The disclosure herein relates to lidar light sources, particularly relates to a lidar light source with two-dimensional steering control.
Lidar is a laser-based method of detection, range finding and mapping, which uses a technology similar to radar. There are several major components to a lidar system: laser, scanner and optics, photo detectors and receiver electronics. For example, controlled steering of scanning laser beams is carried out, and by processing the captured return signals reflected from distant objects, buildings and landscapes, distances and shapes of these objects, buildings and landscapes may be obtained.
Lidar is widely used. For example, autonomous vehicles (e.g., driverless cars) use lidar (also known as on-vehicle lidar) for obstacle detection and collision avoidance to navigate safely through environments. An on-vehicle lidar is mounted on the roof of a driverless car and it rotates constantly to monitor the current environment around the car. The lidar sensor provides the necessary data for software to determine where potential obstacles exist in the environment, help identify the spatial structure of the obstacle, distinguish objects based on size and estimate the impact of driving over it. One advantage of the lidar systems compared to radar systems is that the lidar systems can provide better range and a large field of view, which helps detecting obstacles on the curves. Despite tremendous progress has been made in lidar development in recent years, a lot of efforts are still being made these days to better design the lidar light sources to perform controlled scanning.
Disclosed herein is an apparatus, comprising: a plurality of optical waveguides each comprising an optical core; an electronic control system configured to adjust dimensions of the optical cores of the plurality of optical waveguides by regulating temperatures of the optical cores of the plurality of optical waveguides, wherein by adjusting the dimensions of the optical cores of the plurality of optical waveguides the electronic control system is configured to control phases of output light waves from the plurality of optical waveguides for the output light waves to form a scanning light beam and control a direction of the scanning light beam.
According to an embodiment, the plurality of optical waveguides forms a two-dimensional phased array and is configured to perform two-dimensional light scanning.
According to an embodiment, the plurality of optical waveguides is formed on a common substrate.
According to an embodiment, each of the plurality of optical waveguides is an optical fiber.
According to an embodiment, light waves of an input light beam to the plurality of optical waveguides are coherent.
According to an embodiment, the scanning light beam is a laser beam.
According to an embodiment, the apparatus further comprises a beam expander configured to expand an input light beam before the input light beam enters the plurality of optical waveguides.
According to an embodiment, the apparatus further comprises a diffraction grating configured to couple the light waves of the input light beam into the plurality of optical waveguides.
According to an embodiment, the diffraction grating is a microlens array.
According to an embodiment, at least one optical core comprises an optical medium that is conductive and transparent.
According to an embodiment, the at least one optical core is electronically connected to the electronic control system, wherein the electronic control system is configured to control the temperature of at least one optical core by applying an electric current flowing through the at least one optical core.
According to an embodiment, at least one of the plurality of optical waveguides further comprises a conductive cladding around sidewalls of a respective optical core.
According to an embodiment, the conductive cladding is electronically connected to the electronic control system, wherein the electronic control system is configured to control the temperature of the respective optical core by applying an electric current flowing through the conductive cladding.
According to an embodiment, the apparatus further comprises a Peltier device electrically connected to the electric control system, where in the electric control system is configured to control the temperature of at least one optical core by applying an electric current flowing through the Peltier device.
According to an embodiment, the apparatus further comprises a diffraction grating configured to modulate the scanning light beam.
According to an embodiment, the diffraction grating is a microlens array.
According to an embodiment, the diffraction grating is a Fresnel lens array.
According to an embodiment, at least one of the plurality of optical waveguides is embedded in one substrate and at least another of the plurality of optical waveguides is embedded in another substrate.
Disclosed herein is a system suitable for laser scanning, the system comprising: the apparatus of any one of the apparatuses above, a laser source, wherein the apparatus is configured to receive an input laser beam from the laser source and generate a scanning laser beam.
According to an embodiment, the system further comprises a detector configured to collect return laser signals after the scanning laser beam bounces off of an object.
According to an embodiment, the system further comprises a signal processing system configured to process and analyze the return laser signals detected by the detector.
Each of the optical waveguides 111 may comprise an optical core 113 comprising an optical medium. In one embodiment, the optical medium may be transparent. Dimensions of each of the optical cores 113 may be individually adjusted by the electronic control system 120 to control phases of output light waves from respective optical cores 113. The electronic control system 120 may be configured to adjust the dimensions of each of the optical cores 113 by regulating the temperature of each of the optical cores 113.
When an input light beam incident on the optical cores 113, the light waves of the input light beam may pass through the optical cores 113 (e.g., by total internal reflection) and exit as output light waves from the plurality of optical waveguides 111. Diffraction may let the output light waves from each of the optical cores 113 spread over a wide angle so that when the input light waves are coherent (e.g., from a coherent light source such as a laser), the output light waves from the plurality of optical waveguides 111 may interfere with each other and exhibit an interference pattern. The electronic control system 120 may be configured to control phases of output light waves from the plurality of optical waveguides 111 for the interference pattern to generate a scanning light beam and steer the scanning light beam in one dimension or two dimensions. For example, the two-dimensional array of
In one embodiment, the light waves of the input light beam to the plurality of optical waveguides 111 may be at a same phase. The interference pattern of the output light waves from the plurality of optical waveguides 111 may comprise one or more propagating bright spots where output light waves constructively interfere (e.g., re-enforce) and one or more propagating weak spots where output light waves destructively interfere (e.g., cancel out each other). In one embodiment, the one or more propagating bright spots may form one or more scanning light beams generated by the apparatus 100. If the phases of the output light waves of the optical cores 113 shift and the phase differences between the output light waves change, the constructive interferences may happen at different directions so that the interference pattern of the output light waves (e.g., the directions of the one or more generated scanning light beams) may also change. In other words, light beam steering may be realized by adjusting the phases of the output light beams from the plurality of optical waveguides 111.
One way of adjusting the phases of the output light waves is changing the effective optical paths of the input light waves propagated through the optical cores 113. An effective optical path of a light wave propagated through an optical medium may depend on the physical distance the light travels in the optical medium (e.g., depending on incident angle of the light wave, dimensions of the optical medium). As a result, the electronic system 120 may adjust the dimensions of the optical cores 113 to change the effective optical paths of incident light beam propagates through the optical cores 113 so that the phases of the output light waves shift under the control of the electronic control system 120. For example, the length of each of the optical cores 113 may change because at least a part of the respective optical cores 113 has a temperature change. Moreover, the diameter of at least a section of an optical core 113 may change if at least part of the section of the optical core 113 has a temperature change. Therefore, in one embodiment, regulating the temperature of each of the optical cores 113 may be used to control the dimensions of the optical cores 113 due to the thermal expansion or contractions of the optical cores 113.
In one or more embodiments, the optical waveguides 111 need not to be straight. For example, some or all of them may be curved (e.g., āUā shaped, āSā shaped, etc.). The cross-sectional shape of the optical waveguides 111 may be a rectangle, circle, or any other suitable shape. In an embodiment, the substrate 112 may include conductive, non-conductive or semiconductor materials. In an embodiment, the substrate 112 may include a material such as silicon dioxide. In one or more embodiments, one or more optical waveguides 111 may be embedded in one substrate by filling one or more holes formed on the substrate with the optical medium. The one or more holes on the substrate may be formed by laser drilling, chemical etching, etc. A polishing process may be employed to remove a portion of the substrate covering the bottom of each of the one or more holes and polish two ends of each of the one or more optical waveguides 111 after the embedding process. Moreover, in one or more embodiments, the optical waveguides 111 need not to be embedded in one substrate. For example, some optical waveguides 111 may be embedded in one substrate; some other optical waveguides 111 may be embedded in a separate substrate.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2017/075710 | Mar 2017 | US |
Child | 16185534 | US |