This application is based on and claims priority under 35 U.S.C. § 119 to Korean Patent Application No. 10-2021-0051355, filed on Apr. 20, 2021, in the Korean Intellectual Property Office, the disclosure of which is incorporated by reference herein in its entirety.
Example embodiments of the present disclosure relate to light detection and ranging (LiDAR) apparatuses that steer light by using a plurality of switches instead of using an optical phase array (OPA).
Recently, advanced driving assistance systems (ADAS) having various functions have been commercialized. For example, there is a tendency of increasing the number of vehicles equipped with functions such as an adaptive cruise control (ACC), which reduces a speed of a vehicle if there is a risk of collision and the vehicle is driven within a set speed range if there is no risk of collision by recognizing a location and speed of another vehicle, and an autonomous emergency braking system (AEB), which automatically applies braking to prevent collisions when there is a risk of collision by recognizing the vehicle in front, and the driver does not respond to the risk or the response method is inappropriate. In addition, it is expected that autonomous driving cars will be commercialized in the near future.
Accordingly, the importance of a vehicle radar that provides forward information of a vehicle is gradually increasing. For example, light detection and ranging (LiDAR) sensors are widely used as vehicle radars. The LiDAR sensors measure a distance, speed, azimuth, and position of an object from the time when a laser scattered or reflected returns to a vehicle, changes in the intensity of the laser, changes in the frequency of the laser, and changes in the polarization state of the laser.
One or more example embodiments provide light detection and ranging (LiDAR) apparatuses that may steer light by using a plurality of switches.
Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of example embodiments.
According to an aspect of an example embodiment, there is provided a light detection and ranging (LiDAR) apparatus including a plurality of switches connected in a binary tree structure, a light source connected to a root switch, from among the plurality of switches, provided at a root node of the binary tree structure, a photodetector connected to the root switch, and a light transmission/reception optical system connected to a plurality of terminal switches, from among the plurality of switches, provided at a plurality of terminal nodes of the binary tree structure, the light transmission/reception optical system being configured to transmit light to an outside of the LiDAR apparatus or receive light from the outside, wherein the root switch is a 2×2 switch including a first upstream side port, a second upstream side port, a first downstream side port, and a second downstream side port, and wherein the light source is connected to the first upstream side port and the photodetector is connected to the second upstream side port.
The plurality of switches are configured to transmit light emitted from the light source to the light transmission/reception optical system through one of the plurality of terminal switches, and transmit light received from the light transmission/reception optical system to the photodetector through one of the plurality of terminal switches.
The root switch may include a first electro-optic element provided between the first upstream side port and the first downstream side port and a second electro-optic element provided between the second upstream side port and the second downstream side port, and the first electro-optic element and the second electro-optic element may be configured to amplify input light and to modulate a phase of the input light based on an applied current.
The root switch may further include a first coupler configured to optically couple the first upstream side port to the second upstream side port, and a second coupler configured to optically couple the first downstream side port to the second downstream side port.
Based on a phase difference between light amplified by the first electro-optic element and light amplified by the second electro-optic element, the root switch may be configured to operate in one of a first state in which light input to the first upstream side port is transmitted to the second downstream side port and light input to the second upstream side port is transmitted to the first downstream side port, a second state in which the light input to the first upstream side port is transmitted to the first downstream side port and the light input to the second upstream side port is transmitted to the second downstream side port, and a third state in which the light input to the first upstream side port is transmitted to the first downstream side port and the second downstream side port and the light input to the second upstream side port is transmitted to the first downstream side port and the second downstream side port.
The root switch may be configured to operate in the first state when the phase difference is 0, operate in the second state when the phase difference is π, and operate in the third state when the phase difference is greater than 0 and less than π.
The LiDAR apparatus may further include at least one processor configured to extract distance information with respect to external objects based on a time of flight (TOF) method, the root switch may be configured to operate in the first state while transmitting light and operate in the second state while receiving light, or operate in the second state while transmitting light and operate in the first state while receiving light.
The LiDAR apparatus may further include at least one processor configured to extract distance information and speed information with respect to external objects based on a frequency modulated continuous wave (FMCW) method, and the root switch may be configured to operate in the third state.
The root switch may further include a first monitoring photodetector configured to measure an intensity of light passing through the first downstream side port, and a second monitoring photodetector configured to measure the intensity of light passing through the second downstream side port.
The LiDAR apparatus may further include at least one processor configured to control operations of the plurality of switches, and to perform calibration to control the root switch based on an output of the first monitoring photodetector and the second monitoring photodetector.
The at least one processor may be configured to periodically perform calibration, or to perform calibration when a signal-to-noise ratio of the LiDAR apparatus is less than a reference value.
The at least one processor may be further configured to store an initial current value to be applied to the first electro-optic element and the second electro-optic element to switch the root switch to the first state, the second state, or the third state, and based on a result of the calibration, adjust a current value applied to the first electro-optic element and the second electro-optic element.
The plurality of switches may include a first switch connected to the first downstream side port of the root switch and a second switch connected to the second downstream side port of the root switch, and the first switch and the second switch may be 2×2 switches including the first upstream side port, the second upstream side port, the first downstream side port, and the second downstream side port.
The second upstream side port of the first switch may be connected to the first downstream side port of the root switch, and the first upstream side port of the second switch may be connected to the second downstream side port of the root switch, and the LiDAR apparatus may further include a first auxiliary light source connected to the first upstream side port of the first switch and a second auxiliary light source connected to the second upstream side port of the second switch.
The LiDAR apparatus may further include at least one processor configured to extract distance information and speed information with respect to external objects based on a frequency modulated continuous wave (FMCW) method, a first waveguide configured to provide a portion of light output from the first auxiliary light source to the photodetector as local oscillator light and a second waveguide configured to provide a portion of light output from the second auxiliary light source to the photodetector as local oscillator light.
The light source may be a tunable light source configured to adjust a wavelength of light emitted from the light source.
The LiDAR apparatus may further include a bandpass filter configured to pass light of a same wavelength band as a wavelength band of light emitted from the light source, and the bandpass filter may be provided between the second upstream side port of the root switch and the photodetector.
The LiDAR apparatus may further include at least one processor configured to extract distance information and speed information with respect to external objects based on a frequency modulated continuous wave (FMCW) method, and a waveguide configured to provide a portion of light emitted from the light source to the photodetector as local oscillator light.
The LiDAR apparatus may further include an optical isolator provided on a light path between the light source and the root switch, and the optical isolator may be configured to pass light traveling from the light source toward the root switch and to block light traveling from the root switch toward the light source.
The light transmission/reception optical system may include a beam expander configured to increase a beam diameter of light output from switches among the plurality of switches provided in the plurality of terminal nodes, a flat lens configured to collimate light output from the beam expander, and an antenna configured to emit light output from the flat lens to the outside of the LiDAR apparatus and to transmit light from the outside to the flat lens.
The antenna may have a periodic grating pattern and a curved shape such that light output from the flat lens is incident perpendicularly to a light incident surface of the antenna.
The LiDAR apparatus may further include a plurality of waveguides configured to provide an optical connection between the plurality of switches, the light source, the photodetector, and the light transmission/reception optical system.
The LiDAR apparatus may further include a substrate, and the plurality of switches, the light source, the photodetector, the light transmission/reception optical system, and the plurality of waveguides may be provided on the substrate.
According to another aspect of an example embodiment, there is provided a light detection and ranging (LiDAR) apparatus including a plurality of switches connected in a binary tree structure, a light source connected to a root switch, from among the plurality of switches, provided at a root node of the binary tree structure, a photodetector connected to the root switch, a light transmission/reception optical system connected to a plurality of terminal switches, from among the plurality of switches, provided at a plurality of terminal nodes of the binary tree structure, the light transmission/reception optical system being configured to transmit light to an outside of the LiDAR apparatus or receive light from the outside, and a plurality of waveguides configured to provide an optical connection between the plurality of switches, the light source, the photodetector, and the light transmission/reception optical system, wherein the root switch is a 2×2 switch including a first upstream side port, a second upstream side port, a first downstream side port, and a second downstream side port, and wherein the plurality of switches, the light source, the photodetector, the light transmission/reception optical system, and the plurality of waveguides are provided on a substrate.
The above and/or other aspects, features, and advantages of example embodiments will be more apparent from the following description taken in conjunction with the accompanying drawings, in which:
Example embodiments will be described in detail with reference to the accompanying drawings, wherein like reference numerals refer to like elements throughout. In this regard, the example embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the example embodiments are merely described below, by referring to the figures, to explain aspects.
As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Expressions such as “at least one of,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list. For example, the expression, “at least one of a, b, and c,” should be understood as including only a, only b, only c, both a and b, both a and c, both b and c, or all of a, b, and c.
Hereinafter, a light detection and ranging (LiDAR) apparatus having an improved signal-to-noise ratio will be described in detail with reference to the accompanying drawings. In the drawings, like reference numerals denote like elements and sizes of constituent elements may be exaggerated for convenience of explanation and clarity. The example embodiments are capable of various modifications and may be embodied in many different forms.
It will be understood that when an element or layer is referred to as being “on” or “above” another element or layer, the element or layer may be directly on another element or layer or intervening elements or layers. Singular forms are intended to include the plural forms as well, unless the context clearly indicates otherwise. It should be understood that, when a part “comprises” or “includes” an element in the specification, unless otherwise defined, it is not excluding other elements but may further include other elements.
In the specification, the term “above” and similar directional terms may be applied to both singular and plural. With respect to operations that constitute a method, the operations may be performed in any appropriate sequence unless the sequence of operations is clearly described or unless the context clearly indicates otherwise. The operations may not necessarily be performed in the order of sequence.
Also, in the specification, the term “units” or “ . . . modules” denote units or modules that process at least one function or operation, and may be realized by hardware, software, or a combination of hardware and software.
Connections or connection members of lines between components shown in the drawings illustrate functional connections and/or physical or circuit connections, and the connections or connection members can be represented by replaceable or additional various functional connections, physical connections, or circuit connections in an actual apparatus.
The use of any and all examples, or exemplary language provided herein, is intended merely to better illuminate the inventive concept and does not pose a limitation on the scope of the inventive concept unless otherwise claimed.
The light source 110, the photodetector 120, the plurality of switches 130, the light transmission/reception optical system 140, and the plurality of waveguides 102 may be integrated in one chip. For example, the light source 110, the photodetector 120, the plurality of switches 130, the light transmission/reception optical system 140, and the plurality of waveguides 102 may be included in one optical integrated circuit. To this end, the LiDAR apparatus 100 may further include a substrate 101. The light source 110, the photodetector 120, the plurality of switches 130, the light transmission/reception optical system 140, and the plurality of waveguides 102 may be arranged on one substrate 101. In this case, the LiDAR apparatus 100 may be highly miniaturized in the form of a chip.
For example,
The semiconductor base 101a may include, for example, silicon (Si). However, the material of the semiconductor base 101a is not necessarily limited to silicon, and various wafer materials used in the semiconductor manufacturing process may be used as the semiconductor base 101a.
The oxide layer 101b including a transparent insulating oxide may act as a lower clad with respect to the light source 110, the optical detector 120, the plurality of switches 130, the light transmission/reception optical system 140, and the plurality of waveguides 102 arranged thereon. For example, the oxide layer 101b may perform a role of preventing light leakage into a lower side of each of the light source 110, the photodetector 120, the plurality of switches 130, the light transmission/reception optical system 140, and the plurality of waveguides 102. The transparent insulating oxide material of the oxide layer 101b may be, for example, silicon oxide (SiO2), but embodiments are not necessarily limited thereto. The oxide material of the oxide layer 101b may include any transparent material having a refractive index lower than those materials used in the light source 110, the optical detector 120, the plurality of switches 130, the light transmission/reception optical system 140, and the plurality of waveguides 102. Here, the transparent material may be a transmissive material with respect to a wavelength band of light emitted from the light source 110.
An upper clad may further be formed on the light source 110, the photodetector 120, the plurality of switches 130, the light transmission/reception optical system 140, and the plurality of waveguides 102. The oxide layer 101b and the upper clad may play a role of confining light in a region between the oxide layer 101b and the upper clad so that light is not leak to the outside of the LiDAR apparatus 100. To this end, the upper clad may be formed to completely cover the optical elements, that is, the light source 110, the photodetector 120, the plurality of switches 130, the light transmission/reception optical system 140, and the plurality of waveguides 102 except for an antenna 143 to be described later. The upper clad may include any material having a refractive index lower than those materials used in the light source 110, the photodetector 120, the plurality of switches 130, the light transmission/reception optical system 140, and the plurality of waveguides 102. For example, the upper clad may include silicon oxide (SiO2).
The oxide layer 101b may be stacked over an entire upper surface of the semiconductor base 101a. In this case, the substrate 101 may be a single Si on insulator (SOI) substrate. However, the substrate 101 is not necessarily limited to the SOI substrate. The oxide layer 101b may be locally arranged under the optical elements, such as the light source 110, the photodetector 120, the plurality of switches 130, the light transmission/reception optical system 140, and the plurality of waveguides 102. In this case, the substrate 101 may be a buried oxide (BOX) substrate formed by locally etching an upper surface of bulk silicon and filling the etched upper surface of the bulk silicon with the oxide layer 101b.
The light source 110, the photodetector 120, and the plurality of switches 130 arranged on the oxide layer 101b may include an active layer including, for example, a silicon-based semiconductor material, a Group III/V compound semiconductor material, or a Group II/VI compound semiconductor. The light transmission/reception optical system 140 and the plurality of waveguides 102 may also include a light-transmitting material having a greater refractive index than that of the oxide layer 101b. For example, the light transmission/reception optical system 140 and the plurality of waveguides 102 may include silicon (Si), silicon nitride (SiN), a Group III/V compound, or a Group II/VI compound.
In
Referring again to
The photodetector 120 may include a photodiode, a photodiode array, a phototransistor, or a phototransistor array that receives light and generates a photocurrent according to the intensity of light. For example, the photodetector 120 may include an avalanche photodiode (APD).
The plurality of switches 130 may be arranged in a binary tree structure in which the number of switches is doubled in a first direction (an X direction). The plurality of switches 130 may be particularly arranged in a perfect binary tree structure, and one switch 130 may be arranged at each node of the binary tree. To this end, each switch 130 may have two downstream side ports. Two different switches 130 may each be optically connected to the two downstream side ports of each of the switches 130 via the waveguide 102. Here, the downstream side direction indicates an +X direction in which light travels from the light source 110 toward the light transmission/reception optical system 140, and the upstream side direction indicates an −X direction in which light travels from the light transmission/reception optical system 140 toward the light detector 120.
The light transmission/reception optical system 140 may be arranged on a downstream side of terminal switches 130T located at terminal nodes of the binary tree structure among the plurality of switches 130. The light transmission/reception optical system 140 may be optically connected to downstream side ports of the plurality of terminal switches 130T through the plurality of waveguides 102. Light output from the terminal switches 130T may be emitted to the outside of the LiDAR apparatus 100 through the light transmission/reception optical system 140. An azimuth direction of light emitted to the outside of the LiDAR apparatus 100 may be determined according to a second direction (a Y direction) position of the downstream side port of the terminal switch 130T from which light is output among the plurality of terminal switches 130T. Here, the second direction is a direction perpendicular to the first direction. In this respect, the downstream side ports of the plurality of terminal switches 130T may be channels of the LiDAR apparatus 100.
When a level at which the root node of the binary tree structure is located is referred to as level 0 and there are N levels, 2N terminal switches 130T may exist in the terminal node. In this case, the number of channels is 2N+1, and the channels may be arranged in the second direction (the Y direction). In
Among the plurality of switches 130, a root switch 130R located at a root node of the binary tree structure may be a 2×2 switch having two upstream side ports and two downstream side ports. The remaining switches 130 may also be 2×2 switches as well as the root switch 130R. According to another example embodiment, the remaining switches 130 except for the root switch 130R may be an 1×2 switch having one upstream side port and two downstream side ports.
The light source 110 and the photodetector 120 may be optically connected to the two upstream side ports of the root switch 130R through the waveguide 102, respectively. Light generated from the light source 110 passes through the root switch 130R and proceeds in the +X direction, which is a downstream side direction, and according to a switching operation of the plurality of switches 130 arranged in the binary tree structure, is transmitted to the light transmission/reception optical system 140 through one channel of any one terminal switch among the plurality of terminal switches 130T, for example, through any one channel among a plurality of channels. To this end, the processor 150 may individually control the plurality of switches 130 to allow light to travel along a selected specific path from the root switch 130R to the terminal switches 130T.
In addition, while receiving light from the outside, light received by the light transmission/reception optical system 140 travels in the −X direction, which is an upstream side direction from the terminal switches 130T to the root switch 130R, along a path opposite to a transmission path. The processor 150 may control the root switch 130R so that light input to the root switch 130R along an upstream side direction proceeds only toward the photodetector 120.
The processor 150 may control operations of the light source 110, the photodetector 120, and the plurality of switches 130, and, based on a signal detected by the photodetector 120, may extract distance information or speed information regarding an external object via, for example, a time of flight (TOF) method or a frequency modulated continuous wave (FMCW) method. The processor 150 may be implemented as, for example, a dedicated semiconductor chip, or may be implemented in software that may be executed on a computer and stored in a recording medium. Also, according to another example, the processor 150 may be implemented as a programmable logic processor (PLC) or field-programmable gate array (FPGA) or the like. The processor 150 may include an application specific integrated circuit (ASIC), a dedicated microprocessor, a microprocessor, a general purpose processor, or the like. In addition, the processor 150 may be mounted on one substrate 101 together with the light source 110, the photodetector 120, the plurality of switches 130, and the light transmission/reception optical system 140, or may be mounted on separate substrates.
The light transmission/reception optical system 140 may be configured to transmit light to a free space outside the LiDAR apparatus 100 or to receive light from the free space. The optical transmission optical system 140 may include a beam expander 141 configured to increase a beam diameter of light output from the terminal switches 130T located in a plurality of terminal nodes, a flat lens 142 configured to collimate light output from the beam expander 141, and an antenna 143 configured to emit light output from the flat lens 142 to the outside of the LiDAR apparatus 100 and transmit light from the outside to the flat lens 142.
The plurality of waveguides 102 may be connected between the beam expander 141 and the terminal switches 130T. The beam expander 141 may include the same material as the plurality of waveguides 102 and may be extended integrally with the plurality of waveguides 102. A width of the beam expander 141 in the second direction (the Y direction) may be greater than a width of each of the plurality of waveguides 102 in the second direction (the Y direction). For example, all of the plurality of waveguides 102 respectively connected to the plurality of channels CH1, CH2, . . . , CH15, CH16 which are downstream side ports of the plurality of terminal switches 130T may be connected to one side of the beam expander 141 in the second direction (the Y direction). Accordingly, a beam diameter of light incident on the beam expander 141 through one of the waveguides 102 gradually increases while proceeding in the +X direction.
The flat lens 142 is configured to convert diverged light formed by the beam expander 141 into a parallel beam. For example, the flat lens 142 may be a flat cylinder lens having positive (+) refractive power.
The antenna 143 may include a plurality of grating pattern groups. The plurality of grating pattern groups of the antenna 143 may have a periodic grating pattern. A traveling direction of light emitted through the antenna 143 may be determined by a period of the grating pattern, a height of the grating pattern, a space between the grating patterns, an incidence angle of light incident on the antenna 143, a wavelength of the light incident on the antenna 143, etc. The antenna 143 may also have a curved shape so that light output from the flat lens 142 is perpendicularly incident on a light incident surface of the antenna 143. Then, the light traveling inside the antenna 143 may undergo the same grating pattern period regardless of an incident location on the light incident surface of the antenna 143.
Because the plurality of waveguides 102 respectively connected to the plurality of channels CH1, CH2, . . . , CH15, CH16 are connected to a side surface of the beam expander 141 at different positions and at different angles in the second direction (the Y direction), light may be steered in an azimuth direction by selecting any one of the plurality of channels CH1, CH2, . . . , CH15, CH16. For example, as shown in
Light may be steered in an elevation angle direction (a Z direction) by adjusting a wavelength of light output from the light source 110. The correlation between the wavelength of light and the elevation angle at which light is emitted may be determined by a structure of the grating pattern group of the antenna 143. The processor 150, after steering light in an azimuth direction by sequentially selecting from the first channel CH1 to the 16th channel CH16, changes a wavelength of the light source 110, and then, may steer the light in the azimuth direction by sequentially selecting again from the first channel CH1 to the 16th channel CH16.
In the case of the LiDAR apparatus 100 according to an example embodiment described above, because light is steered in a manner of selecting one channel among a plurality of channels by using the plurality of switches 130 connected in a binary tree structure, power consumption may be reduced compared to an optical phase array (OPA) method. According to the OPA method, a voltage must be applied to all phase shifters, but in the example embodiment, a voltage is applied only to switches that are located in a path through which light travels. For example, if there are 256 channels, in the OPA method, a voltage is applied to the 256 phase shifters, while in the example embodiment, a voltage may be applied only to log2256=8 switches. Generally, when 2N channels are present, in the example embodiment, light may be steered by operating only N switches.
In addition, in the example embodiment, a fill factor occupied by an antenna may be increased, and thus, light reception efficiency may be improved. In the case of the OPA method, a ratio of an antenna in a width in the second direction (the Y direction) is less than 30%, but in the case of the example embodiment, because most of the substrate 101 may be filled with the antenna 143 in the second direction (the Y direction), the size of a light receiving surface is increased, and thus, the light reception efficiency may be improved compared to the OPA method.
In addition, in the example embodiment, one LiDAR apparatus 100 may perform both a transmission operation and a reception operation with only one antenna 143 by using a 2×2 switch having two ports on the upstream side and two ports on the downstream side, respectively.
Referring to
The first coupler 102a may be formed by bending a portion of the waveguide 102 that forms the first upstream side port 130a and a portion of the waveguide 102 that forms the second upstream side port 130b so that the distance D2 between the first upstream side port 130a and the second upstream side port 130b is less than a wavelength of light generated from the light source 110. The second coupler 102b may also be formed by bending a portion of the waveguide 102 that forms the first downstream side port 130c and a portion of the waveguide 102 that forms the second downstream side port 130d so that the distance between the first downstream side port 130c and the second downstream side port 130d is less than a wavelength of light generated from the light source 110. In regions of the first and the second couplers 102a and 102b having a distance less than a wavelength of light, an evanescent coupling occurs, and thus, light may be exchanged with little loss.
The switch 130 may also include a first electro-optic element 131 arranged between the first upstream side port 130a and the first downstream side port 130c and a second electro-optic element 132 arranged between the second upstream side port 130b and the second downstream side port 130d. The first and second electro-optic elements 131 and 132 may be configured to modulate a phase of input light for switching operation of the switch 130. The first and second electro-optic elements 131 and 132 may also be configured to amplify the input light. The first and second electro-optic elements 131 and 132 may include a semiconductor material, for example, a Group III/V compound semiconductor or a Group II/VI compound semiconductor.
The first and second electro-optic elements 131 and 132 may amplify input light and modulate a phase of the input light according to an applied current. For example, the first and second electro-optic elements 131 and 132 may modulate a phase to a different phase while amplifying light with the same gain. For example,
A switching state of the switch 130, in other words, a path of light passing through the switch 130 may be determined according to the phase of light modulated by the first and second electro-optic elements 131 and 132.
For example, referring to
The configuration and operation characteristics of a 2×2 switch having two ports on the upstream side and two ports on the downstream side have been described. However, a 1×2 switch may have similar configuration and operation characteristics to the 2×2 switch described above except that the 1×2 switch has one port on the upstream side. For example, even in the case of the 1×2 switch, the first and second electro-optic elements 131 and 132 may amplify light, and a traveling path of light may be selected according to a phase of the light amplified by the first and second electro-optic elements 131 and 132. For example, according to a phase of light amplified by the first and second electro-optic elements 131 and 132, the 1×2 switch may be operated in a first state in which light is transmitted to the first downstream side port 130c, a second state in which light is transmitted to the second downstream side ports 130d, and a third state in which light is transmitted to both the first and second downstream side ports 130c and 130d.
In the example shown in
The LiDAR apparatus 100 according to the example embodiment may operate at high speed by electro-optically controlling the switch 130 by using the first and second electro-optic elements 131 and 132 capable of high-speed operation. For example, a frame rate at which a scanning operation of one frame is performed from the first channel CH1 to the 16th channel CH16 may increase. The disclosed LiDAR apparatus 100 may also simultaneously perform a switching operation and a light amplification operation only with the first and second electro-optic elements 131 and 132, thereby improving the sensitivity of the LiDAR apparatus 100.
In addition, the LiDAR apparatus 100 may further include an auxiliary light source in preparation for failure or disorder of the light source 110. Referring to
When a failure or disorder occurs in the light source 110, light may be provided through the first auxiliary light source 110a to the first channel CH1 to the eighth channel connected to the child nodes of a node in which the first switch 130C1 is arranged, and light may be provided through the second auxiliary light source 110b to the ninth channel to 16th channel CH16 connected to the child nodes of the node in which the second switch 130C2 is arranged. In this case, received light may be transmitted to the photodetector 120 through the root switch 130R. In this way, it is possible to further arrange an auxiliary light source in the case of failure of the main light source by using a 2×2 switch.
The LiDAR apparatus 100 shown in
As described above, the light source 110 is a tunable light source, and light may be steered in an elevation angle direction by adjusting a wavelength of light output from the light source 110. Accordingly, the bandpass filter 121 may be configured to adjust a passing band according to the wavelength of light output from the light source 110. For example, the bandpass filter 121 may include a closed-curve waveguide resonator. The processor 150 may control a wavelength of light passing through the bandpass filter 121 by adjusting a resonance wavelength of the closed-curve waveguide resonator. For example, a resonance wavelength of the closed-curve waveguide resonator may be adjusted by optically adjusting a resonator length of the closed-curve waveguide resonator of the bandpass filter 121 by using a phase modulation element etc.
In order to cause an interference between local oscillator light and reception light, the reception light may be continuously provided to the light detector 120 while the light source 110 emits light. To this end, the root switch 130R may be in a third state in which light input to the first downstream side port 130c is transmitted to both the first and second upstream side ports 130a and 130b, and light input to the second downstream side port 130c is transmitted to both the first and second upstream side ports 130a, 130b. In this case, in order to prevent the reception light from traveling backward toward the light source 110, the LiDAR apparatus 100b may further include an optical isolator 115 arranged on a light path between the light source 110 and the root switch 130R as illustrated in
During performing the FMCW method, a difference between the minimum wavelength and the maximum wavelength of the frequency-modulated light when a frequency is modulated may be very small compared to the change in a wavelength when the light is steered in the elevation angle direction. For example, in a wavelength band of 1,310 nm, the elevation angle changes by about 2° when the wavelength is changed by 10 nm, and the wavelength change of frequency-modulated light in the FMCW method is about 0.006 nm. Therefore, a frequency modulation for the FMCW method may have little effect on an elevation angle of light steered to the outside.
The operation condition of the first and second electro-optic elements 131 and 132 may vary depending on the change in the external environment, such as temperature. Accordingly, the plurality of switches 130 may be accurately operated by actively changing a current applied to the first and second electro-optic elements 131 and 132 according to changes in the external environment. To this end, referring to
In addition, each switch 130 may further include a third coupler 102c that is optically coupled to the first downstream side port 130c to provide a portion of light passing through the first downstream side port 130c to the first monitoring photodetector 133 and a fourth coupler 102d that is optically coupled to the second downstream side port 130d to provide a portion of light passing through the second downstream side port 130d to the second monitoring photodetector 134. The third coupler 102c may be formed by bending a portion of the waveguide 102 that forms the third coupler 102c so that a distance between the waveguide 102 that forms the third coupler 102c and the first downstream side port 130c is less than a wavelength of light generated from the light source 110. The fourth coupler 102d may also be formed by bending a portion of the waveguide 102 that forms the fourth coupler 102d so that a distance between the waveguide 102 that forms the fourth coupler 102d and the second downstream side port 130d is less than a wavelength of light generated from the light source 110.
The processor 150 may perform a calibration for accurately controlling the operation of each switch 130 based on an output of the first and second monitoring photodetectors 133 and 134. For example, the processor 150 may determine whether the switch 130 is operated correctly in the first state, the second state, or the third state from outputs of the first and second monitoring photodetectors 133 and 134. Calibration may be performed periodically, or may be performed when a signal-to-noise ratio of the LiDAR apparatus is reduced. For example,
The calibration of the initial stage of operation of a LiDAR apparatus may be performed based on a lookup table stored in the processor 150.
The first and second monitoring photodetectors 133 and 134 may be arranged on the substrate 101 together with other components. Accordingly, the LiDAR apparatus according to the example embodiments may perform a calibration operation on one chip without using a separate calibration device.
The LiDAR apparatuses described above may be configured to be mounted on, for example, a vehicle to extract distance and relative speed information with the respect to vehicles in front. However, the LiDAR apparatuses according to the example embodiments are not necessarily applicable only to vehicles. For example, the LiDAR apparatuses according to the example embodiments may be mounted on a ship, an aircraft, etc. or a drone, etc. in addition to a vehicle, and may be used to search for and avoid obstacles in front of the ship, aircraft, drone, or the like.
It should be understood that example embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each example embodiment should typically be considered as available for other similar features or aspects in other embodiments. While example embodiments have been described with reference to the figures, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope as defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2021-0051355 | Apr 2021 | KR | national |