoc-S9
Fmoc-Asp(OBut)
Fmoc-S29
na
na
na


3400
Fmoc-D-Lys(Boc)
Fmoc-D-Leu
Fmoc-S9
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


3401
Fmoc-Lys(Boc)
Fmoc-Asn(Trt)
Fmoc-S9
Fmoc-Asp(OBut)
Fmoc-S29
na
na
na


3402
Fmoc-Lys(Boc)
Fmoc-Val
Fmoc-S9
Fmoc-Arg(Pbf)
Fmoc-S29
na
na
na


3403
Fmoc-D-Lys(Boc)
Fmoc-Arg(Pbf)
Fmoc-S9
Fmoc-Val
Fmoc-S29
na
na
na


3404
Fmoc-D-Lys(Boc)
Fmoc-D-Tyr(But)
Fmoc-S9
Fmoc-Sar
Fmoc-(S)-S31
na
na
na


3405
Fmoc-Ser(But)
Fmoc-Trp(Boc)
Fmoc-S9
Fmoc-Leu
Fmoc-S29
na
na
na


3406
Fmoc-D-Ser(But)
Fmoc-Lys(Boc)
Fmoc-S9
Fmoc-Asp(OBut)
Fmoc-S29
na
na
na


3407
Fmoc-D-Ser(But)
Fmoc-Val
Fmoc-S9
Fmoc-Arg(Pbf)
Fmoc-S29
na
na
na


3408
Fmoc-Ser(But)
Fmoc-D-Arg(Pbf)
Fmoc-S9
Fmoc-Val
Fmoc-S29
na
na
na


3409
Fmoc-Ser(But)
Fmoc-Phe
Fmoc-S9
Fmoc-Asn(Trt)
Fmoc-S29
na
na
na


3410
Fmoc-Ser(But)
Fmoc-D-Tyr(But)
Fmoc-S9
Fmoc-D-Trp(Boc)
Fmoc-S29
na
na
na


3411
Fmoc-Leu
Fmoc-D-Trp(Boc)
Fmoc-S9
Fmoc-Ser(But)
Fmoc-S29
na
na
na


3412
Fmoc-Leu
Fmoc-D-Ser(But)
Fmoc-S9
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


3413
Fmoc-D-Leu
Fmoc-Ser(But)
Fmoc-S9
Fmoc-Tyr(But)
Fmoc-S29
na
na
na


3414
Fmoc-Leu
Fmoc-D-Asp(OBut)
Fmoc-S9
Fmoc-Lys(Boc)
Fmoc-S29
na
na
na


3415
Fmoc-Leu
Fmoc-Asn(Trt)
Fmoc-S9
Fmoc-Ser(But)
Fmoc-S29
na
na
na


3416
Fmoc-D-Leu
Fmoc-D-Val
Fmoc-S9
Fmoc-D-Arg(Pbf)
Fmoc-S29
na
na
na


3417
Fmoc-D-Leu
Fmoc-Tyr(But)
Fmoc-S9
Fmoc-Ser(But)
Fmoc-S29
na
na
na


3418
Fmoc-D-Asp(OBut)
Fmoc-Trp(Boc)
Fmoc-S9
Fmoc-Sar
Fmoc-(S)-S31
na
na
na


3419
Fmoc-Asp(OBut)
Fmoc-Lys(Boc)
Fmoc-S9
Fmoc-Ser(But)
Fmoc-S29
na
na
na


3420
Fmoc-Asp(OBut)
Fmoc-Ser(But)
Fmoc-S9
Fmoc-Lys(Boc)
Fmoc-S29
na
na
na


3421
Fmoc-D-Asp(OBut)
Fmoc-Leu
Fmoc-S9
Fmoc-D-Trp(Boc)
Fmoc-S29
na
na
na


3422
Fmoc-Asp(OBut)
Fmoc-Asn(Trt)
Fmoc-S9
Fmoc-Lys(Boc)
Fmoc-S29
na
na
na


3423
Fmoc-Asp(OBut)
Fmoc-Val
Fmoc-S9
Fmoc-Arg(Pbf)
Fmoc-S29
na
na
na


3424
Fmoc-D-Asp(OBut)
Fmoc-Arg(Pbf)
Fmoc-S9
Fmoc-Tyr(But)
Fmoc-S29
na
na
na


3425
Fmoc-Asp(OBut)
Fmoc-D-Tyr(But)
Fmoc-S9
Fmoc-D-Leu
Fmoc-S29
na
na
na


3426
Fmoc-D-Asn(Trt)
Fmoc-Trp(Boc)
Fmoc-S9
Fmoc-Val
Fmoc-S29
na
na
na


3427
Fmoc-Asn(Trt)
Fmoc-D-Lys(Boc)
Fmoc-S9
Fmoc-D-Asp(OBut)
Fmoc-S29
na
na
na


3428
Fmoc-D-Asn(Trt)
Fmoc-D-Ser(But)
Fmoc-S9
Fmoc-Leu
Fmoc-S29
na
na
na


3429
Fmoc-Asn(Trt)
Fmoc-Asp(OBut)
Fmoc-S9
Fmoc-Lys(Boc)
Fmoc-S29
na
na
na


3430
Fmoc-Asn(Trt)
Fmoc-Val
Fmoc-S9
Fmoc-D-Arg(Pbf)
Fmoc-S29
na
na
na


3431
Fmoc-Asn(Trt)
Fmoc-Arg(Pbf)
Fmoc-S9
Fmoc-D-Phe
Fmoc-S29
na
na
na


3432
Fmoc-Val
Fmoc-Lys(Boc)
Fmoc-S9
Fmoc-Asn(Trt)
Fmoc-S29
na
na
na


3433
Fmoc-Val
Fmoc-Ser(But)
Fmoc-S9
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


3434
Fmoc-Val
Fmoc-D-Leu
Fmoc-S9
Fmoc-Arg(Pbf)
Fmoc-S29
na
na
na


3435
Fmoc-D-Val
Fmoc-D-Arg(Pbf)
Fmoc-S9
Fmoc-D-Tyr(But)
Fmoc-S29
na
na
na


3436
Fmoc-Val
Fmoc-Phe
Fmoc-S9
Fmoc-D-Lys(Boc)
Fmoc-S29
na
na
na


3437
Fmoc-D-Arg(Pbf)
Fmoc-Lys(Boc)
Fmoc-S9
Fmoc-D-Val
Fmoc-S29
na
na
na


3438
Fmoc-D-Arg(Pbf)
Fmoc-Ser(But)
Fmoc-S9
Fmoc-Leu
Fmoc-S29
na
na
na


3439
Fmoc-Arg(Pbf)
Fmoc-Asp(OBut)
Fmoc-S9
Fmoc-Phe
Fmoc-S29
na
na
na


3440
Fmoc-D-Arg(Pbf)
Fmoc-Asn(Trt)
Fmoc-S9
Fmoc-Sar
Fmoc-(S)-S31
na
na
na


3441
Fmoc-D-Arg(Pbf)
Fmoc-Val
Fmoc-S9
Fmoc-Lys(Boc)
Fmoc-S29
na
na
na


3442
Fmoc-D-Phe
Fmoc-D-Ser(But)
Fmoc-S9
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


3443
Fmoc-D-Phe
Fmoc-Leu
Fmoc-S9
Fmoc-D-Ser(But)
Fmoc-S29
na
na
na


3444
Fmoc-Phe
Fmoc-Asp(OBut)
Fmoc-S9
Fmoc-D-Arg(Pbf)
Fmoc-S29
na
na
na


3445
Fmoc-Phe
Fmoc-D-Val
Fmoc-S9
Fmoc-D-Leu
Fmoc-S29
na
na
na


3446
Fmoc-Phe
Fmoc-Arg(Pbf)
Fmoc-S9
Fmoc-Asp(OBut)
Fmoc-S29
na
na
na


3447
Fmoc-Phe
Fmoc-Tyr(But)
Fmoc-S9
Fmoc-Asn(Trt)
Fmoc-S29
na
na
na


3448
Fmoc-Tyr(But)
Fmoc-Ser(But)
Fmoc-S9
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


3449
Fmoc-Tyr(But)
Fmoc-D-Asn(Trt)
Fmoc-S9
Fmoc-D-Lys(Boc)
Fmoc-S29
na
na
na


3450
Fmoc-Tyr(But)
Fmoc-Arg(Pbf)
Fmoc-S9
Fmoc-D-Val
Fmoc-S29
na
na
na


3451
Fmoc-Trp(Boc)
Fmoc-D-Phe
Fmoc-S37
Fmoc-D-His(Trt)
Fmoc-S29
na
na
na


3452
Fmoc-Trp(Boc)
Fmoc-Sar
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-S29
na
na
na


3453
Fmoc-D-Trp(Boc)
Fmoc-His(Trt)
Fmoc-S37
Fmoc-Leu
Fmoc-S29
na
na
na


3454
Fmoc-Trp(Boc)
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-Asp(OBut)
Fmoc-S29
na
na
na


3455
Fmoc-Trp(Boc)
Fmoc-D-Asp(OBut)
Fmoc-S37
Fmoc-Ile
Fmoc-S29
na
na
na


3456
Fmoc-Trp(Boc)
Fmoc-Leu
Fmoc-S37
Fmoc-Glu(OBut)
Fmoc-S29
na
na
na


3457
Fmoc-Trp(Boc)
Fmoc-Arg(Pbf)
Fmoc-S37
Fmoc-D-Thr(But)
Fmoc-S29
na
na
na


3458
Fmoc-Trp(Boc)
Fmoc-Pro
Fmoc-S37
Fmoc-D-Lys(Boc)
Fmoc-S29
na
na
na


3459
Fmoc-Trp(Boc)
Fmoc-Thr(But)
Fmoc-S37
Fmoc-D-Ser(But)
Fmoc-S29
na
na
na


3460
Fmoc-Trp(Boc)
Fmoc-D-Lys(Boc)
Fmoc-S37
Fmoc-D-Val
Fmoc-S29
na
na
na


3461
Fmoc-D-Trp(Boc)
Fmoc-Asn(Trt)
Fmoc-S37
Fmoc-D-His(Trt)
Fmoc-S29
na
na
na


3462
Fmoc-D-Tyr(But)
Fmoc-Asp(OBut)
Fmoc-S37
Fmoc-Phe
Fmoc-S29
na
na
na


3463
Fmoc-Tyr(But)
Fmoc-D-Trp(Boc)
Fmoc-S37
Fmoc-Sar
Fmoc-(S)-S31
na
na
na


3464
Fmoc-Tyr(But)
Fmoc-Leu
Fmoc-S37
Fmoc-Asp(OBut)
Fmoc-S29
na
na
na


3465
Fmoc-Tyr(But)
Fmoc-Ser(But)
Fmoc-S37
Fmoc-Ile
Fmoc-S29
na
na
na


3466
Fmoc-Tyr(But)
Fmoc-Ile
Fmoc-S37
Fmoc-Glu(OBut)
Fmoc-S29
na
na
na


3467
Fmoc-Tyr(But)
Fmoc-Leu
Fmoc-S37
Fmoc-D-Lys(Boc)
Fmoc-S29
na
na
na


3468
Fmoc-Tyr(But)
Fmoc-Trp(Boc)
Fmoc-S37
Fmoc-Ser(But)
Fmoc-S29
na
na
na


3469
Fmoc-D-Tyr(But)
Fmoc-D-His(Trt)
Fmoc-S37
Fmoc-D-Asn(Trt)
Fmoc-S29
na
na
na


3470
Fmoc-D-Arg(Pbf)
Fmoc-Trp(Boc)
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-S29
na
na
na


3471
Fmoc-Arg(Pbf)
Fmoc-His(Trt)
Fmoc-S37
Fmoc-Leu
Fmoc-S29
na
na
na


3472
Fmoc-Arg(Pbf)
Fmoc-D-Tyr(But)
Fmoc-S37
Fmoc-Ile
Fmoc-S29
na
na
na


3473
Fmoc-Arg(Pbf)
Fmoc-Leu
Fmoc-S37
Fmoc-Glu(OBut)
Fmoc-S29
na
na
na


3474
Fmoc-Arg(Pbf)
Fmoc-Ile
Fmoc-S37
Fmoc-Thr(But)
Fmoc-S29
na
na
na


3475
Fmoc-Arg(Pbf)
Fmoc-Glu(OBut)
Fmoc-S37
Fmoc-Lys(Boc)
Fmoc-S29
na
na
na


3476
Fmoc-Arg(Pbf)
Fmoc-Pro
Fmoc-S37
Fmoc-D-Trp(Boc)
Fmoc-S29
na
na
na


3477
Fmoc-D-Arg(Pbf)
Fmoc-Thr(But)
Fmoc-S37
Fmoc-Asn(Trt)
Fmoc-S29
na
na
na


3478
Fmoc-Arg(Pbf)
Fmoc-Lys(Boc)
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-S29
na
na
na


3479
Fmoc-D-Arg(Pbf)
Fmoc-Ser(But)
Fmoc-S37
Fmoc-Leu
Fmoc-S29
na
na
na


3480
Fmoc-D-Arg(Pbf)
Fmoc-Gln(Trt)
Fmoc-S37
Fmoc-D-Asp(OBut)
Fmoc-S29
na
na
na


3481
Fmoc-D-Ser(But)
Fmoc-Asn(Trt)
Fmoc-S37
Fmoc-D-Thr(But)
Fmoc-S29
na
na
na


3482
Fmoc-Ser(But)
Fmoc-Thr(But)
Fmoc-S37
Fmoc-Glu(OBut)
Fmoc-S29
na
na
na


3483
Fmoc-Asn(Trt)
Fmoc-D-Thr(But)
Fmoc-S37
Fmoc-D-Phe
Fmoc-S29
na
na
na


3484
Fmoc-D-Thr(But)
Fmoc-Ser(But)
Fmoc-S37
Fmoc-Glu(OBut)
Fmoc-S29
na
na
na


3485
Fmoc-D-Thr(But)
Fmoc-Glu(OBut)
Fmoc-S37
Fmoc-D-Ser(But)
Fmoc-S29
na
na
na


3486
Fmoc-Thr(But)
Fmoc-Phe
Fmoc-S37
Fmoc-Sar
Fmoc-(S)-S31
na
na
na


3487
Fmoc-Glu(OBut)
Fmoc-D-Ser(But)
Fmoc-S37
Fmoc-D-Phe
Fmoc-S29
na
na
na


3488
Fmoc-Glu(OBut)
Fmoc-Asn(Trt)
Fmoc-S37
Fmoc-Ser(But)
Fmoc-S29
na
na
na


3489
Fmoc-Phe
Fmoc-Ser(But)
Fmoc-S37
Fmoc-Glu(OBut)
Fmoc-S29
na
na
na


3490
Fmoc-Phe
Fmoc-D-Asn(Trt)
Fmoc-S37
Fmoc-Thr(But)
Fmoc-S29
na
na
na


3491
Fmoc-Phe
Fmoc-Thr(But)
Fmoc-S37
Fmoc-D-Asn(Trt)
Fmoc-S29
na
na
na


3492
Fmoc-Trp(Boc)
Fmoc-Ser(But)
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-S29
na
na
na


3493
Fmoc-Trp(Boc)
Fmoc-D-Leu
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-S29
na
na
na


3494
Fmoc-Trp(Boc)
Fmoc-Asp(OBut)
Fmoc-S37
Fmoc-Leu
Fmoc-S29
na
na
na


3495
Fmoc-Trp(Boc)
Fmoc-D-Arg(Pbf)
Fmoc-S37
Fmoc-Phe
Fmoc-S29
na
na
na


3496
Fmoc-Trp(Boc)
Fmoc-Phe
Fmoc-S37
Fmoc-Sar
Fmoc-S29
na
na
na


3497
Fmoc-Trp(Boc)
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-D-Lys(Boc)
Fmoc-S29
na
na
na


3498
Fmoc-D-Lys(Boc)
Fmoc-Trp(Boc)
Fmoc-S37
Fmoc-Leu
Fmoc-S29
na
na
na


3499
Fmoc-Lys(Boc)
Fmoc-Asn(Trt)
Fmoc-S37
Fmoc-D-Asp(OBut)
Fmoc-S29
na
na
na


3500
Fmoc-Lys(Boc)
Fmoc-Val
Fmoc-S37
Fmoc-Arg(Pbf)
Fmoc-S29
na
na
na


3501
Fmoc-Lys(Boc)
Fmoc-Arg(Pbf)
Fmoc-S37
Fmoc-Val
Fmoc-S29
na
na
na


3502
Fmoc-Ser(But)
Fmoc-Leu
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


3503
Fmoc-Ser(But)
Fmoc-Asp(OBut)
Fmoc-S37
Fmoc-Lys(Boc)
Fmoc-S29
na
na
na


3504
Fmoc-Ser(But)
Fmoc-D-Asn(Trt)
Fmoc-S37
Fmoc-Asp(OBut)
Fmoc-S29
na
na
na


3505
Fmoc-D-Ser(But)
Fmoc-Val
Fmoc-S37
Fmoc-D-Arg(Pbf)
Fmoc-S29
na
na
na


3506
Fmoc-Leu
Fmoc-Trp(Boc)
Fmoc-S37
Fmoc-Ser(But)
Fmoc-S29
na
na
na


3507
Fmoc-Leu
Fmoc-Ser(But)
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


3508
Fmoc-D-Leu
Fmoc-Asp(OBut)
Fmoc-S37
Fmoc-Lys(Boc)
Fmoc-S29
na
na
na


3509
Fmoc-D-Leu
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-D-Ser(But)
Fmoc-S29
na
na
na


3510
Fmoc-Leu
Fmoc-D-Trp(Boc)
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-S29
na
na
na


3511
Fmoc-Leu
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


3512
Fmoc-Asp(OBut)
Fmoc-Lys(Boc)
Fmoc-S37
Fmoc-D-Ser(But)
Fmoc-S29
na
na
na


3513
Fmoc-D-Asp(OBut)
Fmoc-D-Ser(But)
Fmoc-S37
Fmoc-D-Lys(Boc)
Fmoc-S29
na
na
na


3514
Fmoc-Asp(OBut)
Fmoc-D-Val
Fmoc-S37
Fmoc-Arg(Pbf)
Fmoc-S29
na
na
na


3515
Fmoc-Asp(OBut)
Fmoc-D-Arg(Pbf)
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-S29
na
na
na


3516
Fmoc-D-Asp(OBut)
Fmoc-Phe
Fmoc-S37
Fmoc-D-Arg(Pbf)
Fmoc-S29
na
na
na


3517
Fmoc-Asp(OBut)
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-Leu
Fmoc-S29
na
na
na


3518
Fmoc-Asn(Trt)
Fmoc-Lys(Boc)
Fmoc-S37
Fmoc-Asp(OBut)
Fmoc-S29
na
na
na


3519
Fmoc-Asn(Trt)
Fmoc-Leu
Fmoc-S37
Fmoc-D-Ser(But)
Fmoc-S29
na
na
na


3520
Fmoc-Asn(Trt)
Fmoc-Asp(OBut)
Fmoc-S37
Fmoc-Lys(Boc)
Fmoc-S29
na
na
na


3521
Fmoc-D-Asn(Trt)
Fmoc-D-Val
Fmoc-S37
Fmoc-D-Arg(Pbf)
Fmoc-S29
na
na
na


3522
Fmoc-D-Asn(Trt)
Fmoc-D-Phe
Fmoc-S37
Fmoc-Asn(Trt)
Fmoc-S29
na
na
na


3523
Fmoc-Asn(Trt)
Fmoc-D-Tyr(But)
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


3524
Fmoc-Val
Fmoc-Trp(Boc)
Fmoc-S37
Fmoc-D-Ser(But)
Fmoc-S29
na
na
na


3525
Fmoc-Val
Fmoc-Lys(Boc)
Fmoc-S37
Fmoc-D-Asn(Trt)
Fmoc-S29
na
na
na


3526
Fmoc-D-Val
Fmoc-D-Ser(But)
Fmoc-S37
Fmoc-D-Trp(Boc)
Fmoc-S29
na
na
na


3527
Fmoc-D-Val
Fmoc-Leu
Fmoc-S37
Fmoc-Arg(Pbf)
Fmoc-S29
na
na
na


3528
Fmoc-Val
Fmoc-Asp(OBut)
Fmoc-S37
Fmoc-Sar
Fmoc-(S)-S31
na
na
na


3529
Fmoc-Val
Fmoc-Asn(Trt)
Fmoc-S37
Fmoc-Phe
Fmoc-S29
na
na
na


3530
Fmoc-Val
Fmoc-D-Arg(Pbf)
Fmoc-S37
Fmoc-D-Tyr(But)
Fmoc-S29
na
na
na


3531
Fmoc-Arg(Pbf)
Fmoc-Trp(Boc)
Fmoc-S37
Fmoc-D-Ser(But)
Fmoc-S29
na
na
na


3532
Fmoc-Arg(Pbf)
Fmoc-Ser(But)
Fmoc-S37
Fmoc-D-Leu
Fmoc-S29
na
na
na


3533
Fmoc-Arg(Pbf)
Fmoc-Leu
Fmoc-S37
Fmoc-D-Asn(Trt)
Fmoc-S29
na
na
na


3534
Fmoc-Arg(Pbf)
Fmoc-D-Asp(OBut)
Fmoc-S37
Fmoc-D-Phe
Fmoc-S29
na
na
na


3535
Fmoc-Arg(Pbf)
Fmoc-Val
Fmoc-S37
Fmoc-D-Lys(Boc)
Fmoc-S29
na
na
na


3536
Fmoc-D-Arg(Pbf)
Fmoc-Phe
Fmoc-S37
Fmoc-D-Asp(OBut)
Fmoc-S29
na
na
na


3537
Fmoc-Arg(Pbf)
Fmoc-D-Tyr(But)
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


3538
Fmoc-Phe
Fmoc-Trp(Boc)
Fmoc-S37
Fmoc-Lys(Boc)
Fmoc-S29
na
na
na


3539
Fmoc-Phe
Fmoc-D-Lys(Boc)
Fmoc-S37
Fmoc-Sar
Fmoc-(S)-S31
na
na
na


3540
Fmoc-D-Phe
Fmoc-Ser(But)
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


3541
Fmoc-D-Phe
Fmoc-Leu
Fmoc-S37
Fmoc-D-Ser(But)
Fmoc-S29
na
na
na


3542
Fmoc-D-Phe
Fmoc-D-Asp(OBut)
Fmoc-S37
Fmoc-Arg(Pbf)
Fmoc-S29
na
na
na


3543
Fmoc-D-Phe
Fmoc-Asn(Trt)
Fmoc-S37
Fmoc-Lys(Boc)
Fmoc-S29
na
na
na


3544
Fmoc-D-Phe
Fmoc-Arg(Pbf)
Fmoc-S37
Fmoc-Asp(OBut)
Fmoc-S29
na
na
na


3545
Fmoc-D-Tyr(But)
Fmoc-Trp(Boc)
Fmoc-S37
Fmoc-Leu
Fmoc-S29
na
na
na


3546
Fmoc-Tyr(But)
Fmoc-D-Lys(Boc)
Fmoc-S37
Fmoc-D-Asp(OBut)
Fmoc-S29
na
na
na


3547
Fmoc-Tyr(But)
Fmoc-Ser(But)
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


3548
Fmoc-D-Tyr(But)
Fmoc-D-Leu
Fmoc-S37
Fmoc-D-Ser(But)
Fmoc-S29
na
na
na


3549
Fmoc-Tyr(But)
Fmoc-Asp(OBut)
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


3550
Fmoc-Tyr(But)
Fmoc-D-Arg(Pbf)
Fmoc-S37
Fmoc-Val
Fmoc-S29
na
na
na


3551
Fmoc-Trp(Boc)
Fmoc-D-Phe
Fmoc-S37
Fmoc-D-His(Trt)
Fmoc-S29
na
na
na


3552
Fmoc-Trp(Boc)
Fmoc-Sar
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-S29
na
na
na


3553
Fmoc-Trp(Boc)
Fmoc-His(Trt)
Fmoc-S37
Fmoc-Leu
Fmoc-S29
na
na
na


3554
Fmoc-D-Trp(Boc)
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-Asp(OBut)
Fmoc-S29
na
na
na


3555
Fmoc-Trp(Boc)
Fmoc-Leu
Fmoc-S37
Fmoc-Glu(OBut)
Fmoc-S29
na
na
na


3556
Fmoc-D-Trp(Boc)
Fmoc-Ile
Fmoc-S37
Fmoc-D-Arg(Pbf)
Fmoc-S29
na
na
na


3557
Fmoc-Trp(Boc)
Fmoc-Arg(Pbf)
Fmoc-S37
Fmoc-Thr(But)
Fmoc-S29
na
na
na


3558
Fmoc-Trp(Boc)
Fmoc-D-Pro
Fmoc-S37
Fmoc-D-Lys(Boc)
Fmoc-S29
na
na
na


3559
Fmoc-D-Trp(Boc)
Fmoc-Thr(But)
Fmoc-S37
Fmoc-Ser(But)
Fmoc-S29
na
na
na


3560
Fmoc-Trp(Boc)
Fmoc-Lys(Boc)
Fmoc-S37
Fmoc-Val
Fmoc-S29
na
na
na


3561
Fmoc-Trp(Boc)
Fmoc-D-Val
Fmoc-S37
Fmoc-Gln(Trt)
Fmoc-S29
na
na
na


3562
Fmoc-Trp(Boc)
Fmoc-D-Gln(Trt)
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-S29
na
na
na


3563
Fmoc-Trp(Boc)
Fmoc-Asn(Trt)
Fmoc-S37
Fmoc-D-His(Trt)
Fmoc-S29
na
na
na


3564
Fmoc-Tyr(But)
Fmoc-Asp(OBut)
Fmoc-S37
Fmoc-Phe
Fmoc-S29
na
na
na


3565
Fmoc-Tyr(But)
Fmoc-Arg(Pbf)
Fmoc-S37
Fmoc-D-Trp(Boc)
Fmoc-S29
na
na
na


3566
Fmoc-Tyr(But)
Fmoc-Phe
Fmoc-S37
Fmoc-His(Trt)
Fmoc-S29
na
na
na


3567
Fmoc-D-Tyr(But)
Fmoc-D-Trp(Boc)
Fmoc-S37
Fmoc-Sar
Fmoc-S29
na
na
na


3568
Fmoc-Tyr(But)
Fmoc-Ile
Fmoc-S37
Fmoc-Glu(OBut)
Fmoc-S29
na
na
na


3569
Fmoc-Tyr(But)
Fmoc-Thr(But)
Fmoc-S37
Fmoc-Arg(Pbf)
Fmoc-S29
na
na
na


3570
Fmoc-Tyr(But)
Fmoc-D-Phe
Fmoc-S37
Fmoc-Thr(But)
Fmoc-S29
na
na
na


3571
Fmoc-Tyr(But)
Fmoc-Leu
Fmoc-S37
Fmoc-Lys(Boc)
Fmoc-S29
na
na
na


3572
Fmoc-Tyr(But)
Fmoc-His(Trt)
Fmoc-S37
Fmoc-Val
Fmoc-S29
na
na
na


3573
Fmoc-D-Tyr(But)
Fmoc-D-Trp(Boc)
Fmoc-S37
Fmoc-Ser(But)
Fmoc-S29
na
na
na


3574
Fmoc-Arg(Pbf)
Fmoc-D-Phe
Fmoc-S37
Fmoc-D-Trp(Boc)
Fmoc-S29
na
na
na


3575
Fmoc-D-Arg(Pbf)
Fmoc-His(Trt)
Fmoc-S37
Fmoc-Leu
Fmoc-S29
na
na
na


3576
Fmoc-Arg(Pbf)
Fmoc-D-Tyr(But)
Fmoc-S37
Fmoc-D-Ile
Fmoc-S29
na
na
na


3577
Fmoc-D-Arg(Pbf)
Fmoc-D-Asp(OBut)
Fmoc-S37
Fmoc-D-Phe
Fmoc-S29
na
na
na


3578
Fmoc-Arg(Pbf)
Fmoc-Leu
Fmoc-S37
Fmoc-Glu(OBut)
Fmoc-S29
na
na
na


3579
Fmoc-D-Arg(Pbf)
Fmoc-Ile
Fmoc-S37
Fmoc-Thr(But)
Fmoc-S29
na
na
na


3580
Fmoc-Arg(Pbf)
Fmoc-Glu(OBut)
Fmoc-S37
Fmoc-Lys(Boc)
Fmoc-S29
na
na
na


3581
Fmoc-D-Arg(Pbf)
Fmoc-Sar
Fmoc-S37
Fmoc-Val
Fmoc-S29
na
na
na


3582
Fmoc-Arg(Pbf)
Fmoc-D-Gln(Trt)
Fmoc-S37
Fmoc-Asp(OBut)
Fmoc-S29
na
na
na


3583
Fmoc-Arg(Pbf)
Fmoc-Asn(Trt)
Fmoc-S37
Fmoc-Pro
Fmoc-(S)-S31
na
na
na


3584
Fmoc-D-Ser(But)
Fmoc-Ser(But)
Fmoc-S37
Fmoc-Phe
Fmoc-S29
na
na
na


3585
Fmoc-D-Ser(But)
Fmoc-D-Phe
Fmoc-S37
Fmoc-Asn(Trt)
Fmoc-S29
na
na
na


3586
Fmoc-D-Asn(Trt)
Fmoc-Ser(But)
Fmoc-S37
Fmoc-Glu(OBut)
Fmoc-S29
na
na
na


3587
Fmoc-Asn(Trt)
Fmoc-Glu(OBut)
Fmoc-S37
Fmoc-D-Ser(But)
Fmoc-S29
na
na
na


3588
Fmoc-Thr(But)
Fmoc-Ser(But)
Fmoc-S37
Fmoc-Glu(OBut)
Fmoc-S29
na
na
na


3589
Fmoc-D-Thr(But)
Fmoc-D-Phe
Fmoc-S37
Fmoc-Sar
Fmoc-S29
na
na
na


3590
Fmoc-Glu(OBut)
Fmoc-D-Ser(But)
Fmoc-S37
Fmoc-Phe
Fmoc-S29
na
na
na


3591
Fmoc-Glu(OBut)
Fmoc-Asn(Trt)
Fmoc-S37
Fmoc-Ser(But)
Fmoc-S29
na
na
na


3592
Fmoc-Glu(OBut)
Fmoc-Thr(But)
Fmoc-S37
Fmoc-Sar
Fmoc-(S)-S31
na
na
na


3593
Fmoc-Glu(OBut)
Fmoc-Phe
Fmoc-S37
Fmoc-Asn(Trt)
Fmoc-S29
na
na
na


3594
Fmoc-D-Phe
Fmoc-Glu(OBut)
Fmoc-S37
Fmoc-Ser(But)
Fmoc-S29
na
na
na


3595
Fmoc-Trp(Boc)
Fmoc-Lys(Boc)
Fmoc-S37
Fmoc-D-Ser(But)
Fmoc-S29
na
na
na


3596
Fmoc-D-Trp(Boc)
Fmoc-Ser(But)
Fmoc-S37
Fmoc-D-Tyr(But)
Fmoc-S29
na
na
na


3597
Fmoc-D-Trp(Boc)
Fmoc-D-Leu
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-S29
na
na
na


3598
Fmoc-Trp(Boc)
Fmoc-D-Asp(OBut)
Fmoc-S37
Fmoc-Leu
Fmoc-S29
na
na
na


3599
Fmoc-Trp(Boc)
Fmoc-Val
Fmoc-S37
Fmoc-Arg(Pbf)
Fmoc-S29
na
na
na


3600
Fmoc-D-Trp(Boc)
Fmoc-D-Arg(Pbf)
Fmoc-S37
Fmoc-D-Phe
Fmoc-S29
na
na
na


3601
Fmoc-Trp(Boc)
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-Lys(Boc)
Fmoc-S29
na
na
na


3602
Fmoc-D-Lys(Boc)
Fmoc-D-Trp(Boc)
Fmoc-S37
Fmoc-Leu
Fmoc-S29
na
na
na


3603
Fmoc-Lys(Boc)
Fmoc-Leu
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


3604
Fmoc-Lys(Boc)
Fmoc-Asp(OBut)
Fmoc-S37
Fmoc-D-Ser(But)
Fmoc-S29
na
na
na


3605
Fmoc-Ser(But)
Fmoc-Trp(Boc)
Fmoc-S37
Fmoc-Leu
Fmoc-S29
na
na
na


3606
Fmoc-Ser(But)
Fmoc-Lys(Boc)
Fmoc-S37
Fmoc-D-Asp(OBut)
Fmoc-S29
na
na
na


3607
Fmoc-Ser(But)
Fmoc-Leu
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


3608
Fmoc-Ser(But)
Fmoc-D-Asp(OBut)
Fmoc-S37
Fmoc-D-Lys(Boc)
Fmoc-S29
na
na
na


3609
Fmoc-Ser(But)
Fmoc-Asn(Trt)
Fmoc-S37
Fmoc-Asp(OBut)
Fmoc-S29
na
na
na


3610
Fmoc-Ser(But)
Fmoc-Arg(Pbf)
Fmoc-S37
Fmoc-Val
Fmoc-S29
na
na
na


3611
Fmoc-Ser(But)
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


3612
Fmoc-Leu
Fmoc-Trp(Boc)
Fmoc-S37
Fmoc-Ser(But)
Fmoc-S29
na
na
na


3613
Fmoc-Leu
Fmoc-D-Ser(But)
Fmoc-S37
Fmoc-D-Trp(Boc)
Fmoc-S29
na
na
na


3614
Fmoc-D-Leu
Fmoc-D-Ser(But)
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-S29
na
na
na


3615
Fmoc-Leu
Fmoc-Asp(OBut)
Fmoc-S37
Fmoc-Lys(Boc)
Fmoc-S29
na
na
na


3616
Fmoc-D-Leu
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-Ser(But)
Fmoc-S29
na
na
na


3617
Fmoc-D-Leu
Fmoc-Trp(Boc)
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-S29
na
na
na


3618
Fmoc-Leu
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-D-Trp(Boc)
Fmoc-S29
na
na
na


3619
Fmoc-D-Asp(OBut)
Fmoc-Lys(Boc)
Fmoc-S37
Fmoc-Ser(But)
Fmoc-S29
na
na
na


3620
Fmoc-Asp(OBut)
Fmoc-Ser(But)
Fmoc-S37
Fmoc-D-Lys(Boc)
Fmoc-S29
na
na
na


3621
Fmoc-D-Asp(OBut)
Fmoc-Leu
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


3622
Fmoc-D-Asp(OBut)
Fmoc-D-Asn(Trt)
Fmoc-S37
Fmoc-D-Lys(Boc)
Fmoc-S29
na
na
na


3623
Fmoc-Asp(OBut)
Fmoc-D-Val
Fmoc-S37
Fmoc-Arg(Pbf)
Fmoc-S29
na
na
na


3624
Fmoc-Asp(OBut)
Fmoc-D-Tyr(But)
Fmoc-S37
Fmoc-Leu
Fmoc-S29
na
na
na


3625
Fmoc-Asn(Trt)
Fmoc-D-Lys(Boc)
Fmoc-S37
Fmoc-D-Asp(OBut)
Fmoc-S29
na
na
na


3626
Fmoc-Asn(Trt)
Fmoc-D-Ser(But)
Fmoc-S37
Fmoc-Leu
Fmoc-S29
na
na
na


3627
Fmoc-Asn(Trt)
Fmoc-D-Leu
Fmoc-S37
Fmoc-D-Ser(But)
Fmoc-S29
na
na
na


3628
Fmoc-Asn(Trt)
Fmoc-Asp(OBut)
Fmoc-S37
Fmoc-Lys(Boc)
Fmoc-S29
na
na
na


3629
Fmoc-D-Asn(Trt)
Fmoc-Val
Fmoc-S37
Fmoc-Arg(Pbf)
Fmoc-S29
na
na
na


3630
Fmoc-Asn(Trt)
Fmoc-D-Arg(Pbf)
Fmoc-S37
Fmoc-Phe
Fmoc-S29
na
na
na


3631
Fmoc-Asn(Trt)
Fmoc-D-Phe
Fmoc-S37
Fmoc-D-Asn(Trt)
Fmoc-S29
na
na
na


3632
Fmoc-Asn(Trt)
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


3633
Fmoc-D-Val
Fmoc-Lys(Boc)
Fmoc-S37
Fmoc-Asn(Trt)
Fmoc-S29
na
na
na


3634
Fmoc-Val
Fmoc-Leu
Fmoc-S37
Fmoc-Arg(Pbf)
Fmoc-S29
na
na
na


3635
Fmoc-Val
Fmoc-D-Asp(OBut)
Fmoc-S37
Fmoc-Sar
Fmoc-(S)-S31
na
na
na


3636
Fmoc-Val
Fmoc-Arg(Pbf)
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-S29
na
na
na


3637
Fmoc-D-Val
Fmoc-Phe
Fmoc-S37
Fmoc-Lys(Boc)
Fmoc-S29
na
na
na


3638
Fmoc-Val
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-Leu
Fmoc-S29
na
na
na


3639
Fmoc-Arg(Pbf)
Fmoc-D-Lys(Boc)
Fmoc-S37
Fmoc-Val
Fmoc-S29
na
na
na


3640
Fmoc-Arg(Pbf)
Fmoc-D-Ser(But)
Fmoc-S37
Fmoc-Leu
Fmoc-S29
na
na
na


3641
Fmoc-D-Arg(Pbf)
Fmoc-Leu
Fmoc-S37
Fmoc-Asn(Trt)
Fmoc-S29
na
na
na


3642
Fmoc-D-Arg(Pbf)
Fmoc-Asp(OBut)
Fmoc-S37
Fmoc-Phe
Fmoc-S29
na
na
na


3643
Fmoc-Arg(Pbf)
Fmoc-Asn(Trt)
Fmoc-S37
Fmoc-Sar
Fmoc-(S)-S31
na
na
na


3644
Fmoc-D-Arg(Pbf)
Fmoc-Phe
Fmoc-S37
Fmoc-Asp(OBut)
Fmoc-S29
na
na
na


3645
Fmoc-D-Phe
Fmoc-Trp(Boc)
Fmoc-S37
Fmoc-Lys(Boc)
Fmoc-S29
na
na
na


3646
Fmoc-Phe
Fmoc-Leu
Fmoc-S37
Fmoc-D-Ser(But)
Fmoc-S29
na
na
na


3647
Fmoc-D-Phe
Fmoc-D-Val
Fmoc-S37
Fmoc-Leu
Fmoc-S29
na
na
na


3648
Fmoc-D-Phe
Fmoc-Arg(Pbf)
Fmoc-S37
Fmoc-Asp(OBut)
Fmoc-S29
na
na
na


3649
Fmoc-Phe
Fmoc-Tyr(But)
Fmoc-S37
Fmoc-D-Asn(Trt)
Fmoc-S29
na
na
na


3650
Fmoc-Tyr(But)
Fmoc-D-Trp(Boc)
Fmoc-S37
Fmoc-D-Leu
Fmoc-S29
na
na
na


3651
Fmoc-Tyr(But)
Fmoc-D-Lys(Boc)
Fmoc-S37
Fmoc-D-Asp(OBut)
Fmoc-S29
na
na
na


3652
Fmoc-Tyr(But)
Fmoc-Ser(But)
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-S29
na
na
na


3653
Fmoc-Tyr(But)
Fmoc-Arg(Pbf)
Fmoc-S37
Fmoc-D-Val
Fmoc-S29
na
na
na


3654
Fmoc-Tyr(But)
Fmoc-D-Phe
Fmoc-S37
Fmoc-Asn(Trt)
Fmoc-S29
na
na
na





na = not available



1All syntheses were carried out on the solid phase starting from 70-80 mg of 2-chlorotrityl chloride resin (typical loading 1.0 mmol/g).




2Purity is determined by analysis with LC-UV at 220 nm.














TABLE 7B









embedded image



















Cmpd
R1
R2
R3
R8
R4
R5
R10





3301


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3302


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3303


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3304


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3305


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3306


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3307


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3308


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3309


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3310


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3311


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3312


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3313


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3314


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3315


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3316


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3317


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3318


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3319


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3320


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3321


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3322


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3323


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3324


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3325


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3326


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3327


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3328


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3329


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3330


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3331


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3332


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3333


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3334


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3335


embedded image




embedded image




embedded image


H


embedded image




embedded image


CH3





3336


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3337


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3338


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3339


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3340


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3341


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3342


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3343


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3344


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3345


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3346


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3347


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3348


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3349


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3350


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3351


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3352


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3353


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3354


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3355


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3356


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3357


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3358


embedded image




embedded image




embedded image


H
H—(CH)


embedded image


H





3359


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3360


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3361


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3362


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3363


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3364


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3365


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3366


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3367


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3368


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3369


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3370


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3371


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3372


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3373


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3374


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3375


embedded image


H—(CH)


embedded image


H


embedded image




embedded image


H





3376


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3377


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3378


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3379


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3380


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3381


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3382


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3383


embedded image




embedded image




embedded image


H
H—(CH)


embedded image


H





3384


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3385


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3386


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3387


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3388


embedded image




embedded image




embedded image


H
H—(CH)


embedded image


H





3389


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3390


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3391


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3392


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3393


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3394


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3395


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3396


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3397


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3398


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3399


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3400


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3401


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3402


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3403


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3404


embedded image




embedded image




embedded image


H
H—(CH)


embedded image


H





3405


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3406


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3407


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3408


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3409


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3410


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3411


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3412


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3413


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3414


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3415


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3416


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3417


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3418


embedded image




embedded image




embedded image


H
H—(CH)


embedded image


H





3419


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3420


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3421


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3422


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3423


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3424


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3425


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3426


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3427


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3428


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3429


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3430


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3431


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3432


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3433


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3434


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3435


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3436


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3437


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3438


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3439


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3440


embedded image




embedded image




embedded image


H
H—(CH)


embedded image


H





3441


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3442


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3443


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3444


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3445


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3446


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3447


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3448


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3449


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3450


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3451


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3452


embedded image


H—(CH)


embedded image


H


embedded image




embedded image


H





3453


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3454


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3455


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3456


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3457


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3458


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3459


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3460


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3461


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3462


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3463


embedded image




embedded image




embedded image


H
H—(CH)


embedded image


H





3464


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3465


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3466


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3467


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3468


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3469


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3470


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3471


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3472


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3473


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3474


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3475


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3476


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3477


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3478


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3479


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3480


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3481


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3482


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3483


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3484


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3485


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3486


embedded image




embedded image




embedded image


H
H—(CH)


embedded image


H





3487


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3488


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3489


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3490


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3491


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3492


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3493


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3494


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3495


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3496


embedded image




embedded image




embedded image


H
H—(CH)


embedded image


H





3497


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3498


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3499


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3500


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3501


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3502


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3503


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3504


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3505


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3506


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3507


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3508


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3509


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3510


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3511


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3512


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3513


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3514


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3515


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3516


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3517


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3518


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3519


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3520


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3521


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3522


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3523


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3524


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3525


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3526


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3527


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3528


embedded image




embedded image




embedded image


H
H—(CH)


embedded image


H





3529


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3530


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3531


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3532


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3533


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3534


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3535


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3536


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3537


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3538


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3539


embedded image




embedded image




embedded image


H
H—(CH)


embedded image


H





3540


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3541


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3542


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3543


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3544


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3545


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3546


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3547


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3548


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3549


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3550


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3551


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3552


embedded image


H—(CH)


embedded image


CH3


embedded image




embedded image


H





3553


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3554


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3555


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3556


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3557


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3558


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3559


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3560


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3561


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3562


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3563


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3564


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3565


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3566


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3567


embedded image




embedded image




embedded image


CH3
H—(CH)


embedded image


H





3568


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3569


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3570


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3571


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3572


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3573


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3574


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3575


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3576


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3577


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3578


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3579


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3580


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3581


embedded image


H—(CH)


embedded image


CH3


embedded image




embedded image


H





3582


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3583


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3584


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3585


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3586


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3587


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3588


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3589


embedded image




embedded image




embedded image


CH3
H—(CH)


embedded image


H





3590


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3591


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3592


embedded image




embedded image




embedded image


CH3
H—(CH)


embedded image


H





3593


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3594


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3595


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3596


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3597


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3598


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3599


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3600


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3601


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3602


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3603


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3604


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3605


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3606


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3607


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3608


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3609


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3610


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3611


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3612


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3613


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3614


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3615


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3616


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3617


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3618


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3619


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3620


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3621


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3622


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3623


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3624


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3625


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3626


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3627


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3628


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3629


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3630


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3631


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3632


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3633


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3634


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3635


embedded image




embedded image




embedded image


CH3
H—(CH)


embedded image


H





3636


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3637


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3638


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3639


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3640


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3641


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3642


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3643


embedded image




embedded image




embedded image


CH3
H—(CH)


embedded image


H





3644


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3645


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3646


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3647


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3648


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3649


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3650


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3651


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3652


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3653


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H





3654


embedded image




embedded image




embedded image


CH3


embedded image




embedded image


H










For all compounds in Table 7B, Q1=OH2 and Q2=CH2. Also, the compounds all have R6═H, except compounds 3365-3369, where R6═OH3; all have R7═H, except compounds 3375, 3452, 3552, 3581, where R7═OH3; and all have R9═H, except compounds 3358, 3383, 3388, 3404, 3418, 3440, 3463, 3486, 3496, 3528, 3539, 3567, 3589, 3592, 3635, 3643, where R9═OH3.


Other exceptions are for those compounds in which Fmoc-Pro or Fmoc-D-Pro is BB2, where R2 and (N)R7 form a five-membered ring, including the nitrogen atom, as shown for R2 in Table 7B. As well, for those compounds in which Fmoc-Pro or Fmoc-D-Pro is BB4, R4 and (N)R9 form a five-membered ring, including the nitrogen atom, as shown for R4 in Table 7B.


Example 9
Synthesis of a Representative Library of Macrocyclic Compounds of Formula (I) Containing Five Building Blocks with Selected Side Chain Functionalization with Additional Building Blocks

The synthetic scheme presented in Scheme 7 was followed to prepare the library of macrocyclic compounds 3655-3813 on solid support. The first building block amino acid (BB1) was loaded onto the resin (Method 1D). At this point, the first of two optional steps can be executed whereby the protection on the side chain of BB1 is selectively removed, then an additional building block added using one of the series of reaction sequences described in Method 1T. Following a-N-protecting group cleavage from BB1, the second building block (BB2) incorporated using amide coupling chemistry (Method 1G). Here again, a second optional step involving selective side chain deprotection and reaction (Method 1T) to add another building block can occur. After this, removal of the a-N-protection (Method 1F or Method 1AA as appropriate for the group being cleaved) of BB2 is performed followed by attachment of the next building block (BB3) via reductive amination (Methods 1I or 1J) or Fukuyama-Mitsunobu alkylation (via the procedure in Method 1P, not depicted in Scheme 7). Upon removal of the Fmoc protecting group of BB3, the next building block (BB4) was connected via amide bond formation (Method 1G). A third optional step is performed at this stage, again with selective reaction on the BB4 side chain involving deprotection together with one of the Method 1T transformations. The protection on the a-nitrogen of BB4 is cleaved (Method 1F or Method 1AA as applicable) followed by connection of BB5 using reductive amination (Methods 1I or 1J) or Fukuyama-Mitsunobu chemistry (via Method 1P, not shown in Scheme 7). Next, Fmoc deprotection (Method 1F), resin cleavage (Method 1Q), macrocyclization (Method 1R), and removal of the side chain protecting groups (Method 1S) were sequentially performed. The crude product thus obtained was purified by preparative HPLC (Method 2B). The building block components used for each macrocycle, as well as, when available, the amounts obtained, HPLC purity and confirmation of identity by mass spectrometry (MS) are presented in Table 8A. The individual structures of the compounds thus prepared are provided in Table 8B.


Additionally on the optional steps, one, two or all three are performed as indicated in Table 8A. Where indicated that the functionalization has occurred, the orthogonal side chain protecting group of BB1 and/or BB2 and/or BB4 is removed using Method 1F for Lys(Fmoc), Method 1AA for Dap(Alloc), Method 1BB for Asp(OAllyl) and Glu(OAllyl) or Method 1CC for Tyr(Allyl) as appropriate, then the freed functional group reacted with the listed building block reagent using the indicated Method 1T reaction prior to the addition of the subsequent BB. However, for efficiency, it will be appreciated by those skilled in the art that it is also possible to add one or more building blocks prior to executing the indicated side chain reaction sequence if the structure and protection strategy so permits.




















TABLE 8A







BB1 Side

BB2 Side


BB4 Side

Wt1
Puri-
MS


Cpd
BB1
Chain
BB2
Chain
BB3
BB4
Chain
BB5
(mg)
ty2
(M + H)


























3655
Fmoc-
XT-11,
Fmoc-Ala

Fmoc-S9
Fmoc-Leu

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10


3656
Fmoc-D-
XT-11,
Fmoc-D-

Fmoc-S9
Fmoc-Phe

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10
Asp(OBut)


3657
Fmoc-D-
XT-11,
Fmoc-D-

Fmoc-S9
Fmoc-D-

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10
Leu


Asp(OBut)


3658
Fmoc-
XT-12,
Fmoc-Ile

Fmoc-S9
Fmoc-

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10



Glu(OBut)


3659
Fmoc-D-
XT-11,
Fmoc-D-

Fmoc-S9
Fmoc-Met

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10
Ala


3660
Fmoc-D-
XT-11,
Fmoc-Val

Fmoc-S9
Fmoc-D-

Fmoc-(S)-S31
na
na
na



Tyr(Allyl)
Method 1T-10



Pro


3661
Fmoc-
XT-10,
Fmoc-Phe

Fmoc-S9
Fmoc-

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10



Asp(OBut)


3662
Fmoc-
(R)-XT-15,
Fmoc-D-

Fmoc-S9
Fmoc-Leu

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10
Trp(Boc)


3663
Fmoc-
(R)-XT-15,
Fmoc-

Fmoc-S9
Fmoc-

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10
Lys(Boc)


Asp(OBut)


3664
Fmoc-
XT-12,
Fmoc-

Fmoc-S9
Fmoc-

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10
Ser(But)


Trp(Boc)


3665
Fmoc-D-
XT-10,
Fmoc-D-

Fmoc-S9
Fmoc-

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10
Leu


Ser(But)


3666
Fmoc-
XT-11,
Fmoc-D-

Fmoc-S9
Fmoc-D-

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10
Asp(OBut)


Lys(Boc)


3667
Fmoc-
XT-10,
Fmoc-Val

Fmoc-S9
Fmoc-Sar

Fmoc-(S)-S31
na
na
na



Tyr(Allyl)
Method 1T-10


3668
Fmoc-
XT-13,
Fmoc-Phe

Fmoc-S9
Fmoc-

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10



Asn(Trt)


3669
Fmoc-
(R)-XT-15,
Fmoc-D-

Fmoc-S37
Fmoc-D-

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10
Arg(Pbf)


Trp(Boc)


3670
Fmoc-
XT-12,
Fmoc-Phe

Fmoc-S37
Fmoc-

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10



His(Trt)


3671
Fmoc-
XT-12,
Fmoc-Leu

Fmoc-S37
Fmoc-

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10



Asp(OBut)


3672
Fmoc-
XT-11,
Fmoc-Pro

Fmoc-S37
Fmoc-Leu

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10


3673
Fmoc-
XT-13,
Fmoc-

Fmoc-S37
Fmoc-Ile

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10
Ser(But)


3674
Fmoc-
XT-13,
Fmoc-

Fmoc-S37
Fmoc-D-

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10
Thr(But)


Arg(Pbf)


3675
Fmoc-D-
(R)-XT-15,
Fmoc-Val

Fmoc-S37
Fmoc-D-

Fmoc-(S)-S31
na
na
na



Tyr(Allyl)
Method 1T-10



Pro


3676
Fmoc-
XT-14,
Fmoc-Phe

Fmoc-S37
Fmoc-D-

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10



Thr(But)


3677
Fmoc-
XT-12,
Fmoc-

Fmoc-S37
Fmoc-

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10
Trp(Boc)


Ser(But)


3678
Fmoc-D-
XT-13,
Fmoc-

Fmoc-S37
Fmoc-Leu

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10
Trp(Boc)


3679
Fmoc-
XT-10,
Fmoc-

Fmoc-S37
Fmoc-

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10
Asp(OBut)


Trp(Boc)


3680
Fmoc-
XT-13,
Fmoc-D-

Fmoc-S37
Fmoc-Val

Fmoc-S29
na
na
na



Tyr(Allyl)
Method 1T-10
Arg(Pbf)


3681
Fmoc-
XT-20,
Fmoc-

Fmoc-S9
Fmoc-D-

Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Glu(OBut)


Ser(But)


3682
Fmoc-
XT-21,
Fmoc-Phe

Fmoc-S9
Fmoc-Sar

Fmoc-(S)-S31
na
na
na



Asp(OAllyl)
Method 1T-1


3683
Fmoc-D-
XT-22,
Fmoc-

Fmoc-S9
Fmoc-Phe

Fmoc-S29
na
na
na



Glu(OAllyl)
Method 1T-1
Ser(But)


3684
Fmoc-D-
XT-16,
Fmoc-Phe

Fmoc-S9
Fmoc-

Fmoc-S29
na
na
na



Glu(OAllyl)
Method 1T-1



Asn(Trt)


3685
Fmoc-
XT-24,
Fmoc-

Fmoc-S9
Fmoc-

Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Asn(Trt)


Lys(Boc)


3686
Fmoc-
XT-23,
Fmoc-Val

Fmoc-S9
Fmoc-

Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1



Arg(Pbf)


3687
Fmoc-
XT-24,
Fmoc-D-

Fmoc-S9
Fmoc-D-

Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Tyr(But)


Leu


3688
Fmoc-
XT-18,
Fmoc-D-

Fmoc-S9
Fmoc-D-

Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Lys(Boc)


Asp(OBut)


3689
Fmoc-D-
XT-23,
Fmoc-D-

Fmoc-S9
Fmoc-Leu

Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Ser(But)


3690
Fmoc-D-
XT-17,
Fmoc-

Fmoc-S9
Fmoc-D-

Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Tyr(But)


Trp(Boc)


3691
Fmoc-
XT-21,
Fmoc-

Fmoc-S37
Fmoc-

Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Ser(But)


Glu(OBut)


3692
Fmoc-D-
XT-24,
Fmoc-D-

Fmoc-S37
Fmoc-

Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Glu(OBut)


Ser(But)


3693
Fmoc-
XT-19,
Fmoc-D-

Fmoc-S37
Fmoc-D-

Fmoc-S29
na
na
na



Glu(OAllyl)
Method 1T-1
Ser(But)


Phe


3694
Fmoc-
XT-16,
Fmoc-

Fmoc-S37
Fmoc-

Fmoc-S29
na
na
na



Glu(OAllyl)
Method 1T-1
Asn(Trt)


Ser(But)


3695
Fmoc-
XT-21,
Fmoc-

Fmoc-S37
Fmoc-Sar

Fmoc-(S)-S31
na
na
na



Asp(OAllyl)
Method 1T-1
Trp(Boc)


3696
Fmoc-
XT-23,
Fmoc-

Fmoc-S37
Fmoc-D-

Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Lys(Boc)


Ser(But)


3697
Fmoc-D-
XT-17,
Fmoc-D-

Fmoc-S37
Fmoc-D-

Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Ser(But)


Lys(Boc)


3698
Fmoc-D-
XT-20,
Fmoc-

Fmoc-S37
Fmoc-

Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Asn(Trt)


Lys(Boc)


3699
Fmoc-
XT-24,
Fmoc-D-

Fmoc-S37
Fmoc-

Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Arg(Pbf)


Tyr(But)


3700
Fmoc-D-
XT-23,
Fmoc-Phe

Fmoc-S37
Fmoc-D-

Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1



Arg(Pbf)


3701
Fmoc-
XT-23,
Fmoc-

Fmoc-S37
Fmoc-Leu

Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Tyr(But)


3702
Fmoc-
XT-20,
Fmoc-

Fmoc-S37
Fmoc-

Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Lys(Boc)


Asp(OBut)


3703
Fmoc-
XT-17,
Fmoc-Leu

Fmoc-S37
Fmoc-D-

Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1



Ser(But)


3704
Fmoc-
XT-19,
Fmoc-

Fmoc-S37
Fmoc-

Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Asp(OBut)


Lys(Boc)


3705
Fmoc-D-
XT-16,
Fmoc-

Fmoc-S37
Fmoc-Phe

Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Arg(Pbf)


3706
Fmoc-
XT-18,
Fmoc-D-

Fmoc-S37
Fmoc-

Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Tyr(But)


Trp(Boc)


3707
Fmoc-

Fmoc-

Fmoc-S9
Fmoc-
XT-24,
Fmoc-S29
na
na
na



Trp(Boc)

Tyr(But)


Asp(OAllyl)
Method 1T-1


3708
Fmoc-

Fmoc-Ile

Fmoc-S9
Fmoc-
XT-20,
Fmoc-S29
na
na
na



Tyr(But)




Glu(OAllyl)
Method 1T-1


3709
Fmoc-

Fmoc-Leu

Fmoc-S9
Fmoc-D-
XT-16,
Fmoc-S29
na
na
na



Arg(Pbf)




Glu(OAllyl)
Method 1T-1


3710
Fmoc-

Fmoc-D-

Fmoc-S9
Fmoc-D-
XT-21,
Fmoc-S29
na
na
na



Arg(Pbf)

Gln(Trt)


Asp(OAllyl)
Method 1T-1


3711
Fmoc-

Fmoc-

Fmoc-S9
Fmoc-D-
XT-16,
Fmoc-S29
na
na
na



Ser(But)

Thr(But)


Glu(OAllyl)
Method 1T-1


3712
Fmoc-

Fmoc-Phe

Fmoc-S9
Fmoc-
XT-18,
Fmoc-S29
na
na
na



Ser(But)




Asp(OAllyl)
Method 1T-1


3713
Fmoc-

Fmoc-

Fmoc-S9
Fmoc-D-
XT-19,
Fmoc-S29
na
na
na



Asn(Trt)

Ser(But)


Glu(OAllyl)
Method 1T-1


3714
Fmoc-D-

Fmoc-

Fmoc-S9
Fmoc-
XT-22,
Fmoc-S29
na
na
na



Lys(Boc)

Ser(But)


Asp(OAllyl)
Method 1T-1


3715
Fmoc-

Fmoc-

Fmoc-S9
Fmoc-
XT-16,
Fmoc-S29
na
na
na



Lys(Boc)

Asn(Trt)


Asp(OAllyl)
Method 1T-1


3716
Fmoc-

Fmoc-

Fmoc-S9
Fmoc-D-
XT-24,
Fmoc-S29
na
na
na



Ser(But)

Asn(Trt)


Asp(OAllyl)
Method 1T-1


3717
Fmoc-

Fmoc-Phe

Fmoc-S9
Fmoc-
XT-17,
Fmoc-S29
na
na
na



Ser(But)




Asp(OAllyl)
Method 1T-1


3718
Fmoc-

Fmoc-D-

Fmoc-S9
Fmoc-D-
XT-16,
Fmoc-S29
na
na
na



Asn(Trt)

Lys(Boc)


Asp(OAllyl)
Method 1T-1


3719
Fmoc-D-

Fmoc-Phe

Fmoc-S9
Fmoc-D-
XT-21,
Fmoc-S29
na
na
na



Asn (Trt)




Asp(OAllyl)
Method 1T-1


3720
Fmoc-Val

Fmoc-

Fmoc-S9
Fmoc-
XT-16,
Fmoc-S29
na
na
na





Lys(Boc)


Asp(OAllyl)
Method 1T-1


3721
Fmoc-D-

Fmoc-Phe

Fmoc-S9
Fmoc-D-
XT-21,
Fmoc-S29
na
na
na



Arg(Pbf)




Asp(OAllyl)
Method 1T-1


3722
Fmoc-Phe

Fmoc-

Fmoc-S9
Fmoc-
XT-19,
Fmoc-S29
na
na
na





Arg(Pbf)


Asp(OAllyl)
Method 1T-1


3723
Fmoc-Phe

Fmoc-

Fmoc-S9
Fmoc-
XT-16,
Fmoc-S29
na
na
na





Tyr(But)


Asp(OAllyl)
Method 1T-1


3724
Fmoc-

Fmoc-

Fmoc-S9
Fmoc-
XT-19,
Fmoc-S29
na
na
na



Tyr(But)

Lys(Boc)


Asp(OAllyl)
Method 1T-1


3725
Fmoc-

Fmoc-Leu

Fmoc-S37
Fmoc-D-
XT-19,
Fmoc-S29
na
na
na



Trp(Boc)




Glu(OAllyl)
Method 1T-1


3726
Fmoc-

Fmoc-D-

Fmoc-S37
Fmoc-
XT-24,
Fmoc-S29
na
na
na



Trp(Boc)

Val


Glu(OAllyl)
Method 1T-1


3727
Fmoc-D-

Fmoc-Val

Fmoc-S37
Fmoc-
XT-19,
Fmoc-S29
na
na
na



Tyr(But)




Glu(OAllyl)
Method 1T-1


3728
Fmoc-

Fmoc-Leu

Fmoc-S37
Fmoc-
XT-21,
Fmoc-S29
na
na
na



Arg(Pbf)




Glu(OAllyl)
Method 1T-1


3729
Fmoc-D-

Fmoc-

Fmoc-S37
Fmoc-
XT-21,
Fmoc-S29
na
na
na



Arg(Pbf)

Thr(But)


Asp(OAllyl)
Method 1T-1


3730
Fmoc-

Fmoc-

Fmoc-S37
Fmoc-
XT-21,
Fmoc-S29
na
na
na



Ser(But)

Thr(But)


Glu(OAllyl)
Method 1T-1


3731
Fmoc-D-

Fmoc-

Fmoc-S37
Fmoc-D-
XT-16,
Fmoc-S29
na
na
na



Thr(But)

Ser(But)


Glu(OAllyl)
Method 1T-1


3732
Fmoc-Phe

Fmoc-

Fmoc-S37
Fmoc-D-
XT-22,
Fmoc-S29
na
na
na





Thr(But)


Asp(OAllyl)
Method 1T-1


3733
Fmoc-D-

Fmoc-

Fmoc-S37
Fmoc-
XT-24,
Fmoc-S29
na
na
na



Lys(Boc)

Ser(But)


Asp(OAllyl)
Method 1T-1


3734
Fmoc-

Fmoc-D-

Fmoc-S37
Fmoc-
XT-24,
Fmoc-S29
na
na
na



Ser(But)

Lys(Boc)


Asp(OAllyl)
Method 1T-1


3735
Fmoc-

Fmoc-Phe

Fmoc-S37
Fmoc-D-
XT-20,
Fmoc-S29
na
na
na



Ser(But)




Asp(OAllyl)
Method 1T-1


3736
Fmoc-

Fmoc-

Fmoc-S37
Fmoc-
XT-21,
Fmoc-S29
na
na
na



Asn(Trt)

Lys(Boc)


Asp(OAllyl)
Method 1T-1


3737
Fmoc-

Fmoc-Leu

Fmoc-S37
Fmoc-D-
XT-21,
Fmoc-S29
na
na
na



Arg(Pbf)




Asp(OAllyl)
Method 1T-1


3738
Fmoc-Phe

Fmoc-

Fmoc-S37
Fmoc-
XT-22,
Fmoc-S29
na
na
na





Tyr(But)


Asp(OAllyl)
Method 1T-1


3739
Fmoc-

Fmoc-Phe

Fmoc-S37
Fmoc-D-
XT-23,
Fmoc-S29
na
na
na



Tyr(But)




Asp(OAllyl)
Method 1T-1


3740
Fmoc-
XT-19,
Fmoc-

Fmoc-S9
Fmoc-D-
XT-24,
Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Ser(But)


Glu(OAllyl)
Method 1T-1


3741
Fmoc-D-
XT-23,
Fmoc-Phe

Fmoc-S9
Fmoc-
XT-16,
Fmoc-S29
na
na
na



Glu(OAllyl)
Method 1T-1



Asp(OAllyl)
Method 1T-1


3742
Fmoc-
XT-23,
Fmoc-D-

Fmoc-S9
Fmoc-D-
XT-20,
Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Lys(Boc)


Asp(OAllyl)
Method 1T-1


3743
Fmoc-D-
XT-21,
Fmoc-Phe

Fmoc-S9
Fmoc-D-
XT-16,
Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1



Asp(OAllyl)
Method 1T-1


3744
Fmoc-
XT-22,
Fmoc-

Fmoc-S37
Fmoc-
XT-17,
Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Ser(But)


Glu(OAllyl)
Method 1T-1


3745
Fmoc-D-
XT-19,
Fmoc-Phe

Fmoc-S37
Fmoc-
XT-18,
Fmoc-S29
na
na
na



Glu(OAllyl)
Method 1T-1



Asp(OAllyl)
Method 1T-1


3746
Fmoc-
XT-19,
Fmoc-

Fmoc-S37
Fmoc-
XT-24,
Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Lys(Boc)


Asp(OAllyl)
Method 1T-1


3747
Fmoc-D-
XT-18,
Fmoc-D-

Fmoc-S37
Fmoc-
XT-24,
Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Phe


Asp(OAllyl)
Method 1T-1


3748
Fmoc-

Fmoc-D-
XT-22,
A5(3O)
Fmoc-D-
XT-24,
Fmoc-S29
na
na
na



Arg(Pbf)

Glu(OAllyl)
Method 1T-1

Asp(OAllyl)
Method 1T-1


3749
Fmoc-

Fmoc-
XT-19,
A5(3O)
Fmoc-
XT-18,
Fmoc-S29
na
na
na



Lys(Boc)

Asp(OAllyl)
Method 1T-1

Asp(OAllyl)
Method 1T-1


3750
Fmoc-

Fmoc-
XT-17,
A5(3O)
Fmoc-D-
XT-21,
Fmoc-S29
na
na
na



Ser(But)

Asp(OAllyl)
Method 1T-1

Asp(OAllyl)
Method 1T-1


3751
Fmoc-D-

Fmoc-
XT-16,
Fmoc-S37
Fmoc-D-
XT-20,
Fmoc-S29
na
na
na



Arg(Pbf)

Glu(OAllyl)
Method 1T-1

Asp(OAllyl)
Method 1T-1


3752
Fmoc-

Fmoc-
XT-24,
Fmoc-S37
Fmoc-D-
XT-20,
Fmoc-S29
na
na
na



Lys(Boc)

Asp(OAllyl)
Method 1T-1

Asp(OAllyl)
Method 1T-1


3753
Fmoc-

Fmoc-D-
XT-22,
Fmoc-S37
Fmoc-
XT-24,
Fmoc-S29
na
na
na



Ser(But)

Asp(OAllyl)
Method 1T-1

Asp(OAllyl)
Method 1T-1


3754
Fmoc-Phe

Fmoc-Ala

Fmoc-S9
Alloc-
XT-6,
Fmoc-S29
na
na
na








Lys(Fmoc)
Method 1T-8


3755
Fmoc-

Fmoc-Pro

Fmoc-S37
Alloc-D-
XT-5,
Fmoc-S29
na
na
na



Trp(Boc)




Lys(Fmoc)
Method 1T-6


3756
Fmoc-D-

Fmoc-Leu

Fmoc-S9
Alloc-
XT-8,
Fmoc-(S)-S31
na
na
na



Tyr(But)




Lys(Fmoc)
Method 1T-9


3757
Fmoc-

Fmoc-

Fmoc-S9
Alloc-
XT-8,
Fmoc-(S)-S31
na
na
na



Arg(Pbf)

Glu(OBut)


Lys(Fmoc)
Method 1T-9


3758
Fmoc-

Fmoc-

Fmoc-S9
Alloc-D-
XT-8,
Fmoc-(S)-S31
na
na
na



Trp(Boc)

Asn(Trt)


Lys(Fmoc)
Method 1T-9


3759
Fmoc-D-

Fmoc-

Fmoc-S9
Alloc-
XT-3,
Fmoc-S29
na
na
na



Trp(Boc)

Tyr(But)


Lys(Fmoc)
Method 1T-6


3760
Fmoc-

Fmoc-

Fmoc-S9
Alloc-D-
XT-1,
Fmoc-S29
na
na
na



Ser(But)

Asp(OBut)


Lys(Fmoc)
Method 1T-6


3761
Fmoc-Leu

Fmoc-D-

Fmoc-S9
Alloc-
XT-6,
Fmoc-S29
na
na
na





Asp(OBut)


Lys(Fmoc)
Method 1T-8


3762
Fmoc-

Fmoc-

Fmoc-S9
Alloc-
XT-1,
Fmoc-S29
na
na
na



Asp(OBut)

Ser(But)


Lys(Fmoc)
Method 1T-6


3763
Fmoc-

Fmoc-

Fmoc-S9
Alloc-
XT-4,
Fmoc-S29
na
na
na



Asp(OBut)

Asn(Trt)


Lys(Fmoc)
Method 1T-6


3764
Fmoc-

Fmoc-

Fmoc-S9
Alloc-
XT-9,
Fmoc-(S)-S31
na
na
na



Asn(Trt)

Asp(OBut)


Lys(Fmoc)
Method 1T-9


3765
Fmoc-Val

Fmoc-Phe

Fmoc-S9
Alloc-D-
XT-9,
Fmoc-(S)-S31
na
na
na








Lys(Fmoc)
Method 1T-9


3766
Fmoc-D-

Fmoc-Val

Fmoc-S9
Alloc-
XT-8,
Fmoc-(S)-S31
na
na
na



Arg(Pbf)




Lys(Fmoc)
Method 1T-9


3767
Fmoc-Phe

Fmoc-D-

Fmoc-S9
Alloc-D-
XT-4,
Fmoc-S29
na
na
na





Trp(Boc)


Lys(Fmoc)
Method 1T-6


3768
Fmoc-Phe

Fmoc-

Fmoc-S9
Alloc-
XT-9,
Fmoc-(S)-S31
na
na
na





Asn(Trt)


Lys(Fmoc)
Method 1T-9


3769
Fmoc-

Fmoc-D-

Fmoc-S9
Alloc-D-
XT-8,
Fmoc-(S)-S31
na
na
na



Tyr(But)

Asn (Trt)


Lys(Fmoc)
Method 1T-9


3770
Fmoc-

Fmoc-Pro

Fmoc-S37
Alloc-D-
XT-8,
Fmoc-(S)-S31
na
na
na



Trp(Boc)




Lys(Fmoc)
Method 1T-9


3771
Fmoc-

Fmoc-Leu

Fmoc-S37
Alloc-D-
XT-5,
Fmoc-S29
na
na
na



Tyr(But)




Lys(Fmoc)
Method 1T-6


3772
Fmoc-

Fmoc-

Fmoc-S37
Alloc-
XT-6,
Fmoc-S29
na
na
na



Arg(Pbf)

Glu(OBut)


Lys(Fmoc)
Method 1T-8


3773
Fmoc-

Fmoc-D-

Fmoc-S37
Alloc-D-
XT-1,
Fmoc-S29
na
na
na



Trp(Boc)

Asn (Trt)


Lys(Fmoc)
Method 1T-6


3774
Fmoc-

Fmoc-

Fmoc-S37
Alloc-D-
XT-8,
Fmoc-(S)-S31
na
na
na



Trp(Boc)

Tyr(But)


Lys(Fmoc)
Method 1T-9


3775
Fmoc-

Fmoc-

Fmoc-S37
Alloc-
XT-5,
Fmoc-S29
na
na
na



Ser(But)

Asp(OBut)


Lys(Fmoc)
Method 1T-6


3776
Fmoc-D-

Fmoc-

Fmoc-S37
Alloc-
XT-1,
Fmoc-S29
na
na
na



Leu

Asp(OBut)


Lys(Fmoc)
Method 1T-6


3777
Fmoc-D-

Fmoc-D-

Fmoc-S37
Alloc-D-
XT-5,
Fmoc-S29
na
na
na



Asp(OBut)

Ser(But)


Lys(Fmoc)
Method 1T-6


3778
Fmoc-D-

Fmoc-

Fmoc-S37
Alloc-
XT-3,
Fmoc-S29
na
na
na



Asp(OBut)

Asn(Trt)


Lys(Fmoc)
Method 1T-6


3779
Fmoc-

Fmoc-

Fmoc-S37
Alloc-
XT-3,
Fmoc-S29
na
na
na



Asn(Trt)

Asp(OBut)


Lys(Fmoc)
Method 1T-6


3780
Fmoc-D-

Fmoc-Phe

Fmoc-S37
Alloc-D-
XT-8,
Fmoc-(S)-S31
na
na
na



Val




Lys(Fmoc)
Method 1T-9


3781
Fmoc-

Fmoc-Val

Fmoc-S37
Alloc-D-
XT-3,
Fmoc-S29
na
na
na



Arg(Pbf)




Lys(Fmoc)
Method 1T-6


3782
Fmoc-Phe

Fmoc-

Fmoc-S37
Alloc-
XT-6,
Fmoc-S29
na
na
na





Trp(Boc)


Lys(Fmoc)
Method 1T-8


3783
Fmoc-D-

Fmoc-

Fmoc-S37
Alloc-
XT-4,
Fmoc-S29
na
na
na



Phe

Asn(Trt)


Lys(Fmoc)
Method 1T-6


3784
Fmoc-

Fmoc-

Fmoc-S37
Alloc-
XT-2,
Fmoc-S29
na
na
na



Tyr(But)

Asn(Trt)


Lys(Fmoc)
Method 1T-6


3785
Fmoc-
XT-16,
Fmoc-

Fmoc-S9
Alloc-
XT-3,
Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Ser(But)


Lys(Fmoc)
Method 1T-6


3786
Fmoc-
XT-18,
Fmoc-

Fmoc-S9
Alloc-
XT-8,
Fmoc-(S)-S31
na
na
na



Asp(OAllyl)
Method 1T-1
Asn(Trt)


Lys(Fmoc)
Method 1T-9


3787
Fmoc-
XT-22,
Fmoc-

Fmoc-S9
Alloc-
XT-3,
Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Asp(OBut)


Lys(Fmoc)
Method 1T-6


3788
Fmoc-D-
XT-16,
Fmoc-D-

Fmoc-S37
Alloc-D-
XT-8,
Fmoc-(S)-S31
na
na
na



Asp(OAllyl)
Method 1T-1
Ser(But)


Lys(Fmoc)
Method 1T-9


3789
Fmoc-D-
XT-19,
Fmoc-

Fmoc-S37
Alloc-
XT-3,
Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Asn(Trt)


Lys(Fmoc)
Method 1T-6


3790
Fmoc-
XT-20,
Fmoc-

Fmoc-S37
Alloc-
XT-3,
Fmoc-S29
na
na
na



Asp(OAllyl)
Method 1T-1
Asp(OBut)


Lys(Fmoc)
Method 1T-6


3791
Fmoc-

Fmoc-
XT-22,
Fmoc-S9
Alloc-D-
XT-1,
Fmoc-S29
na
na
na



Trp(Boc)

Asp(OAllyl)
Method 1T-1

Lys(Fmoc)
Method 1T-6


3792
Fmoc-

Fmoc-
XT-21,
Fmoc-S9
Alloc-D-
XT-2,
Fmoc-S29
na
na
na



Ser(But)

Asp(OAllyl)
Method 1T-1

Lys(Fmoc)
Method 1T-6


3793
Fmoc-Leu

Fmoc-D-
XT-20,
Fmoc-S9
Alloc-
XT-3,
Fmoc-S29
na
na
na





Asp(OAllyl)
Method 1T-1

Lys(Fmoc)
Method 1T-6


3794
Fmoc-

Fmoc-
XT-20,
Fmoc-S9
Alloc-
XT-5,
Fmoc-S29
na
na
na



Asp(OBut)

Asp(OAllyl)
Method 1T-1

Lys(Fmoc)
Method 1T-6


3795
Fmoc-

Fmoc-
XT-21,
Fmoc-S9
Alloc-
XT-8,
Fmoc-(S)-S31
na
na
na



Asn(Trt)

Asp(OAllyl)
Method 1T-1

Lys(Fmoc)
Method 1T-9


3796
Fmoc-Phe

Fmoc-
XT-22,
Fmoc-S9
Alloc-
XT-9,
Fmoc-(S)-S31
na
na
na





Asp(OAllyl)
Method 1T-1

Lys(Fmoc)
Method 1T-9


3797
Fmoc-

Fmoc-D-
XT-21,
Fmoc-S9
Alloc-D-
XT-6,
Fmoc-S29
na
na
na



Tyr(But)

Asp(OAllyl)
Method 1T-1

Lys(Fmoc)
Method 1T-8


3798
Fmoc-

Fmoc-
XT-22,
Fmoc-S37
Alloc-
XT-4,
Fmoc-S29
na
na
na



Arg(Pbf)

Glu(OAllyl)
Method 1T-1

Lys(Fmoc)
Method 1T-6


3799
Fmoc-

Fmoc-D-
XT-19,
Fmoc-S37
Alloc-D-
XT-4,
Fmoc-S29
na
na
na



Trp(Boc)

Asp(OAllyl)
Method 1T-1

Lys(Fmoc)
Method 1T-6


3800
Fmoc-

Fmoc-
XT-18,
Fmoc-S37
Alloc-
XT-6,
Fmoc-S29
na
na
na



Ser(But)

Asp(OAllyl)
Method 1T-1

Lys(Fmoc)
Method 1T-8


3801
Fmoc-D-

Fmoc-
XT-18,
Fmoc-S37
Alloc-
XT-9,
Fmoc-(S)-S31
na
na
na



Leu

Asp(OAllyl)
Method 1T-1

Lys(Fmoc)
Method 1T-9


3802
Fmoc-D-

Fmoc-
XT-17,
Fmoc-S37
Alloc-
XT-2,
Fmoc-S29
na
na
na



Asp(OBut)

Asp(OAllyl)
Method 1T-1

Lys(Fmoc)
Method 1T-6


3803
Fmoc-

Fmoc-
XT-18,
Fmoc-S37
Alloc-
XT-6,
Fmoc-S29
na
na
na



Asn(Trt)

Asp(OAllyl)
Method 1T-1

Lys(Fmoc)
Method 1T-8


3804
Fmoc-D-

Fmoc-
XT-16,
Fmoc-S37
Alloc-
XT-4,
Fmoc-S29
na
na
na



Phe

Asp(OAllyl)
Method 1T-1

Lys(Fmoc)
Method 1T-6


3805
Fmoc-

Fmoc-
XT-21,
Fmoc-S37
Alloc-
XT-8,
Fmoc-(S)-S31
na
na
na



Tyr(But)

Asp(OAllyl)
Method 1T-1

Lys(Fmoc)
Method 1T-9


3806
Fmoc-D-

Alloc-
XT-5,
Fmoc-S9
Fmoc-
XT-24,
Fmoc-S29
na
na
na



Ser(But)

Lys(Fmoc)
Method 1T-6

Asp(OAllyl)
Method 1T-1


3807
Fmoc-

Alloc-D-
XT-2,
Fmoc-S9
Fmoc-D-
XT-17,
Fmoc-S29
na
na
na



Asn(Trt)

Lys(Fmoc)
Method 1T-6

Asp(OAllyl)
Method 1T-1


3808
Fmoc-Val

Alloc-
XT-5,
Fmoc-S9
Fmoc-
XT-20,
Fmoc-S29
na
na
na





Lys(Fmoc)
Method 1T-6

Asp(OAllyl)
Method 1T-1


3809
Fmoc-

Alloc-
XT-3,
Fmoc-S9
Fmoc-
XT-18,
Fmoc-S29
na
na
na



Tyr(But)

Lys(Fmoc)
Method 1T-6

Asp(OAllyl)
Method 1T-1


3810
Fmoc-

Alloc-D-
XT-5,
Fmoc-S37
Fmoc-
XT-20,
Fmoc-S29
na
na
na



Ser(But)

Lys(Fmoc)
Method 1T-6

Asp(OAllyl)
Method 1T-1


3811
Fmoc-

Alloc-
XT-3,
Fmoc-S37
Fmoc-
XT-19,
Fmoc-S29
na
na
na



Asn(Trt)

Lys(Fmoc)
Method 1T-6

Asp(OAllyl)
Method 1T-1


3812
Fmoc-Val

Alloc-
XT-2,
Fmoc-S37
Fmoc-D-
XT-24,
Fmoc-S29
na
na
na





Lys(Fmoc)
Method 1T-6

Asp(OAllyl)
Method 1T-1


3813
Fmoc-

Alloc-D-
XT-5,
Fmoc-S37
Fmoc-D-
XT-20,
Fmoc-S29
na
na
na



Tyr(But)

Lys(Fmoc)
Method 1T-6

Asp(OAllyl)
Method 1T-1





na = not available



1All syntheses were carried out on the solid phase starting from 70-80 mg of 2-chlorotrityl chloride resin (typical loading 1.0 mmol/g).




2Purity is determined by analysis with LC-UV at 220 nm.














TABLE 8B









embedded image



















Cpd
R1a
R2b
Q1
R3
R4c
Q2
R5

















3655


embedded image


(S)—CH3—(CH)
CH2


embedded image




embedded image


CH2


embedded image







3656


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3657


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3658


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3659


embedded image


(R)—CH3—(CH)
CH2


embedded image




embedded image


CH2


embedded image







3660


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3661


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3662


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3663


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3664


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3665


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3666


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3667


embedded image




embedded image


CH2


embedded image


H—(CH)
CH2


embedded image







3668


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3669


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3670


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3671


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3672


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3673


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3674


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3675


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3676


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3677


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3678


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3679


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3680


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3681


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3682


embedded image




embedded image


CH2


embedded image


H—(CH)
CH2


embedded image







3683


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3684


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3685


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3686


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3687


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3688


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3689


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3690


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3691


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3692


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3693


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3694


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3695


embedded image




embedded image


CH2


embedded image


H—(CH)
CH2


embedded image







3696


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3697


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3698


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3699


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3700


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3701


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3702


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3703


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3704


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3705


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3706


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3707


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3708


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3709


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3710


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3711


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3712


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3713


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3714


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3715


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3716


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3717


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3718


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3719


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3720


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3721


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3722


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3723


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3724


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3725


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3726


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3727


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3728


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3729


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3730


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3731


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3732


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3733


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3734


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3735


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3736


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3737


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3738


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3739


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3740


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3741


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3742


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3743


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3744


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3745


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3746


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3747


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3748


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3749


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3750


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3751


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3752


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3753


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3754


embedded image


(S)—CH3—(CH)
CH2


embedded image




embedded image


CH2


embedded image







3755


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3756


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3757


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3758


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3759


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3760


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3761


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3762


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3763


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3764


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3765


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3766


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3767


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3768


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3769


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3770


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3771


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3772


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3773


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3774


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3775


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3776


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3777


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3778


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3779


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3780


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3781


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3782


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3783


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3784


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3785


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3786


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3787


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3788


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3789


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3790


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3791


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3792


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3793


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3794


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3795


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3796


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3797


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3798


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3799


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3800


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3801


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3802


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3803


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3804


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3805


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3806


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3807


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3808


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3809


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3810


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3811


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3812


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image







3813


embedded image




embedded image


CH2


embedded image




embedded image


CH2


embedded image












For all compounds in Table 8B, R6═H, R7═H, R8═H, R9═H and R10═H, except compounds 3667, 3682, 3685 where R7═CH3. In addition, for those compounds in which Fmoc-Pro is BB2, R2b and (N)R7 form a five-membered ring, including the nitrogen atom, as shown for R2b in Table 8B. As well, for those compounds in which Fmoc-D-Pro is BB4, R4c and (N)R9 form a cyclic five-membered ring, including the nitrogen atom, as shown for R4c in Table 8B.


Example 10
High Throughput Screening Assay for Identification of Hepatitis C Virus NS3 Protease Inhibitors

Infection with hepatitis C virus (HCV) is a major global health concern causing chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. The non-structural viral proteins are cleaved from a precursor protein by the HCV NS3 serine protease that requires the adjacent NS4A cofactor. The NS3 protease plays a vital role in protein processing as it directs proteolytic cleavages at the NS3/4A, NS4A/4B, NS4B/5A, and NS5A/5B junctions and is thus essential for replication and infectivity of the virus.


To identify new HCV NS3 protease inhibitors, a scintillation proximity assay (SPA) optimized for HTS is conducted as described in the literature (J. Biomol. Screen. 2000, 5, 153-158). The buffer used for the assay is 62.5 mM HEPES (pH 7.5), 30 mM dithiothreitol, 18.75% (v/v) glycerol, 0.062% (v/v) Triton X-100. HCV NS3 protease is activated by incubation with the NS4A cofactor (1000:1 cofactor:protease ratio) in assay buffer for 5 min at ambient temperature with mild agitation. Assays are conducted in 96 or 384-well microtiter plates with 50 μL assay buffer, 15 nM dual biotin and tritium-labelled protease substrate (biotin-DRMEECASHLPYK[propionyl-3H]-NH2), 6 mM biotinyl-protease substrate, 25 nM HCV NS3 protease, 25 μM NS4A cofactor peptide (HKKKGSVVIVGRIILSG-NH2), and library test compound in 2.5 μL DMSO. Reaction is initiated by the addition of 10 μL of the enzyme and cofactor. The plates are incubated for 30 min at ambient temperature with gentle agitation, then stopped by the addition of 100 μL of an appropriate stop solution (for example, streptavidin-coated YSi-SPA beads in PBS). Measurement of the radioactivity bound to the SPA beads is performed with an appropriate microplate scintillation counter (typically using a 1 min count time). Data thus obtained are analyzed using an appropriate software package, for example GraphPad Prism (La Jolla, Calif.).


Example 11
High Throughput Screening Assay for Identification of 5-Hydroxytryptamine Receptor Subtype 2A (5-HT2A) Inverse Agonists

The majority of clinically important antipsychotic agents have been found, in addition to their antagonistic action at dopamine D2 receptors, to be potent inverse agonists at the 5-HT2A receptor. For the identification of new such CNS therapeutic agents, the receptor selection and amplification assay as described in the literature (J. Pharm. Exp. Ther. 2001, 299, 268-276) is conducted.


Cell Culture

In preparation for the assay, appropriate cells (NIH-3T3 or other) are grown to 70-80% confluence in roller bottles or standard 96-well tissue culture plates in Dulbecco's modified essential media (DMEM) supplemented with 10% calf serum and 1% PSG (penicillin/streptomycin/glutamine. Transfection of cells with plasmid DNAs (cloned receptor) using standard methods for 12-16 h (o/n) followed. Co-expression of Gq was used to augment 5-HT2A receptor constitutive activity. If in plates, assays are performed with 1 to 50 ng/well cloned receptor and 20 ng/well β-galactosidase plasmid DNA. To assist with the 5-HT2A constitutive activity, 4-20 ng/well of Gq protein were also added. After transfection in roller bottles, the cells were trypsinized, harvested and frozen, or could be immediately used in the assay.


Assay

For the assay, cells were placed (or rapidly thawed, if previously forzen) in DMEM with 0.5% calf serum and 2% cyto-sf3 (Kemp Biotechnologies, Frederick, Md., USA), then added to the assay plates (typically 96- or 384-well) containing test compounds from the library, negative controls or positive controls (ritanserin). Alternatively, after the o/n transfection in plates, medium was replaced with serum-free DMEM containing 2% cyto-sf3 and 1% PSG and one (or more) concentrations of test library compounds or controls. In all cases, cells were grown in a humidified atmosphere with 5% ambient CO2 for 4-6 d. After removal of the medium, β-galactosidase activity in the plates is measured using standard methods, for example adding o-nitrophenyl β-D-galactopyranoside in phosphate buffered saline. The resulting colorimetric reaction was then measured using a spectrophotometric plate reader at the wavelength appropriate for the P-galactosidase method employed (420 nm for the example). Analysis of data is done using an appropriate software package, for example GraphPad Prism.


Example 12
Cell-Based High Throughput Screening Assay for Identification of Inhibitors of p53-MDM2 Interaction

The p53 transcription factor is a potent tumor suppressor that regulates expression of a variety of genes responsible for DNA repair, differentiation, cell cycle inhibition and apoptosis. The function of p53 is suppressed by the MDM2 oncoprotein through direct inhibition of its transcriptional activity and also enhancement of its degradation via the ubiquitin-proteosome pathway. Many human tumors overexpress MDM2 and effectively impair p53-mediated apoptosis. Hence, stabilization of p53 through inhibiting the p53-MDM2 interaction offers an approach for cancer chemotherapy. For the identification of such inhibitors, the validated cell-based assay as described in the literature is employed (J. Biomol. Screen. 2011, 16, 450-456). This is based upon mammalian two-hybrid technology utilizing a dual luciferase reporter system to eliminate false hits from cytotoxicity to the compounds.


Cell Culture

Appropriate cells (for example HEK293, U2OS, MDA-MB-435) were obtained from ATCC (Manassas, Va., USA) and maintained in DMEM with 10% fetal bovine serum (FBS), 100 mg/L penicillin, and 100 mg/L streptomycin at 37° C. in a humidified atmosphere of 5% CO2. About 1×106 cells were combined with plasmids (2-4 μg) in transfection buffer (200 μL), and electroporation executed for transient transfection.


Assay

A mammalian two-hybrid system (Stratagene, La Jolla, Calif.) was utilized for the cell-based assay developed for assessing the p53-MDM2 interaction. To effect this strategy, full-length p53 or MDM2 were inserted at the C-terminus of the DNA binding domain (BD) of GAL4 or the transcriptional activation domain (AD) of NFκB. Interaction of p53 and MDM2 brings the two domains (BD and AD) into proximity and thereby activates the downstream firefly luciferase reporter gene. Specifically, into the pCMV-AD and pCMV-BD vectors were cloned full-length cDNAs encoding human p53 and MDM2 in-frame with AD or BD at the N terminus. For single-luciferase analysis, cells were co-transfected with pCMV-AD-MDM2 (or -p53), pCMV-BD-p53 (or-MDM2), and the pFR-Luc firefly luciferase reporter plasmid at an equivalent ratio of 1:1:1. While for dual-luciferase analysis, an internal control, the pRL-TK plasmid encoding a renilla luciferase, was included. After transfection, seeding of cells is performed at a density of approximately 3×104 cells per well onto microplate (96 wells). The library test compounds at various concentrations are added 16 h post-transfection. Luciferase activities were measured after an additional 24 h using the Dual-Glo Luciferase system (Promega, Madison, Wis., USA) and an appropriate multiplate reader. Compounds are typically initially screened at a single concentration of 10 μM, 20 μM or 50 μM, then a dose-response curve obtained for those compounds found to be hits as defined below. In each 96-well plate, eight wells were used as positive controls (10 μM known inhibitor, for example nutilin-3, in 1% DMSO) and another eight wells as negative controls (1% DMSO). The luciferase activity was normalized to 100% and 0 in the wells treated with DMSO and known inhibitor, respectively. The compounds causing the luciferase activity to reduce to less than 30% could be considered as “hits” in the primary screening, although other values can also be selected. GraphPad Prism software, or other appropriate package, is used to analyze data and perform nonlinear regression analyses to generate dose-response curves and calculate IC50 values.


Example 13
Synthesis of Another Representative Library of Macrocyclic Compounds of Formula (I) Containing Four Building Blocks

The synthetic scheme presented in FIG. 2 was followed to prepare the library of macrocyclic compounds 3816-3951 on solid phase. The first building block amino acid (BB1) was loaded onto the resin (Method 1D), then, after removal of the Fmoc protection (Method 1F), the next building block (BB2) attached, using reductive amination (Methods 1I or 1J), Fukuyama-Mitsunobu alkylation (using the procedure of Method 1P, not depicted in FIG. 2) or amide coupling chemistry (Method 1G). Upon removal of the Fmoc protecting group, the third building block (BB3) was connected via amide bond formation (Method 1G). Next, after removal of the Fmoc protection (Method 1F), the final building block (BB4) was attached, again using reductive amination (Methods 1I or 1J), alkylation (via the procedure of Method 1P, not shown in FIG. 2) or amide coupling (Method 1G). This was followed by selective N-terminal deprotection (Method 1F), cleavage from the resin (Method 1Q) and macrocyclization (Method 1R). The side chain protecting groups were then removed (Method 1S) and the resulting crude product purified by preparative HPLC (Method 2B). Along with the specific building blocks used for each macrocycle, the amount obtained, the HPLC purity and confirmation of identity by mass spectrometry (MS) are provided in Table 9A, with the individual structures of the compounds thus prepared presented in Table 9B.


For compounds 3823, 3872 and 3907 in Table 9A, the commercially available N-Me amino acids indicated were employed or, alternatively, the procedure described in Method 1P was employed to install the methyl group after addition of BB1. As well, for compounds 3824, 3873, 3908, 3936, and 3937 in Table 9A, the Method 1P procedure was employed to attach the methyl group after addition of the corresponding non-methylated BB2, although for compound 3936, Fmoc-S2 could be used directly as an alternative. Also, for compound 3950 in Table 9A, the commercially available N-Me amino acid indicated was employed or, alternatively, the procedure described in Method 1P was employed to install the methyl group after addition of BB3. Lastly, for compounds 3825, 3874, 3909, 3943, 3947 and 3949 in Table 9A, the Method 1P procedure was employed to attach the methyl group after addition of the corresponding non-methylated BB4 prior to macrocyclization, although for compounds 3943, 3947 and 3949, Fmoc-S2 could be used directly as an alternative.
















TABLE 9A










Wt1

MS


Cpd
BB1
BB2
BB3
BB4
(mg)
Purity2
(M + H)







3816
Fmoc-D-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
2.2
100
372


3817
Fmoc-Asn(Trt)
Fmoc-(R)-S31
Fmoc-Leu
Fmoc-S9
1.2
na
372


3818
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-D-Leu
Fmoc-S9
3.4
100
372


3819
Fmoc-D-Asn(Trt)
Fmoc-(R)-S31
Fmoc-Leu
Fmoc-S9
2.0
na
372


3820
Fmoc-D-Asn(Trt)
Fmoc-(S)-S31
Fmoc-D-Leu
Fmoc-S9
1.1
na
372


3821
Fmoc-Asn(Trt)
Fmoc-(R)-S31
Fmoc-D-Leu
Fmoc-S9
1.6
100
372


3822
Fmoc-D-Asn(Trt)
Fmoc-(R)-S31
Fmoc-D-Leu
Fmoc-S9
1.7
na
372


3823
Fmoc-N-Me-
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
0.7
100
386



Asn(Trt)


3824
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
4.5
na
386


3825
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
3.5
100
386


3826
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S37
0.8
100
418


3827
Fmoc-Ala
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
1.3
100
329


3828
Fmoc-Asp(OBut)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
1.1
100
373


3829
Fmoc-Asp(OMe)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
2.3
100
387


3830
Fmoc-Gln(Trt)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
2.5
100
386


3831
Fmoc-Glu(OBut)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
1.3
na
387


3832
Fmoc-Ser(But)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
1.9
na
345


3833
Fmoc-Dap(Boc)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
2.3
100
344


3834
Fmoc-Dab(Boc)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
2.6
100
358


3835
Fmoc-Orn(Boc)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
2.6
100
372


3836
Fmoc-Lys(Boc)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
1.8
100
386


3837
Fmoc-Dap(Boc)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
1.1
100
444


3838
Fmoc-Dab(Boc)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
3.1
100
458


3839
Fmoc-Orn(Boc)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
3.6
100
472


3840
Fmoc-Lys(Ac)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
2.7
100
428


3841
Fmoc-Tyr(But)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S9
2.4
100
421


3842
Fmoc-Asn(Trt)
Fmoc-S1
Fmoc-Leu
Fmoc-S9
1.1
na
358


3843
Fmoc-Asn(Trt)
Fmoc-S5
Fmoc-Leu
Fmoc-S9
0.6
na
372


3844
Fmoc-Asn(Trt)
Fmoc-(S)-S75
Fmoc-Leu
Fmoc-S9
4.2
100
386


3845
Fmoc-Asn(Trt)
Fmoc-S9
Fmoc-Leu
Fmoc-(S)-S31
1.4
100
372


3846
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Ala
Fmoc-S9
7.3
na
330


3847
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Abu
Fmoc-S9
0.9
na
344


3848
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Nva
Fmoc-S9
2.3
na
358


3849
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Nle
Fmoc-S9
3.6
100
372


3850
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Val
Fmoc-S9
1.4
na
358


3851
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Ile
Fmoc-S9
1.9
na
372


3852
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Met
Fmoc-S9
2.2
na
390


3853
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Phe
Fmoc-S9
4.5
100
406


3854
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Ser(But)
Fmoc-S9
10.6 
100
346


3855
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Dap(Boc)
Fmoc-S9
2.7
na
345


3856
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Dab(Aloc)
Fmoc-S9
4.1
100
443


3857
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Orn(Boc)
Fmoc-S9
7.6
na
373


3858
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S8
2.8
100
384


3859
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S6
3.6
100
356


3860
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S5
2.9
100
342


3861
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S73
4.4
100
386


3862
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S72
4.5
100
386


3863
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S37
0.5
100
404


3864
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-Leu
Fmoc-S38
1.0
100
418


3865
Fmoc-Tyr(But)
Fmoc-S9
Fmoc-Asn(Trt)
Fmoc-(R)-S31
7.6
100
422


3866
Fmoc-D-Tyr(But)
Fmoc-(R)-S31
Fmoc-Asn(Trt)
Fmoc-S9
2.1
na
422


3867
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-D-Asn(Trt)
Fmoc-S9
1.6
na
422


3868
Fmoc-Tyr(But)
Fmoc-(S)-S31
Fmoc-D-Asn(Trt)
Fmoc-S9
4.7
100
422


3869
Fmoc-D-Tyr(But)
Fmoc-(S)-S31
Fmoc-D-Asn(Trt)
Fmoc-S9
2.1
na
422


3870
Fmoc-D-Tyr(But)
Fmoc-(S)-S31
Fmoc-Asn(Trt)
Fmoc-S9
1.8
na
422


3871
Fmoc-D-Tyr(But)
Fmoc-(R)-S31
Fmoc-D-Asn(Trt)
Fmoc-S9
1.8
na
422


3872
Fmoc-N-Me-
Fmoc-(R)-S31
Fmoc-Asn(Trt)
Fmoc-S9
1.4
100
436



Tyr(But)


3873
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-Asn(Trt)
Fmoc-S9
1.5
na
436


3874
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-Asn(Trt)
Fmoc-S9
2.3
na
436


3875
Fmoc-Ala
Fmoc-(R)-S31
Fmoc-Asn(Trt)
Fmoc-S9
3.7
na
330


3876
Fmoc-Leu
Fmoc-(R)-S31
Fmoc-Asn(Trt)
Fmoc-S9
1.7
100
372


3877
Fmoc-Phe
Fmoc-(R)-S31
Fmoc-Asn(Trt)
Fmoc-S9
1.5
100
406


3878
Fmoc-Tyr(OMe)
Fmoc-(R)-S31
Fmoc-Asn(Trt)
Fmoc-S9
1.9
100
436


3879
Fmoc-Asn(Trt)
Fmoc-(R)-S31
Fmoc-Asn(Trt)
Fmoc-S9
5.2
na
373


3880
Fmoc-Lys(Boc)
Fmoc-(R)-S31
Fmoc-Asn(Trt)
Fmoc-S9
2.1
na
387


3881
Fmoc-Orn(Boc)
Fmoc-(R)-S31
Fmoc-Asn(Trt)
Fmoc-S9
6.9
na
373


3882
Fmoc-Dab(Boc)
Fmoc-(R)-S31
Fmoc-Asn(Trt)
Fmoc-S9
7.8
na
359


3883
Fmoc-Arg(Pbf)
Fmoc-(R)-S31
Fmoc-Asn(Trt)
Fmoc-S9
0.9
na
415


3884
Fmoc-Tyr(But)
Fmoc-S1
Fmoc-Asn(Trt)
Fmoc-S9
1.5
na
408


3885
Fmoc-Tyr(But)
Fmoc-(R)-S75
Fmoc-Asn(Trt)
Fmoc-S9
2.1
na
436


3886
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-Ala
Fmoc-S9
2.1
100
379


3887
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-Asp(OMe)
Fmoc-S9
0.7
100
437


3888
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-Gln(Trt)
Fmoc-S9
2.5
na
436


3889
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-Glu(OBut)
Fmoc-S9
3.4
na
437


3890
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-Ser(But)
Fmoc-S9
1.7
100
395


3891
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-Dap(Boc)
Fmoc-S9
1.8
na
394


3892
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-Dab(Aloc)
Fmoc-S9
3.3
100
492


3893
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-Orn(Boc)
Fmoc-S9
2.4
na
422


3894
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-Tyr(But)
Fmoc-S9
2.9
100
471


3895
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-Asn(Trt)
Fmoc-S73
1.8
na
436


3896
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-Asn(Trt)
Fmoc-S72
1.3
na
436


3897
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-Asn(Trt)
Fmoc-S8
1.6
na
434


3898
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-Asn(Trt)
Fmoc-S6
2.3
na
406


3899
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-Asn(Trt)
Fmoc-S5
3.0
na
392


3900
Fmoc-Tyr(But)
Fmoc-(R)-S31
Fmoc-Asn(Trt)
Fmoc-S37
1.3
100
454


3901
Fmoc-Val
Fmoc-(R)-S32
Fmoc-Dap(Boc)
Fmoc-S9
4.0
100
372


3902
Fmoc-D-Val
Fmoc-(S)-S32
Fmoc-D-Dap(Boc)
Fmoc-S9
4.0
100
372


3903
Fmoc-D-Val
Fmoc-(R)-S32
Fmoc-D-Dap(Boc)
Fmoc-S9
5.6
100
372


3904
Fmoc-Val
Fmoc-(S)-S32
Fmoc-Dap(Boc)
Fmoc-S9
2.9
100
372


3905
Fmoc-Val
Fmoc-(R)-S32
Fmoc-D-Dap(Boc)
Fmoc-S9
3.8
100
372


3906
Fmoc-Val
Fmoc-(S)-S32
Fmoc-D-Dap(Boc)
Fmoc-S9
3.8
100
372


3907
Fmoc-N-Me-D-Val
Fmoc-(R)-S32
Fmoc-Dap(Boc)
Fmoc-S9
0.7
100
386


3908
Fmoc-D-Val
Fmoc-(R)-S32
Fmoc-Dap(Boc)
Fmoc-S9
3.6
100
386


3909
Fmoc-D-Val
Fmoc-(R)-S32
Fmoc-Dap(Boc)
Fmoc-S9
6.8
100
386


3910
Fmoc-D-Ala
Fmoc-(R)-S32
Fmoc-Dap(Boc)
Fmoc-S9
0.9
na
344


3911
Fmoc-D-Abu
Fmoc-(R)-S32
Fmoc-Dap(Boc)
Fmoc-S9
2.3
100
358


3912
Fmoc-D-Leu
Fmoc-(R)-S32
Fmoc-Dap(Boc)
Fmoc-S9
1.9
100
386


3913
Fmoc-D-Ile
Fmoc-(R)-S32
Fmoc-Dap(Boc)
Fmoc-S9
2.0
100
386


3914
Fmoc-D-Thr
Fmoc-(R)-S32
Fmoc-Dap(Boc)
Fmoc-S9
2.9
100
374


3915
Fmoc-D-Asp
Fmoc-(R)-S32
Fmoc-Dap(Boc)
Fmoc-S9
4.1
100
388


3916
Fmoc-D-Asn(Trt)
Fmoc-(R)-S32
Fmoc-Dap(Boc)
Fmoc-S9
1.7
na
387


3917
Fmoc-D-Val
Fmoc-(R)-S78
Fmoc-Dap(Boc)
Fmoc-S9
1.9
na
372


3918
Fmoc-D-Val
Fmoc-(R)-S77
Fmoc-Dap(Boc)
Fmoc-S9
2.0
100
372


3919
Fmoc-D-Val
Fmoc-(R)-S75
Fmoc-Dap(Boc)
Fmoc-S9
3.7
100
344


3920
Fmoc-D-Val
Fmoc-(R)-S32
Fmoc-Dab(Boc)
Fmoc-S9
3.2
100
386


3921
Fmoc-D-Val
Fmoc-(R)-S32
Fmoc-Orn(Boc)
Fmoc-S9
5.1
100
400


3922
Fmoc-D-Val
Fmoc-(R)-S32
Fmoc-Lys(Boc)
Fmoc-S9
5.6
100
414


3923
Fmoc-D-Val
Fmoc-(R)-S32
Fmoc-Ser(But)
Fmoc-S9
5.8
100
373


3924
Fmoc-D-Val
Fmoc-(R)-S32
Fmoc-Ala
Fmoc-S9
2.9
na
357


3925
Fmoc-D-Val
Fmoc-(R)-S32
Fmoc-Asn(Trt)
Fmoc-S9
4.5
100
400


3926
Fmoc-D-Val
Fmoc-(R)-S32
Fmoc-Asp(OBut)
Fmoc-S9
2.1
100
401


3927
Fmoc-D-Val
Fmoc-(R)-S32
Fmoc-Dap(Boc)
Fmoc-S73
4.6
100
386


3928
Fmoc-D-Val
Fmoc-(R)-S32
Fmoc-Dap(Boc)
Fmoc-S72
2.8
100
386


3929
Fmoc-D-Val
Fmoc-(R)-S32
Fmoc-Dap(Boc)
Fmoc-S8
2.6
100
384


3930
Fmoc-D-Val
Fmoc-(R)-S32
Fmoc-Dap(Boc)
Fmoc-S6
5.3
100
356


3931
Fmoc-D-Val
Fmoc-(R)-S32
Fmoc-Dap(Boc)
Fmoc-S5
1.4
100
342


3932
Fmoc-D-Val
Fmoc-(R)-S32
Fmoc-Dap(Boc)
Fmoc-S1
1.0
100
328


3933
Fmoc-D-Val
Fmoc-(R)-S32
Fmoc-Dap(Boc)
Fmoc-S37
0.5
na
404


3934
Fmoc-D-Val
Fmoc-(R)-S32
Fmoc-Dap(Boc)
Fmoc-S38
0.5
100
418


3935
Fmoc-D-Val
Fmoc-(R)-S32
Fmoc-Dap(Boc)
Fmoc-S13
5.3
100
404


3936
Fmoc-D-Tyr
Fmoc-S1
Fmoc-D-Lys(Boc)
Fmoc-S37
na
na
na


3937
Fmoc-D-Tyr
Fmoc-S5
Fmoc-D-Lys(Boc)
Fmoc-S9
na
na
na


3938
Fmoc-Asn(Trt)
Fmoc-S34
Fmoc-Ser(But)
Fmoc-S37
6.6
100
404


3939
Fmoc-Phe(3Cl)
Fmoc-S13
Fmoc-D-Nva
Fmoc-S34
0.4
na
na


3940
Fmoc-Lys(Boc)
Fmoc-S46
Fmoc-Trp(Boc)
Fmoc-(S)-S80
0.3
 82
691


3941
Fmoc-Lys(Boc)
Fmoc-S46
Fmoc-Trp(Boc)
Fmoc-(R)-S80
1.5
100
691


3942
Fmoc-Lys(Boc)
Fmoc-S46
Fmoc-Trp(Boc)
Fmoc-S1
2.7
100
585


3943
Fmoc-Lys(Boc)
Fmoc-S46
Fmoc-Trp(Boc)
Fmoc-S1
3.6
100
599


3944
Fmoc-Orn(Boc)
Fmoc-S46
Fmoc-Trp(Boc)
Fmoc-(S)-S79
2.9
100
661


3945
Fmoc-Orn(Boc)
Fmoc-S46
Fmoc-Trp(Boc)
Fmoc-(R)-S79
2.1
100
661


3946
Fmoc-Orn(Boc)
Fmoc-S46
Fmoc-Trp(Boc)
Fmoc-S1
2.5
100
571


3947
Fmoc-Orn(Boc)
Fmoc-S46
Fmoc-Trp(Boc)
Fmoc-S1
3.2
100
585


3948
Fmoc-Lys(Boc)
Fmoc-S46
Fmoc-Tyr(But)
Fmoc-S1
3.9
100
562


3949
Fmoc-Lys(Boc)
Fmoc-S46
Fmoc-Tyr(But)
Fmoc-S1
4.3
100
576


3950
Fmoc-D-Lys(Boc)
Fmoc-S34
Fmoc-N-Me-
Fmoc-S37
9.6
100
488





Ser(But)


3951
Fmoc-Thr(But)
Fmoc-(R)-S32
Fmoc-D-Ser(But)
Fmoc-S9
0.6
100
431





na = not available



1All syntheses were carried out on the solid phase starting from 70-80 mg of 2-chlorotrityl chloride resin (typical loading 1.0 mmol/g).




2Purity is determined by analysis with LC-UV at 220 nm.














TABLE 9B









embedded image



















Cpd
R1
R5
R2
R6
R3
R4
R8





3816


embedded image


H


embedded image


H


embedded image




embedded image


H





3817


embedded image


H


embedded image


H


embedded image




embedded image


H





3818


embedded image


H


embedded image


H


embedded image




embedded image


H





3819


embedded image


H


embedded image


H


embedded image




embedded image


H





3820


embedded image


H


embedded image


H


embedded image




embedded image


H





3821


embedded image


H


embedded image


H


embedded image




embedded image


H





3822


embedded image


H


embedded image


H


embedded image




embedded image


H





3823


embedded image


Me


embedded image


H


embedded image




embedded image


H





3824


embedded image


H


embedded image


Me


embedded image




embedded image


H





3825


embedded image


H


embedded image


H


embedded image




embedded image


Me





3826


embedded image


H


embedded image


H


embedded image




embedded image


H





3827
(S)—CH3
H


embedded image


H


embedded image




embedded image


H





3828


embedded image


H


embedded image


H


embedded image




embedded image


H





3829


embedded image


H


embedded image


H


embedded image




embedded image


H





3830


embedded image


H


embedded image


H


embedded image




embedded image


H





3831


embedded image


H


embedded image


H


embedded image




embedded image


H





3832


embedded image


H


embedded image


H


embedded image




embedded image


H





3833


embedded image


H


embedded image


H


embedded image




embedded image


H





3834


embedded image


H


embedded image


H


embedded image




embedded image


H





3835


embedded image


H


embedded image


H


embedded image




embedded image


H





3836


embedded image


H


embedded image


H


embedded image




embedded image


H





3837


embedded image


H


embedded image


H


embedded image




embedded image


H





3838


embedded image


H


embedded image


H


embedded image




embedded image


H





3839


embedded image


H


embedded image


H


embedded image




embedded image


H





3840


embedded image


H


embedded image


H


embedded image




embedded image


H





3841


embedded image


H


embedded image


H


embedded image




embedded image


H





3842


embedded image


H


embedded image


H


embedded image




embedded image


H





3843


embedded image


H


embedded image


H


embedded image




embedded image


H





3844


embedded image


H


embedded image


H


embedded image




embedded image


H





3845


embedded image


H


embedded image


H


embedded image




embedded image


H





3846


embedded image


H


embedded image


H
(S)—CH3


embedded image


H





3847


embedded image


H


embedded image


H


embedded image




embedded image


H





3848


embedded image


H


embedded image


H


embedded image




embedded image


H





3849


embedded image


H


embedded image


H


embedded image




embedded image


H





3850


embedded image


H


embedded image


H


embedded image




embedded image


H





3851


embedded image


H


embedded image


H


embedded image




embedded image


H





3852


embedded image


H


embedded image


H


embedded image




embedded image


H





3853


embedded image


H


embedded image


H


embedded image




embedded image


H





3854


embedded image


H


embedded image


H


embedded image




embedded image


H





3855


embedded image


H


embedded image


H


embedded image




embedded image


H





3856


embedded image


H


embedded image


H


embedded image




embedded image


H





3857


embedded image


H


embedded image


H


embedded image




embedded image


H





3858


embedded image


H


embedded image


H


embedded image




embedded image


H





3859


embedded image


H


embedded image


H


embedded image




embedded image


H





3860


embedded image


H


embedded image


H


embedded image




embedded image


H





3861


embedded image


H


embedded image


H


embedded image




embedded image


H





3862


embedded image


H


embedded image


H


embedded image




embedded image


H





3863


embedded image


H


embedded image


H


embedded image




embedded image


H





3864


embedded image


H


embedded image


H


embedded image




embedded image


H





3865


embedded image


H


embedded image


H


embedded image




embedded image


H





3866


embedded image


H


embedded image


H


embedded image




embedded image


H





3867


embedded image


H


embedded image


H


embedded image




embedded image


H





3868


embedded image


H


embedded image


H


embedded image




embedded image


H





3869


embedded image


H


embedded image


H


embedded image




embedded image


H





3870


embedded image


H


embedded image


H


embedded image




embedded image


H





3871


embedded image


H


embedded image


H


embedded image




embedded image


H





3872


embedded image


H


embedded image


H


embedded image




embedded image


H





3873


embedded image


H


embedded image


H


embedded image




embedded image


H





3874


embedded image


H


embedded image


H


embedded image




embedded image


Me





3875
(S)—CH3
H


embedded image


H


embedded image




embedded image


H





3876


embedded image


H


embedded image


H


embedded image




embedded image


H





3877


embedded image


H


embedded image


H


embedded image




embedded image


H





3878


embedded image


H


embedded image


H


embedded image




embedded image


H





3879


embedded image


H


embedded image


H


embedded image




embedded image


H





3880


embedded image


H


embedded image


H


embedded image




embedded image


H





3881


embedded image


H


embedded image


H


embedded image




embedded image


H





3882


embedded image


H


embedded image


H


embedded image




embedded image


H








3883


embedded image


H


embedded image


H


embedded image




embedded image


H





3884


embedded image


H


embedded image


H


embedded image




embedded image


H





3885


embedded image


H


embedded image


H


embedded image




embedded image


H





3886


embedded image


H


embedded image


H
(S)—CH3


embedded image


H





3887


embedded image


H


embedded image


H


embedded image




embedded image


H





3888


embedded image


H


embedded image


H


embedded image




embedded image


H





3889


embedded image


H


embedded image


H


embedded image




embedded image


H





3890


embedded image


H


embedded image


H


embedded image




embedded image


H





3891


embedded image


H


embedded image


H


embedded image




embedded image


H





3892


embedded image


H


embedded image


H


embedded image




embedded image


H





3893


embedded image


H


embedded image


H


embedded image




embedded image


H





3894


embedded image


H


embedded image


H


embedded image




embedded image


H





3895


embedded image


H


embedded image


H


embedded image




embedded image


H





3896


embedded image


H


embedded image


H


embedded image




embedded image


H





3897


embedded image


H


embedded image


H


embedded image




embedded image


H





3898


embedded image


H


embedded image


H


embedded image




embedded image


H





3899


embedded image


H


embedded image


H


embedded image




embedded image


H





3900


embedded image


H


embedded image


H


embedded image




embedded image


H





3901


embedded image


H


embedded image


H


embedded image




embedded image


H





3902


embedded image


H


embedded image


H


embedded image




embedded image


H





3903


embedded image


H


embedded image


H


embedded image




embedded image


H





3904


embedded image


H


embedded image


H


embedded image




embedded image


H





3905


embedded image


H


embedded image


H


embedded image




embedded image


H





3906


embedded image


H


embedded image


H


embedded image




embedded image


H





3907


embedded image


Me


embedded image


H


embedded image




embedded image


H





3908


embedded image


H


embedded image


Me


embedded image




embedded image


H





3909


embedded image


H


embedded image


H


embedded image




embedded image


Me





3910
(R)—CH3
H


embedded image


H


embedded image




embedded image


H





3911


embedded image


H


embedded image


H


embedded image




embedded image


H





3912


embedded image


H


embedded image


H


embedded image




embedded image


H





3913


embedded image


H


embedded image


H


embedded image




embedded image


H





3914


embedded image


H


embedded image


H


embedded image




embedded image


H





3915


embedded image


H


embedded image


H


embedded image




embedded image


H





3916


embedded image


H


embedded image


H


embedded image




embedded image


H





3917


embedded image


H


embedded image


H


embedded image




embedded image


H





3918


embedded image


H


embedded image


H


embedded image




embedded image


H





3919


embedded image


H


embedded image


H


embedded image




embedded image


H





3920


embedded image


H


embedded image


H


embedded image




embedded image


H





3921


embedded image


H


embedded image


H


embedded image




embedded image


H





3922


embedded image


H


embedded image


H


embedded image




embedded image


H





3923


embedded image


H


embedded image


H


embedded image




embedded image


H





3924


embedded image


H


embedded image


H
(S)—CH3


embedded image


H





3925


embedded image


H


embedded image


H


embedded image




embedded image


H





3926


embedded image


H


embedded image


H


embedded image




embedded image


H





3927


embedded image


H


embedded image


H


embedded image




embedded image


H





3928


embedded image


H


embedded image


H


embedded image




embedded image


H





3929


embedded image


H


embedded image


H


embedded image




embedded image


H





3930


embedded image


H


embedded image


H


embedded image




embedded image


H





3931


embedded image


H


embedded image


H


embedded image




embedded image


H





3932


embedded image


H


embedded image


H


embedded image




embedded image


H





3933


embedded image


H


embedded image


H


embedded image




embedded image


H





3934


embedded image


H


embedded image


H


embedded image




embedded image


H





3935


embedded image


H


embedded image


H


embedded image




embedded image


H





3936


embedded image


H


embedded image


Me


embedded image




embedded image


H





3937


embedded image


H


embedded image


Me


embedded image




embedded image


H
















3938


embedded image


H


embedded image




embedded image




embedded image


H
















3939


embedded image


H


embedded image


H


embedded image




embedded image



















3940


embedded image


H


embedded image


H


embedded image




embedded image


H





3941


embedded image


H


embedded image


H


embedded image




embedded image


H





3942


embedded image


H


embedded image


H


embedded image




embedded image


H





3943


embedded image


H


embedded image


H


embedded image




embedded image


Me





3944


embedded image


H


embedded image


H


embedded image




embedded image


H





3945


embedded image


H


embedded image


H


embedded image




embedded image


H





3946


embedded image


H


embedded image


H


embedded image




embedded image


H





3947


embedded image


H


embedded image


H


embedded image




embedded image


Me





3948


embedded image


H


embedded image


H


embedded image




embedded image


H





3949


embedded image


H


embedded image


H


embedded image




embedded image


Me
















3950


embedded image


H


embedded image




embedded image




embedded image


H

















3951


embedded image


H


embedded image


H


embedded image




embedded image


H










For all compounds Q1=CH2, Q2=CH2 and R7═H, except for compounds 3938 and 3950 where Q1=C═O, compound 3939 where Q2=C═O, and compounds 3826 and 3956 where R7═CH3. For compounds 3938 and 3950, in which BB2 is Fmoc-S34, (N)R6 and R2 are part of a four-membered ring, including the nitrogen atom, as shown for R2-R6 in Table 9B. Similarly, for compound 3939, in which BB4 is Fmoc-S34, (N)R8 and R4 are part of a four-membered ring, including the nitrogen atom, as shown for R4-R8 in Table 9B.


Example 14
Synthesis of Another Representative Library of Macrocyclic Compounds of Formula (I) Containing Five Building Blocks

The synthetic scheme presented in FIG. 4 was followed to prepare the library of macrocyclic compounds 3952-3975 on solid phase. The first building block amino acid (BB1) was attached to the resin (Method 1D), then, after the Fmoc protection was removed (Method 1F), the next building block (BB2) was attached using amide coupling chemistry (Method 1G). The third building block (BB3) was connected, following deprotection of the Fmoc group, using reductive amination (Methods 1I or 1J) or Fukuyama-Mitsunobu alkylation (following the procedure of Method 1P, not depicted in FIG. 4). Next, after removal of the Fmoc protection (Method 1F), the penultimate building block (BB4) was attached using amide coupling (Method 1G), while the fifth and final building block (BB4) was connected utilizing reductive amination (Methods 1I or 1J) or the alkylation procedure (Method 1P, not shown in FIG. 4). This was followed by selective N-terminal deprotection (Method 1F), cleavage from the solid support (Method 1Q) and macrocyclization (Method 1R). The side chain protecting groups were then removed (Method 1S) and the resulting crude product purified by preparative HPLC (Method 2B). Along with the specific building blocks used for each macrocycle, the amount obtained, the HPLC purity and confirmation of identity by mass spectrometry (MS) are provided in Table 10A, with the individual structures of the compounds thus prepared presented in Table 10B.


For compounds 3952 and 3953 in Table 10A, the commercially available N-Me amino acid indicated was employed or, alternatively, the procedure described in Method 1P was employed to install the methyl group after addition of BB2. Similarly, for compounds 3954 and 3955 in Table 10A, the commercially available N-Me amino acid indicated was employed or, alternatively, the procedure described in Method 1P was employed to install the methyl group after addition of BB4. As well, for compounds 3955, 3959, 3963, 3967, 3973 and 3975 in Table 10A, Method 1P was employed to attach the methyl group after addition of the corresponding non-methylated BB3, although for compounds 3955, 3959, 3963, 3967, 3973, Fmoc-S2 could be used directly as an alternative. Lastly, for compounds 3953, 3957, 3961, 3965 and 3971 in Table 10A, the Method 1P procedure was employed to attach the methyl group after addition of the corresponding non-methylated BB5 prior to macrocyclization, although for all of these five compounds, Fmoc-S2 could be used directly as an alternative.

















TABLE 10A











Wt1

MS


Cpd
BB1
BB2
BB3
BB4
BB5
(mg)
Purity2
(M + H)







3952
Fmoc-D-Arg(Pbf)
Fmoc-N-Me-D-
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-S1
na
na
na




Tyr(But)








3953
Fmoc-D-Arg(Pbf)
Fmoc-N-Me-D-
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-S1
na
na
na




Tyr(But)








3954
Fmoc-Tyr(But)
Fmoc-D-Arg(Pbf)
Fmoc-S1
Fmoc-N-Me-D-
Fmoc-S46
3.56
100
767






Tyr(But)






3955
Fmoc-Tyr(But)
Fmoc-D-Arg(Pbf)
Fmoc-S1
Fmoc-N-Me-D-
Fmoc-S46
1.19
100
781






Tyr(But)






3956
Fmoc-D-Tyr(But)
Fmoc-Lys(Boc)
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-S1
na
na
na


3957
Fmoc-D-Tyr(But)
Fmoc-Lys(Boc)
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-S1
na
na
na


3958
Fmoc-Trp(Boc)
Fmoc-D-Tyr(But)
Fmoc-S1
Fmoc-Lys(Boc)
Fmoc-S46
9.93
100
748


3959
Fmoc-Trp(Boc)
Fmoc-D-Tyr(But)
Fmoc-S1
Fmoc-Lys(Boc)
Fmoc-S46
6.02
100
762


3960
Fmoc-D-Phe
Fmoc-Orn(Boc)
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-S1
na
na
na


3961
Fmoc-D-Phe
Fmoc-Orn(Boc)
Fmoc-S37
Fmoc-Trp(Boc)
Fmoc-S1
na
na
na


3962
Fmoc-Trp(Boc)
Fmoc-D-Phe
Fmoc-S1
Fmoc-Orn(Boc)
Fmoc-S46
6.78
100
718


3963
Fmoc-Trp(Boc)
Fmoc-D-Phe
Fmoc-S1
Fmoc-Orn(Boc)
Fmoc-S46
4.99
100
732


3964
Fmoc-Orn(Boc)
Fmoc-Lys(Boc)
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-S1
na
na
na


3965
Fmoc-Orn(Boc)
Fmoc-Lys(Boc)
Fmoc-S37
Fmoc-Tyr(But)
Fmoc-S1
na
na
na


3966
Fmoc-Tyr(But)
Fmoc-Orn(Boc)
Fmoc-S1
Fmoc-Lys(Boc)
Fmoc-S46
7.89
100
676


3967
Fmoc-Tyr(But)
Fmoc-Orn(Boc)
Fmoc-S1
Fmoc-Lys(Boc)
Fmoc-S46
9.08
100
690


3968
Fmoc-Arg(Pbf)
Fmoc-Pro
Fmoc-S37
Fmoc-Arg(Pbf)
Fmoc-(S)-S81
na
na
na


3969
Fmoc-Arg(Pbf)
Fmoc-Pro
Fmoc-S37
Fmoc-Arg(Pbf)
Fmoc-(R)-S81
na
na
na


3970
Fmoc-Arg(Pbf)
Fmoc-Pro
Fmoc-S37
Fmoc-Arg(Pbf)
Fmoc-S1
na
na
na


3971
Fmoc-Arg(Pbf)
Fmoc-Pro
Fmoc-S37
Fmoc-Arg(Pbf)
Fmoc-S1
na
na
na


3972
Fmoc-Arg(Pbf)
Fmoc-Gln(Trt)
Fmoc-S1
Fmoc-Pro
Fmoc-S37
na
na
na


3973
Fmoc-Arg(Pbf)
Fmoc-Gln(Trt)
Fmoc-S1
Fmoc-Pro
Fmoc-S37
na
na
na


3974
Fmoc-D-Ser(But)
Fmoc-Asn(Trt)
Fmoc-S37
Nos-D-Thr(But)
Fmoc-S1
2.28
100
650


3975
Fmoc-Tyr(But)
Fmoc-Thr(But)
Fmoc-S37
Nos-Arg(Pbf)
Fmoc-S1
2.50
100
782





na = not available



1All syntheses were carried out on the solid phase starting from 70-80 mg of 2-chlorotrityl chloride resin (typical loading 1.0 mmol/g).




2Purity is determined by analysis with LC-UV at 220 nm.














TABLE 10B









embedded image



















Cpd
R1
R2
R3
R8
R4
R5
R10





3952


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3953


embedded image




embedded image




embedded image


H


embedded image




embedded image


Me





3954


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3955


embedded image




embedded image




embedded image


Me


embedded image




embedded image


H





3956


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3957


embedded image




embedded image




embedded image


H


embedded image




embedded image


Me





3958


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3959


embedded image




embedded image




embedded image


Me


embedded image




embedded image


H





3960


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3961


embedded image




embedded image




embedded image


H


embedded image




embedded image


Me





3962


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3963


embedded image




embedded image




embedded image


Me


embedded image




embedded image


H





3964


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3965


embedded image




embedded image




embedded image


H


embedded image




embedded image


Me





3966


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3967


embedded image




embedded image




embedded image


Me


embedded image




embedded image


H





3968


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3969


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3970


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3971


embedded image




embedded image




embedded image


H


embedded image




embedded image


Me





3972


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3973


embedded image




embedded image




embedded image


Me


embedded image




embedded image


H





3974


embedded image




embedded image




embedded image


H


embedded image




embedded image


H





3975


embedded image




embedded image




embedded image


Me


embedded image




embedded image


H










For all compounds in Table 10B, Q1=CH2 and Q2=CH2. Also, the compounds all have R6═H; all have R7═H, except compounds 3972 and 3973, where R7═CH3; and all have R9═H, except compounds 3954 and 3955, where R9═CH3, and compounds 3974 and 3975 where R9═SO2-(2-nitrophenyl) or nosyl.


Other exceptions are for those compounds (3968-3971) in which Fmoc-Pro is BB2, where R2 and (N)R7 form a five-membered ring, including the nitrogen atom, as shown for R2 in Table 10B. As well, for those compounds (3972-3973) in which Fmoc-Pro is BB4, R4 and (N)R9 form a five-membered ring, including the nitrogen atom, as shown for R4 in Table 10B.


Example 15
Synthesis of a Representative Library of Macrocyclic Compounds of Formula (II) Containing Three Building Blocks

The synthetic scheme presented in FIG. 8 was followed to prepare the library of macrocyclic compounds 3976-4121 on solid phase. The first building block amino acid (BB1) was loaded onto the resin (Method 1D), then, after removal of the Fmoc protection (Method 1F), the next building block (BB2) was attached using amide coupling chemistry (Method 1G), reductive amination (Methods 1I or 1J) or Fukuyama-Mitsunobu alkylation chemistry (via the procedure in Method 1P, not depicted in FIG. 8). In the final step, subsequent to removal of the Fmoc protecting group (Method 1F), the third building block (BBs) was attached using reductive amination (Methods 1I or 1J) or alkylation chemistry (via Method 1P, not shown in FIG. 8). This was followed by selective N-terminal deprotection (Method 1F), cleavage from the solid support (Method 1Q) and macrocyclization (Method 1R). The side chain protecting groups were removed (Method 1S), then the resulting crude product purified by preparative HPLC (Method 2B). Along with the specific building blocks used for each macrocycle, the amount obtained, the purity (UV or MS) and confirmation of identity by mass spectrometry (MS) are provided in Table 11A, with the individual structures of the compounds thus prepared presented in Table 11B.


For compounds 3983 in Table 11A, the commercially available N-Me amino acid indicated was employed or, alternatively, the procedure described in Method 1P was employed to install the methyl group after addition of BB1. Similarly, for compounds 3984, 4014, 4015, 4069, 4070, 4072, 4073, 4075, 4089, 4112 and 4113 in Table 11A, the commercially available N-Me amino acids indicated can be employed or, alternatively, the procedure described in Method 1P could be employed to install the methyl group after addition of BB2. As well, for compounds 3985, 4015, 4077, 4079, 4081, 4108 and 4109 in Table 11A, Method 1P can be employed to attach the methyl group after addition of the corresponding non-methylated BB3, but prior to macrocyclization, although for compounds 4077, 4079, 4081, Fmoc-S2 could be used directly as an alternative.


Lastly, for compound 3990, BB1 was obtained commercially with the side chain already appropriately derivatized, although it could also be synthesized from Fmoc-Tyr(Allyl) using reagent XT-10 and Method 1T-10.















TABLE 11A









Wt1

MS


Cpd
BB1
BB2
BB3
(mg)
Purity2
(M + H)





















3976
Fmoc-Asn(Trt)
Fmoc-Leu
Fmoc-S9
11.3
100
315


3977
Fmoc-Tyr(But)
Fmoc-Asn(Trt)
Fmoc-S9
5.9
100
365


3978
Fmoc-Ser(But)
Fmoc-D-Dap(Boc)
Fmoc-S37
3.5
90
293


3979
Fmoc-Ser(But)
Fmoc-D-Dap(Boc)
Fmoc-S9
20.6
100
261


3980
Fmoc-Tyr(But)
Fmoc-Nva
Fmoc-S37
11.0
100
382


3981
Fmoc-Tyr(But)
Fmoc-D-Nva
Fmoc-S37
6.2
100
382


3982
Fmoc-D-Tyr(But)
Fmoc-D-Nva
Fmoc-S37
10.6
100
382


3983
Fmoc-N-Me-Tyr(But)
Fmoc-Nva
Fmoc-S37
0.3
70
396


3984
Fmoc-Tyr(But)
Fmoc-N-Me-Nva
Fmoc-S37
1.6
95
396


3985
Fmoc-Tyr(But)
Fmoc-Nva
Fmoc-S37
6.0
100
396


3986
Fmoc-Ala
Fmoc-Nva
Fmoc-S37
6.1
100
290


3987
Fmoc-Leu
Fmoc-Nva
Fmoc-S37
9.3
100
332


3988
Fmoc-Phe
Fmoc-Nva
Fmoc-S37
8.6
100
366


3989
Fmoc-Tyr(OMe)
Fmoc-Nva
Fmoc-S37
8.6
100
396


3990
Fmoc-Tyr(OBn)
Fmoc-Nva
Fmoc-S37
2.1
100
472


3991
Fmoc-Asn(Trt)
Fmoc-Nva
Fmoc-S37
2.5
100
333


3992
Fmoc-Gln(Trt)
Fmoc-Nva
Fmoc-S37
3.0
100
347


3993
Fmoc-Lys(Boc)
Fmoc-Nva
Fmoc-S37
5.2
100
347


3994
Fmoc-Orn(Boc)
Fmoc-Nva
Fmoc-S37
10.4
100
333


3995
Fmoc-Dab(Boc)
Fmoc-Nva
Fmoc-S37
12.3
100
319


3996
Fmoc-Dap(Boc)
Fmoc-Nva
Fmoc-S37
4.4
100
305


3997
Fmoc-Arg(Pbf)
Fmoc-Nva
Fmoc-S37
2.0
100
375


3998
Fmoc-Tyr(But)
Fmoc-Ala
Fmoc-S37
9.2
100
354


3999
Fmoc-Tyr(But)
Fmoc-Abu
Fmoc-S37
10.3
100
368


4000
Fmoc-Tyr(But)
Fmoc-Leu
Fmoc-S37
9.8
100
396


4001
Fmoc-Tyr(But)
Fmoc-Nle
Fmoc-S37
7.5
100
396


4002
Fmoc-Tyr(But)
Fmoc-Ile
Fmoc-S37
10.3
100
396


4003
Fmoc-Tyr(But)
Fmoc-Val
Fmoc-S37
11.7
100
382


4004
Fmoc-Tyr(But)
Fmoc-Ser(But)
Fmoc-S37
13.0
100
370


4005
Fmoc-Tyr(But)
Fmoc-Dap(Boc)
Fmoc-S37
8.2
100
369


4006
Fmoc-Tyr(But)
Fmoc-Dab(Boc)
Fmoc-S37
10.1
100
383


4007
Fmoc-Tyr(But)
Fmoc-Asp(OBut)
Fmoc-S37
9.6
97
398


4008
Fmoc-Tyr(But)
Fmoc-Asn(Trt)
Fmoc-S37
5.2
100
397


4009
Fmoc-Nva
Fmoc-Tyr(But)
Fmoc-S37
11.6
100
382


4010
Fmoc-Tyr(But)
Fmoc-Nva
Fmoc-S38
8.6
100
396


4011
Fmoc-Tyr(But)
Fmoc-Nva
Fmoc-S86
6.1
75
410


4012
Fmoc-Tyr(But)
Fmoc-Nva
Fmoc-S13
6.0
100
382


4013
Fmoc-Tyr(But)
Fmoc-Nva
Fmoc-S9
16.4
100
350


4014
Fmoc-D-Arg(Pbf)
Fmoc-N-Me-D-Tyr(But)
Fmoc-S46
2.4
100
561


4015
Fmoc-Tyr(But)
Fmoc-N-Me-D-Tyr(But)
Fmoc-S46
9.5
100
582


4016
Fmoc-Tyr(But)
Fmoc-D-Arg(Pbf)
Fmoc-S46
6.1
100
547


4017
Fmoc-Orn(Boc)
Fmoc-Ala
Fmoc-S46
10.9
91
413


4018
Fmoc-Orn(Boc)
Fmoc-Trp(Boc)
Fmoc-S46
8.4
100
528


4019
Fmoc-Orn(Boc)
Fmoc-Tyr(But)
Fmoc-S46
15.8
100
505


4020
Fmoc-Orn(Boc)
Fmoc-His(Trt)
Fmoc-S46
7.0
100
479


4021
Fmoc-Orn(Boc)
Fmoc-Phe
Fmoc-S46
18.7
95
489


4022
Fmoc-Orn(Boc)
Fmoc-Tyr(OMe)
Fmoc-S46
8.5
100
519


4023
Fmoc-Orn(Boc)
Fmoc-Tyr(But)
Fmoc-S46
0.3
100
561


4024
Fmoc-Orn(Boc)
Fmoc-Lys(Boc)
Fmoc-S46
13.0
100
470


4025
Fmoc-Tyr(But)
Fmoc-Lys(Boc)
Fmoc-S46
5.2
100
519


4026
Fmoc-Tyr(But)
Fmoc-Orn(Boc)
Fmoc-S46
6.8
100
505


4027
Fmoc-D-Phe
Fmoc-Orn(Boc)
Fmoc-S46
6.5
100
489


4028
Fmoc-Trp(Boc)
Fmoc-Orn(Boc)
Fmoc-S46
6.7
98
528


4029
Fmoc-Trp(Boc)
Fmoc-D-Phe
Fmoc-S46
5.5
100
561


4030
Fmoc-D-Tyr(But)
Fmoc-Lys(Boc)
Fmoc-S46
8.0
100
519


4031
Fmoc-Trp(Boc)
Fmoc-Lys(Boc)
Fmoc-S46
5.3
100
542


4032
Fmoc-Trp(Boc)
Fmoc-D-Tyr(But)
Fmoc-S46
8.6
100
577


4033
Fmoc-D-Tyr(But)
Fmoc-D-Lys(Boc)
Fmoc-S37
5.2
100
411


4034
Fmoc-D-Phe
Fmoc-Tyr(But)
Fmoc-S9
1.5
100
398


4035
Fmoc-Phe
Fmoc-Ser(But)
Fmoc-S9
0.9
93
322


4036
Fmoc-D-Trp(Boc)
Fmoc-Val
Fmoc-S37
3.8
100
405


4037
Fmoc-D-Pro
Fmoc-D-Trp(Boc)
Fmoc-S37
6.5
100
403


4038
Fmoc-Phe
Fmoc-D-Arg(Pbf)
Fmoc-S46
na
na
na


4039
Fmoc-Phe
Fmoc-Orn(Boc)
Fmoc-S46
na
na
na


4040
Fmoc-Phe
Fmoc-D-Lys(Boc)
Fmoc-S46
na
na
na


4041
Fmoc-D-Phe
Fmoc-Orn(Boc)
Fmoc-S46
na
na
na


4042
Fmoc-D-Phe
Fmoc-Lys(Boc)
Fmoc-S46
na
na
na


4043
Fmoc-D-Phe
Fmoc-Ala
Fmoc-S46
na
na
na


4044
Fmoc-D-Phe
Fmoc-Dab(Boc)
Fmoc-S46
na
na
na


4045
Fmoc-D-Phe
Fmoc-D-Lys(Boc)
Fmoc-S46
na
na
na


4046
Fmoc-D-Phe
Fmoc-D-Ala
Fmoc-S46
na
na
na


4047
Fmoc-D-Phe
Fmoc-Tyr(But)
Fmoc-S46
na
na
na


4048
Fmoc-Orn(Boc)
Fmoc-Lys(Boc)
Fmoc-S46
na
na
na


4049
Fmoc-Orn(Boc)
Fmoc-D-Lys(Boc)
Fmoc-S46
na
na
na


4050
Fmoc-Orn(Boc)
Fmoc-Phe
Fmoc-S46
na
na
na


4051
Fmoc-Orn(Boc)
Fmoc-D-Phe
Fmoc-S46
na
na
na


4052
Fmoc-Orn(Boc)
Fmoc-Dap(Boc)
Fmoc-S46
na
na
na


4053
Fmoc-Orn(Boc)
Fmoc-D-Dap(Boc)
Fmoc-S46
na
na
na


4054
Fmoc-Orn(Boc)
Fmoc-Tyr(But)
Fmoc-S46
na
na
na


4055
Fmoc-Orn(Boc)
Fmoc-D-Tyr(But)
Fmoc-S46
na
na
na


4056
Fmoc-Tyr(But)
Fmoc-Arg(Pbf)
Fmoc-S46
na
na
na


4057
Fmoc-Tyr(But)
Fmoc-D-Arg(Pbf)
Fmoc-S46
na
na
na


4058
Fmoc-Tyr(But)
Fmoc-Nle
Fmoc-S46
na
na
na


4059
Fmoc-Tyr(But)
Fmoc-Orn(Boc)
Fmoc-S46
na
na
na


4060
Fmoc-Tyr(But)
Fmoc-Dap(Boc)
Fmoc-S46
na
na
na


4061
Fmoc-Tyr(But)
Fmoc-D-Lys(Boc)
Fmoc-S46
na
na
na


4062
Fmoc-Tyr(But)
Fmoc-Lys(Boc)
Fmoc-S46
na
na
na


4063
Fmoc-D-Tyr(But)
Fmoc-D-Lys(Boc)
Fmoc-S46
na
na
na


4064
Fmoc-D-Tyr(But)
Fmoc-Lys(Boc)
Fmoc-S46
na
na
na


4065
Fmoc-D-Tyr(But)
Fmoc-Orn(Boc)
Fmoc-S46
na
na
na


4066
Fmoc-D-Tyr(But)
Fmoc-Phe
Fmoc-S46
na
na
na


4067
Fmoc-D-Tyr(But)
Fmoc-Dab(Boc)
Fmoc-S46
na
na
na


4068
Fmoc-Arg(Pbf)
Fmoc-Tyr(But)
Fmoc-S46
na
na
na


4069
Fmoc-D-Arg(Pbf)
Fmoc-N-Me-D-Tyr(But)
Fmoc-S46
na
na
na


4070
Fmoc-D-Arg(Pbf)
Fmoc-N-Me-Tyr(But)
Fmoc-S46
na
na
na


4071
Fmoc-D-Arg(Pbf)
Fmoc-Tyr(But)
Fmoc-S46
na
na
na


4072
Fmoc-D-Arg(Pbf)
Fmoc-N-Me-Phe
Fmoc-S46
na
na
na


4073
Fmoc-D-Arg(Pbf)
Fmoc-N-Me-D-Phe
Fmoc-S46
na
na
na


4074
Fmoc-D-Arg(Pbf)
Fmoc-D-Phe
Fmoc-S46
na
na
na


4075
Fmoc-D-Arg(Pbf)
Fmoc-N-Me-Tyr(But)
Fmoc-S46
na
na
na


4076
Fmoc-Tyr(But)
Fmoc-D-Arg(Pbf)
Fmoc-S1
na
na
na


4077
Fmoc-Tyr(But)
Fmoc-D-Arg(Pbf)
Fmoc-S1
na
na
na


4078
Fmoc-Tyr(But)
Fmoc-D-Ala
Fmoc-S1
na
na
na


4079
Fmoc-Tyr(But)
Fmoc-D-Ala
Fmoc-S1
na
na
na


4080
Fmoc-Tyr(But)
Fmoc-Orn(Boc)
Fmoc-S1
na
na
na


4081
Fmoc-Tyr(But)
Fmoc-Orn(Boc)
Fmoc-S1
na
na
na


4082
Fmoc-Tyr(But)
Fmoc-Dab(Boc)
Fmoc-S1
na
na
na


4083
Fmoc-D-Phe
Fmoc-Orn(Boc)
Fmoc-S1
na
na
na


4084
Fmoc-D-Tyr(But)
Fmoc-Lys(Boc)
Fmoc-S1
na
na
na


4085
Fmoc-D-Arg(Pbf)
Fmoc-Tyr(But)
Fmoc-S1
na
na
na


4086
Fmoc-Orn(Boc)
Fmoc-Lys(Boc)
Fmoc-S1
na
na
na


4087
Fmoc-D-Tyr(But)
Fmoc-Lys(Boc)
Fmoc-S5
na
na
na


4088
Fmoc-Tyr(But)
Fmoc-Orn(Boc)
Fmoc-S5
na
na
na


4089
Fmoc-D-Arg(Pbf)
Fmoc-N-Me-Tyr(But)
Fmoc-S5
na
na
na


4090
Fmoc-Orn(Boc)
Fmoc-Lys(Boc)
Fmoc-S5
na
na
na


4091
Fmoc-Asn(Trt)
Fmoc-Ala
Fmoc-S9
na
na
na


4092
Fmoc-Asn(Trt)
Fmoc-D-Ala
Fmoc-S9
na
na
na


4093
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-S9
na
na
na


4094
Fmoc-Asn(Trt)
Fmoc-(R)-S31
Fmoc-S9
na
na
na


4095
Fmoc-D-Phe
Fmoc-(S)-S31
Fmoc-S9
na
na
na


4096
Fmoc-Phe
Fmoc-(R)-S31
Fmoc-S9
na
na
na


4097
Fmoc-D-Phe
Fmoc-Orn(Boc)
Fmoc-(S)-S31
na
na
na


4098
Fmoc-Asn(Trt)
Fmoc-Ala
Fmoc-(S)-S32
na
na
na


4099
Fmoc-Asn(Trt)
Fmoc-D-Ala
Fmoc-(S)-S32
na
na
na


4100
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-(S)-S32
na
na
na


4101
Fmoc-Asn(Trt)
Fmoc-(R)-S31
Fmoc-(S)-S32
na
na
na


4102
Fmoc-Asn(Trt)
Fmoc-Ala
Fmoc-(R)-S32
na
na
na


4103
Fmoc-Asn(Trt)
Fmoc-D-Ala
Fmoc-(R)-S32
na
na
na


4104
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-(R)-S32
na
na
na


4105
Fmoc-Asn(Trt)
Fmoc-(R)-S31
Fmoc-(R)-S32
na
na
na


4106
Fmoc-Tyr(But)
Fmoc-D-Arg(Pbf)
Fmoc-(S)-S80(But)
na
na
na


4107
Fmoc-Tyr(But)
Fmoc-D-Arg(Pbf)
Fmoc-(R)-S80(But)
na
na
na


4108
Fmoc-Tyr(But)
Fmoc-D-Arg(Pbf)
Fmoc-(S)-S80(But)
na
na
na


4109
Fmoc-Tyr(But)
Fmoc-D-Arg(Pbf)
Fmoc-(R)-S80(But)
na
na
na


4110
Fmoc-Orn(Boc)
Fmoc-D-Lys(Boc)
Fmoc-(S)-S80(But)
na
na
na


4111
Fmoc-Orn(Boc)
Fmoc-Lys(Boc)
Fmoc-(R)-S80(But)
na
na
na


4112
Fmoc-D-Arg(Pbf)
Fmoc-N-Me-D-Tyr(But)
Fmoc-(S)-S80(But)
na
na
na


4113
Fmoc-D-Arg(Pbf)
Fmoc-N-Me-Tyr(But)
Fmoc-(R)-S80(But)
na
na
na


4114
Fmoc-Asn(Trt)
Fmoc-(R)-S31
Fmoc-(S)-S80(But)
na
na
na


4115
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-(S)-S80(But)
na
na
na


4116
Fmoc-D-Tyr(But)
Fmoc-Lys(Boc)
Fmoc-(S)-S74(Boc)
na
na
na


4117
Fmoc-D-Tyr(But)
Fmoc-Lys(Boc)
Fmoc-(R)-S74(Boc)
na
na
na


4118
Fmoc-D-Phe
Fmoc-Orn(Boc)
Fmoc-(S)-S74(Boc)
na
na
na


4119
Fmoc-D-Phe
Fmoc-Orn(Boc)
Fmoc-(R)-S74(Boc)
na
na
na


4120
Fmoc-Asn(Trt)
Fmoc-(R)-S31
Fmoc-(R)-S74(Boc)
na
na
na


4121
Fmoc-Asn(Trt)
Fmoc-(S)-S31
Fmoc-(R)-S74(Boc)
na
na
na





na = not available



1All syntheses were carried out on the solid phase starting from 70-80 mg of 2-chlorotrityl chloride resin (typical loading 1.0 mmol/g).




2Purity is determined by analysis with LC-UV at 220 nm, except for compounds 3978, 3979, 3983, 3984, where it was estimated from MS.














TABLE 11B









embedded image


















Cpd
R1
Q1
R2
R5
R3
R6





3976


embedded image


C═O


embedded image


H


embedded image


H





3977


embedded image


C═O


embedded image


H


embedded image








3978


embedded image


C═O


embedded image


H


embedded image


H





3979


embedded image


C═O


embedded image


H


embedded image


H





3980


embedded image


C═O


embedded image


H


embedded image


H





3981


embedded image


C═O


embedded image


H


embedded image


H





3982


embedded image


C═O


embedded image


H


embedded image


H





3983


embedded image


C═O


embedded image


H


embedded image


H





3984


embedded image


C═O


embedded image


Me


embedded image


H





3985


embedded image


C═O


embedded image


H


embedded image


Me





3986
(S)—CH3
C═O


embedded image


H


embedded image


H





3987


embedded image


C═O


embedded image


H


embedded image


H





3988


embedded image


C═O


embedded image


H


embedded image


H





3989


embedded image


C═O


embedded image


H


embedded image


H





3990


embedded image


C═O


embedded image


H


embedded image


H





3991


embedded image


C═O


embedded image


H


embedded image


H





3992


embedded image


C═O


embedded image


H


embedded image


H





3993


embedded image


C═O


embedded image


H


embedded image


H





3994


embedded image


C═O


embedded image


H


embedded image


H





3995


embedded image


C═O


embedded image


H


embedded image


H





3996


embedded image


C═O


embedded image


H


embedded image


H





3997


embedded image


C═O


embedded image


H


embedded image


H





3998


embedded image


C═O
(S)—CH3
H


embedded image


H





3999


embedded image


C═O


embedded image


H


embedded image


H





4000


embedded image


C═O


embedded image


H


embedded image


H





4001


embedded image


C═O


embedded image


H


embedded image


H





4002


embedded image


C═O


embedded image


H


embedded image


H





4003


embedded image


C═O


embedded image


H


embedded image


H





4004


embedded image


C═O


embedded image


H


embedded image


H





4005


embedded image


C═O


embedded image


H


embedded image


H





4006


embedded image


C═O


embedded image


H


embedded image


H





4007


embedded image


C═O


embedded image


H


embedded image


H





4008


embedded image


C═O


embedded image


H


embedded image


H





4009


embedded image


C═O


embedded image


H


embedded image


H





4010


embedded image


C═O


embedded image


H


embedded image


H





4011


embedded image


C═O


embedded image


H


embedded image


H





4012


embedded image


C═O


embedded image


H


embedded image


H





4013


embedded image


C═O


embedded image


H


embedded image


H





4014


embedded image


C═O


embedded image


Me


embedded image


H





4015


embedded image


C═O


embedded image


Me


embedded image


Me





4016


embedded image


C═O


embedded image


H


embedded image


H





4017


embedded image


C═O
(S)—CH3
H


embedded image


H





4018


embedded image


C═O


embedded image


H


embedded image


H





4019


embedded image


C═O


embedded image


H


embedded image


H





4020


embedded image


C═O


embedded image


H


embedded image


H





4021


embedded image


C═O


embedded image


H


embedded image


H





4022


embedded image


C═O


embedded image


H


embedded image


H





4023


embedded image


C═O


embedded image


H


embedded image


H





4024


embedded image


C═O


embedded image


H


embedded image


H





4025


embedded image


C═O


embedded image


H


embedded image


H





4026


embedded image


C═O


embedded image


H


embedded image


H





4027


embedded image


C═O


embedded image


H


embedded image


H





4028


embedded image


C═O


embedded image


H


embedded image


H





4029


embedded image


C═O


embedded image


H


embedded image


H





4030


embedded image


C═O


embedded image


H


embedded image


H





4031


embedded image


C═O


embedded image


H


embedded image


H





4032


embedded image


C═O


embedded image


H


embedded image


H





4033


embedded image


C═O


embedded image


H


embedded image


H





4034


embedded image


C═O


embedded image


H


embedded image


H





4035


embedded image


C═O


embedded image


H


embedded image


H





4036


embedded image


C═O


embedded image


H


embedded image


H





4037


embedded image


C═O


embedded image


H


embedded image


H





4038


embedded image


C═O


embedded image


H


embedded image


H





4039


embedded image


C═O


embedded image


H


embedded image


H





4040


embedded image


C═O


embedded image


H


embedded image


H





4041


embedded image


C═O


embedded image


H


embedded image


H





4042


embedded image


C═O


embedded image


H


embedded image


H





4043


embedded image


C═O
(S)—CH3
H


embedded image


H





4044


embedded image


C═O


embedded image


H


embedded image


H





4045


embedded image


C═O


embedded image


H


embedded image








4046


embedded image


C═O
(R)—CH3
H


embedded image


H





4047


embedded image


C═O


embedded image


H


embedded image


H





4048


embedded image


C═O


embedded image


H


embedded image


H





4049


embedded image


C═O


embedded image


H


embedded image


H





4050


embedded image


C═O


embedded image


H


embedded image


H





4051


embedded image


C═O


embedded image


H


embedded image


H





4052


embedded image


C═O


embedded image


H


embedded image


H





4053


embedded image


C═O


embedded image


H


embedded image


H





4054


embedded image


C═O


embedded image


H


embedded image


H





4055


embedded image


C═O


embedded image


H


embedded image


H





4056


embedded image


C═O


embedded image


H


embedded image


H





4057


embedded image


C═O


embedded image


H


embedded image


H





4058


embedded image


C═O


embedded image


H


embedded image


H





4059


embedded image


C═O


embedded image


H


embedded image


H





4060


embedded image


C═O


embedded image


H


embedded image


H





4061


embedded image


C═O


embedded image


H


embedded image


H





4062


embedded image


C═O


embedded image


H


embedded image


H





4063


embedded image


C═O


embedded image


H


embedded image


H





4064


embedded image


C═O


embedded image


H


embedded image


H





4065


embedded image


C═O


embedded image


H


embedded image


H





4066


embedded image


C═O


embedded image


H


embedded image


H





4067


embedded image


C═O


embedded image


H


embedded image


H





4068


embedded image


C═O


embedded image


H


embedded image


H





4069


embedded image


C═O


embedded image


Me


embedded image


H





4070


embedded image


C═O


embedded image


Me


embedded image


H





4071


embedded image


C═O


embedded image


H


embedded image


H





4072


embedded image


C═O


embedded image


Me


embedded image


H





4073


embedded image


C═O


embedded image


Me


embedded image


H





4074


embedded image


C═O


embedded image


H


embedded image


H





4075


embedded image


C═O


embedded image


Me


embedded image


H





4076


embedded image


C═O


embedded image


H


embedded image


H





4077


embedded image


C═O


embedded image


H


embedded image


Me





4078


embedded image


C═O
(R)—CH3
H


embedded image


H





4079


embedded image


C═O
(R)—CH3
H


embedded image


Me





4080


embedded image


C═O


embedded image


H


embedded image


H





4081


embedded image


C═O


embedded image


H


embedded image


Me





4082


embedded image


C═O


embedded image


H


embedded image


H





4083


embedded image


C═O


embedded image


H


embedded image


H





4084


embedded image


C═O


embedded image


H


embedded image


H





4085


embedded image


C═O


embedded image


H


embedded image


H





4086


embedded image


C═O


embedded image


H


embedded image


H





4087


embedded image


C═O


embedded image


H


embedded image


H





4088


embedded image


C═O


embedded image


H


embedded image


H





4089


embedded image


C═O


embedded image


Me


embedded image


H





4090


embedded image


C═O


embedded image


H


embedded image


H





4091


embedded image


C═O
(S)—CH3
H


embedded image


H





4092


embedded image


C═O
(R)—CH3
H


embedded image


H





4093


embedded image


CH2
(S)—CH3
H


embedded image


H





4094


embedded image


CH2
(R)—CH3
H


embedded image


H





4095


embedded image


CH2
(S)—CH3
H


embedded image


H





4096


embedded image


CH2
(R)—CH3
H


embedded image


H





4097


embedded image


C═O


embedded image


H


embedded image


H





4098


embedded image


C═O
(S)—CH3
H


embedded image


H





4099


embedded image


C═O
(R)—CH3
H


embedded image


H





4100


embedded image


CH2
(S)—CH3
H


embedded image


H





4101


embedded image


CH2
(R)—CH3
H


embedded image


H





4102


embedded image


C═O
(S)—CH3
H


embedded image


H





4103


embedded image


C═O
(R)—CH3
H


embedded image


H





4104


embedded image


CH2
(S)—CH3
H


embedded image


H





4105


embedded image


CH2
(R)—CH3
H


embedded image


H





4106


embedded image


C═O


embedded image


H


embedded image


H





4107


embedded image


C═O


embedded image


H


embedded image


H





4108


embedded image


C═O


embedded image


H


embedded image


Me





4109


embedded image


C═O


embedded image


H


embedded image


Me





4110


embedded image


C═O


embedded image


H


embedded image


H





4111


embedded image


C═O


embedded image


H


embedded image


H





4112


embedded image


C═O


embedded image


Me


embedded image


H





4113


embedded image


C═O


embedded image


Me


embedded image


H





4114


embedded image


CH2
(R)—CH3
H


embedded image


H





4115


embedded image


CH2
(S)—CH3
H


embedded image


H





4116


embedded image


C═O


embedded image


H


embedded image


H





4117


embedded image


C═O


embedded image


H


embedded image


H





4118


embedded image


C═O


embedded image


H


embedded image


H





4119


embedded image


C═O


embedded image


H


embedded image


H





4120


embedded image


CH2
(R)—CH3
H


embedded image


H





4121


embedded image


CH2
(S)—CH3
H


embedded image


H










For all compounds in Table 11B, Q2=CH2. Also, the compounds all have R4 ═H except compound 3983, where R4═CH3. Additionally, for compound 4037 in which Fmoc-D-Pro is BB1, R1 and (N)R4 form a five-membered ring, including the nitrogen atom, as shown for R1 in Table 11B.




embedded image




embedded image




embedded image


embedded image




embedded image


embedded image




embedded image




embedded image




embedded image


embedded image




embedded image


While the disclosure has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the disclosure following, in general, the principles of the disclosure and including such departures from the present disclosure as come within known or customary practice within the art to which the disclosure pertains and as may be applied to the essential features hereinbefore set forth, and as follows in the scope of the appended claims.

Claims
  • 1. A library comprising at least two macrocyclic compounds chosen from compounds of formula (I) and salts thereof: wherein:
  • 2. The library according to claim 1 wherein A is selected from the group consisting of:
  • 3. The library according to claim 1 wherein A is selected from the group consisting of:
  • 4. The library according to claim 1 wherein X1 is N and A is selected from the group consisting of:
  • 5. The library according to claim 1 wherein D is selected from the group consisting of:
  • 6. The library according to claim 1 wherein D is selected from the group consisting of:
  • 7. The library according to claim 1 wherein X3 is N and D is selected from the group consisting of:
  • 8-16. (canceled)
  • 17. The library according to claim 1 comprising macrocyclic compounds selected from those with structures 1401-3813.
  • 18. The library according to claim 1 comprising macrocyclic compounds selected from those with structures 3816-3975.
  • 19-25. (canceled)
  • 26. The library according to claim 1 arrayed in at least one multiple sample holder.
  • 27-33. (canceled)
  • 34. A macrocyclic compound represented by formula (I) as described in claim 1, or salts thereof.
  • 35. The macrocyclic compound of claim 34 selected from the group consisting of structures 1401-3813 and pharmaceutically acceptable salts thereof.
  • 36. The macrocyclic compound of claim 34 selected from the group consisting of structures 3816-3975 and pharmaceutically acceptable salts thereof.
  • 37-48. (canceled)
  • 49. A method of using the library according to claim 1, said method comprising contacting said compounds of said library with a biological target so as to obtain the identification of compound(s) that modulate(s) the biological target.
  • 50-58. (canceled)
  • 59. A library comprising at least two macrocyclic compounds chosen from compounds of formula (II) and salts thereof: wherein:
  • 60-66. (canceled)
  • 67. The library according to claim 59 comprising macrocyclic compounds selected from those with structures 3976-4121.
  • 68. The library according to claim 59 arrayed in at least one multiple sample holder.
  • 69-70. (canceled)
  • 71. A macrocyclic compound represented by formula (II) as described in claim 59, or salts thereof.
  • 72. The macrocyclic compound of claim 71 selected from the group consisting of structures 3976-4121 and pharmaceutically acceptable salts thereof.
  • 73-76. (canceled)
  • 77. A method of using the library according to claim 59, said method comprising contacting said compounds of said library with a biological target so as to obtain identification of compounds that modulate the biological target.
  • 78-81. (canceled)
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority to U.S. application No. 62/336,996 that was filed on May 16, 2016.

PCT Information
Filing Document Filing Date Country Kind
PCT/CA2017/000128 5/16/2017 WO 00
Provisional Applications (1)
Number Date Country
62336996 May 2016 US