The invention relates to a LiDAR apparatus. In particularly but not exclusively the present disclosure relates to a LiDAR apparatus which includes optics having an aperture stop to minimise focal length requirements such that the LiDAR apparatus is suitable for operating in compact environments.
A Silicon Photomultiplier (SiPM) is a single-photon sensitive, high performance, solid-state sensor. It is formed of a summed array of closely-packed Single Photon Avalanche Photodiode (SPAD) sensors with integrated quench resistors, resulting in a compact sensor that has high gain (˜1×106), high detection efficiency (>50%) and fast timing (sub-ns rise times) all achieved at a bias voltage of ˜30V. LiDAR (light detection and ranging) applications that use eye-safe near infrared (NIR) wavelengths such as Automotive ADAS (Advanced Driver Assistance Systems), 3D depth maps, mobile, consumer and industrial ranging are utilised in compact environments. LiDAR systems typically require optics having a large focal length which makes them unsuitable for operating in compact environments.
There is therefore a need to provide for a LiDAR system which utilises SiPM technology and addresses at least some of the drawbacks of the prior art.
A Silicon Photomultiplier (SiPM) suffers of saturation in high ambient light conditions due to detector dead time. The present disclosure addresses this problem by limiting the angle of view (AoV) of the SiPM in order to avoid collecting undesirable noise, i.e. uncoherent ambient light. A short angle of view for a large sensor requires long focal lengths in a single-lens optical system. Such focal lengths are not suitable for compact systems. The present solution pairs the SiPM and a receiver lens with an aperture stop element. The aperture stop element stops the light coming from a large angle of view and spreads the collected light over the entire area of the SiPM effectively reaching the operation of a long focal length lens.
According, there is provided a LiDAR apparatus comprising:
In one aspect, the optics comprises a receive lens.
In another aspect, the optics comprises a transmit lens.
In a further aspect, the optics comprise a beam splitter such that a single lens is utilised for transmitting and receiving.
In one aspect, the beam splitter comprises a polarising mirror located intermediate the single lens and the SiPM detector.
In an exemplary aspect, the SiPM detector is a single-photon sensor.
In a further aspect, the SiPM detector is formed of a summed array of Single Photon Avalanche Photodiode (SPAD) sensors.
In one aspect, the aperture stop is located at the focal point of the optics.
In another aspect, the aperture stop has dimensions to match the required angle of view which is based on the size of the active area of the SiPM detector.
In a further aspect, the angle of view is less than 1 degree.
In an exemplary aspect, the total length between receiver optics and the SiPM detector is 10 cm or less.
In a further aspect, the total length between receiver optics and the SiPM detector is in the range of 1 cm to 6 cm.
In another aspect, the total length between receiver optics and the SiPM detector is less than 5 cm.
In one example, the size of the aperture stop is determined based on the size of the sensor area and the focal length of the optics.
In one aspect, the aperture stop diffuses light collected by the optics over a total active area of the SiPM detector.
In a further aspect, for a given focal length f, the angle of view θx,y of the SiPM detector placed on the focal point and with dimensions Lx,y is given by:
Where:
Focal length of receiver lens: f
Sensor horizontal and vertical length: Lx and Ly
Sensor horizontal and vertical angle of view: θx,y
In one aspect, the aperture stop has dimensions to match the required angle of view according to:
Where:
Focal length of receiver lens: f
Sensor angle of view: θx,y
Aperture stop dimensions: Px,y.
In a further aspect, the laser source is an eye-safe laser source.
In another aspect, the laser source is a low power laser.
In one aspect, the SiPM detector comprises a matrix of micro-cells.
The present teaching also relates to an automotive system comprising a LiDAR apparatus; the LiDAR apparatus comprising:
These and other features will be better understood with reference to the followings Figures which are provided to assist in an understanding of the present teaching.
The present teaching will now be described with reference to the accompanying drawings in which:
The present disclosure will now be described with reference to an exemplary LiDAR apparatus which utilises an SiPM sensor. It will be understood that the exemplary LiDAR apparatus is provided to assist in an understanding of the teaching and is not to be construed as limiting in any fashion. Furthermore, circuit elements or components that are described with reference to any one Figure may be interchanged with those of other Figures or other equivalent circuit elements without departing from the spirit of the present teaching. It will be appreciated that for simplicity and clarity of illustration, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
Referring initially to
The silicon photomultiplier 100 integrates a dense array of small, electrically and optically isolated Geigermode photodiodes 215. Each photodiode 215 is coupled in series to a quench resistor 220. Each photodiode 215 is referred to as a microcell. The number of microcells typically number between 100 and 3000 per mm2. The signals of all microcells are then summed to form the output of the SiPM 200. A simplified electrical circuit is provided to illustrate the concept in
Each microcell generates a highly uniform and quantized amount of charge every time the microcell undergoes a Geiger breakdown. The gain of a microcell (and hence the detector) is defined as the ratio of the output charge to the charge on an electron. The output charge can be calculated from the over-voltage and the microcell capacitance.
Where:
G is the gain of the microcell;
C is the capacitance of the microcell;
ΔV is the over-voltage; and
q is the charge of an electron.
LiDAR is a ranging technique that is increasingly being employed in applications such as mobile range finding, automotive ADAS (Advanced Driver Assistance Systems), gesture recognition and 3D mapping. Employing an SiPM as the photo sensor has a number of advantages over alternative sensor technologies such as avalanche photodiode (APD), PIN diode and photomultiplier tubes (PMT) particularly for mobile and high volume products. The basic components typically used for a direct ToF ranging system, are illustrated in
This time of flight, t, may be used to calculate the distance, D, to the target from the equation
D=cΔt/2, Equation 1
where c=speed of light; and
Δt=time of flight.
The detector 315 must discriminate returned laser photons from the noise (ambient light). At least one timestamp is captured per laser pulse. This is known as a single-shot measurement. The signal to noise ratio can be dramatically improved when the data from many singleshot measurements are combined to produce a ranging measurement from which the timing of the detected laser pulses can be extracted with high precision and accuracy.
Referring now to
Where:
Focal length of receiver lens: f
Sensor horizontal and vertical length: Lx,Ly
Sensor angle of view: θx,y
This means that a large sensor has a large angle of view when a short focal length is used. When the lens aperture is widened, more ambient photons are detected while the number of returned laser photons remains constant. The SiPM 400 is prone to saturation as is evident from the large overshoot at the start of the histogram window in
SiPM detectors using short angle of view such as SPAD or SiPM sensors satisfy the single photon detection efficiency requirement. Short AoV systems, i.e. <1 degree, may be either used as single point sensors in scanning systems to cover larger total AoV or arranged in arrays to cover the desired larger total angle of view respectively through scanning or simultaneous illumination. SPAD/SiPMs sensors however suffer from limited dynamic range due to a necessary recovery/recharge process of the sensors. At every photo detection in a microcell of the SiPM, the avalanche process needs to be quenched through, for example, a resistor which discharges the photocurrent and brings the diode out of the breakdown region. Then a recharge, passive or active, process begins to restore the diode bias voltage restoring the initial conditions ready for the next photo detection. The amount of time during which the quenching and recharge process take place is commonly referred to as dead time or recovery time. No further detections can happen in this time window due to the bias condition of the diode being outside the Geiger mode. In a SiPM, when a microcell enters the dead time window, the other microcells can still detect photons. Hence, the number of microcells define the photon dynamic range of the sensor allowing higher number of photons per unit time to be detected. When no microcells are available for detection due to dead time, the SiPM is said to be in its saturation region. A high number of diodes within an SiPM (microcells) is necessary to compensate the recovery process which inhibits the involved units of the detector. Large SiPMs provide high dynamic range. The size of the SiPM together with the focal length of the received sets the angle of view as per equation 2 and as illustrated in
SiPM detectors suffer from saturation in high ambient light conditions due to detector dead time. The present disclosure addresses this problem by limiting the angle of view (AoV) of the SiPM detector in order to avoid collecting undesirable noise, i.e. uncoherent ambient light. A short angle of view for a large sensor requires long focal lengths in a single-lens optical system. Such focal lengths are not suitable for LiDAR systems required to operate in compact environments where the detector is 10 cm or less from the receiving optics.
The present solution pairs the SiPM detector and a receiver lens with an aperture stop element which limits the AoV and reduces the focal length requirements thereby allowing SiPM detectors to be incorporated into LiDAR systems that operate in compact environment. The aperture stop element stops the light coming from a large angle of view and spreads the collected light over the entire area of the SiPM effectively reaching the detection efficiency of a long focal length lens arrangement. The term compact environment is intended to include environments where the detector is 10 cm or less from the receiving optics. It is also intended to include environments where the total length between receiver optics and the SiPM detector is in the range of 1 cm to 6 cm. In one example, the term compact environment refers to an environment where the total length between receiver optics and the SiPM detector is less than 5 cm.
Referring now to
In order to reduce the angle of view while maintaining the dynamic range required for given accuracy and ranging accuracy, a large sensor is typically paired with a long focal length lens aperture, as illustrated in
The dimensions and the position of the aperture stop relate both to the size of the sensor area and the desired angle of view and the focal length of the receiver lens. The dimensions Px,y must match the required angle of view according to:
While the sensor has to be placed at a certain distance to ensure the diffusion of the light of the entire active area:
Wherein:
The light must be spread uniformly over the sensor active area; however, no imaging ability is required as the system is a single point sensor. Note that the given equations represent theoretical maxima which are given by way of example only. The distances may need adjustment to take account of tolerances.
Referring now to
It will be appreciated by those of ordinary skill in the art that by utilizing an aperture stop allows the LiDAR systems 800 and 900 to have a short focal length while utilizing a large sensor area in the order of 1 mm2 or greater. Since the LiDAR apparatus of the present teaching utilizes an optical system with a short focal length it allows the LiDAR system to be incorporated into compact environments having a length of 10 cm or less between the detector and receiver optics. The following table provides some exemplary dimensions for the components of the LiDAR apparatus in accordance with the present teaching. The exemplary dimensions are provided by way of example only and it is not intended to limit the present teaching to the exemplary dimensions provided.
The LiDAR apparatus 900 may operate as a time of flight (ToF) LiDAR system such that a laser pulse exits a transmitter 905 at a known time. After the laser pulse strikes a target 925, reflected light is returned to the receiver 910. If the target 925 has a mirror like surface, then specular reflection will reflect photons in an angle equivalent to the incidence angle. This can result in the maximum number of photons reflected by the target being detected at the receiver 910. Standard avalanche photodiode (APD) sensors can be used to detect light from a retroreflector which reflects light back along the incident path, irrespective of the angle of incidence. However, most surfaces in the real world are non-specular targets and do not directly reflect the incident light. These non-specular surfaces can typically be represented as a Lambertian surface. When a Lambertian surface is viewed by a receiver with a finite angle of view (AoV) the quantity of photons received is invariant with the angle viewed and the photons are spread across a 2π (steradian surface. The net impact of a Lambertian reflector is that the number of returned photons is proportional to 1/distance2. Additionally, the number of transmitted photons are limited by eye-safety constraints. Due to the 1/distance2 reduction in the number of photons returned and the inability to simply increase the source power it is desired that every photon detected contributes to the overall accuracy of the LiDAR system 900.
It will be appreciated by the person of skill in the art that various modifications may be made to the above described embodiments without departing from the scope of the present invention. In this way it will be understood that the teaching is to be limited only insofar as is deemed necessary in the light of the appended claims. The term semiconductor photomultiplier is intended to cover any solid state photomultiplier device such as Silicon Photomultiplier [SiPM], MicroPixel Photon Counters [MPPC], MicroPixel Avalanche Photodiodes [MAPD] but not limited to.
Similarly the words comprises/comprising when used in the specification are used to specify the presence of stated features, integers, steps or components but do not preclude the presence or addition of one or more additional features, integers, steps, components or groups thereof.
Number | Name | Date | Kind |
---|---|---|---|
2949808 | Thurow | Aug 1960 | A |
5159412 | Willenborg | Oct 1992 | A |
5243541 | Ulich | Sep 1993 | A |
7301608 | Mendenhall | Nov 2007 | B1 |
9476980 | Thayer | Oct 2016 | B2 |
20020175294 | Lee et al. | Nov 2002 | A1 |
20080304012 | Kwon | Dec 2008 | A1 |
20140049783 | Royo Royo | Feb 2014 | A1 |
20140146303 | Mitchell | May 2014 | A1 |
20140175294 | Frach | Jun 2014 | A1 |
20140303827 | Dolgov | Oct 2014 | A1 |
20150204978 | Hammes | Jul 2015 | A1 |
20160223671 | Thayer et al. | Aug 2016 | A1 |
20170153319 | Villeneuve | Jun 2017 | A1 |
20180106900 | Droz | Apr 2018 | A1 |
20190022948 | Marra | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
202014100836 | May 2015 | DE |
Entry |
---|
International Search Report related to Application No. PCT/EP2017/082561 dated Mar. 8, 2018. |
Action on the Merits by U.S.P.T.O regarding U.S. Appl. No. 15/383,310, filed Dec. 19, 2016. |
Number | Date | Country | |
---|---|---|---|
20180164413 A1 | Jun 2018 | US |