This invention is directed to a life preserver type device which is designed to be worn around the neck of the person, particularly young children. The life preserver device is initially in the form of a small necklace which, when subjected to immersion, will automatically deploy an inflated bladder which provides for flotation of the individual.
There are a variety of self-inflatable life preservers known in the art. For instance, in U.S. Pat. No. 5,421,760 to Blaga, a self-inflatable collar life preserver is provided. The collar has a rigid frame which is used to retain compressed air within the unit. As such, the frame has a size, thickness, and rigidity provided by solid materials which most individuals would find uncomfortable and unsightly for prolonged use.
It is also known in the art to provide self-inflating life preservers such as the life preserver seen in the Cloessing published patent application US 2004/0029466 A1 in which a vest type preserver is provided having the ability to automatically inflate when immersed. While a vest type life preserver is beneficial, a vest type garment is often uncomfortable and is not designed to be worn for long periods of time by children or when the wearer is active at play or sports.
Accordingly, there remains room for improvement and variation within the art with respect to providing a self-inflating life preserver type device which can be worn for long periods of time having a construction suitable for use with small children.
It is one aspect of at least one of the present embodiments to provide for a self-inflating bladder which in an uninflated state lends itself to being worn around a child's neck as a necklace type device.
It is a further aspect of at least one of the present embodiments to provide for a life preserver device to be worn around an individual's neck which has a triggering mechanism which will inflate the device when immersed in water. The triggering device is resistant to deployment unless immersed and therefore can be worn during a shower or bath, during a rainstorm, when splashing in a wading pool, or other types of similar activity.
It is yet a further aspect of at least one of the present embodiments to provide for a self-inflatable life preserver device to be worn around the user's neck having a compact design and a lightweight construction.
It is a further aspect of at least one embodiment of the present invention to provide for a collar type life preserver device having a battery operated trigger which is responsive to immersion and which will activate a propellant or other evolved gas so as to inflate one or more air bladders associated with the collar.
It is a further aspect of at least one embodiment of the present invention to provide a propellant for a collar type life preserver in which a chemical reaction is used to generate an evolved gas, the evolved gas being used to inflate one or more air chambers associated with the life preserver collar.
It is a further aspect of at least one embodiment of the present invention to provide for an inflatable necklace having an electronic sensor having a time delay circuit which is responsive to immersion in water. Upon immersion for a pre-selected interval, the sensor will activate an inflation gas which may be in the form of a compressed gas or liquid within a sealed tube or trigger two or more reactants used to generate a rapid release of an inflation gas. The released gas is used to inflate a bladder provided from a fabric or web such as Mylar®, Kevlar®, or a coated fabric.
It is a further aspect of at least one embodiment of the present invention to provide for an inflatable life necklace having a diameter of one-half inch or less that can be snapped into place around a child's neck. The snap mechanism may include a child-resistant closure or lock which would prevent removal of the necklace by a small child.
These and other features, aspects, and advantages of the present invention will become better understood with reference to the following description and appended claims.
A fully enabling disclosure of the present invention, including the best mode thereof to one of ordinary skill in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying drawings.
Reference will now be made in detail to the embodiments of the invention, one or more examples of which are set forth below. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention cover such modifications and variations as come within the scope of the appended claims and their equivalents. Other objects, features, and aspects of the present invention are disclosed in the following detailed description. It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only and is not intended as limiting the broader aspects of the present invention, which broader aspects are embodied in the exemplary constructions.
In describing the various figures herein, the same reference numbers are used throughout to describe the same material, apparatus, or process pathway. To avoid redundancy, detailed descriptions of much of the apparatus once described in relation to a figure is not repeated in the descriptions of subsequent figures, although such apparatus or process is labeled with the same reference numbers.
As seen in reference to
In reference to
As seen in reference to
As best seen in reference to
The release of a compressed or evolved gas from gas source 80 is described in greater detail below. The operation of the gas source 80 is responsive to a sensor 60 as seen in
In an additional embodiment of the invention as seen in reference to
There are a variety of sensors known in the art which can provide for the capabilities set forth herein for sensor 60. As used herein, the term “sensor” may be used to include the circuitry, the contacts, a suitable battery, and an appropriate housing to contain the various components which are used to provide an appropriate sensor. Set forth in
The circuit set forth in
The inflatable bladder 30 or inner bladder 32 may be provided from a variety of suitable materials including nylon, polyethylene, and other textile materials coated with one or more layers of polyurethane, polyvinylchloride, or other coatings that provide a relatively gas impermeable bladder material. The bladders 30 or 32 may also be provided from an expandable material such as Lycra™, Lycra-Cordura™, latex, or Mylar®. The materials forming the portion of necklace 10 making up the inflatable bladder 30 and/or optional inner bladder 32 may be sonically welded or otherwise secured to the other portions of necklace 10, such as housing 40, thereby establishing an airtight seal between the inflatable bladder 30 and the adjacent portions of necklace 10.
To the extent a canister of a pressurized gas source 80 such as a pressurized tube 136 is used, such gas may be nitrogen, oxygen, air, CO2, or mixtures thereof. It is also recognized that suitable gas sources may include a material which is in a liquid form when under pressure, but when released into the bladder 30 and/or 32 is in the form of a gas. Depending upon the size and extent of the opening of valve 110, the amount of pressure, and the size of the opening between the gas source and the interior of the inflation bladders 30 and/or 32, the inflation of the bladders may occur within a matter of seconds or other desired interval.
As seen in reference to
In the alternative, a pressurized gas source 80 may be used using technology adapted for air bags and which may provide for a more rapid evolution of gas using reactants which will produce or release a gas of air, sodium oxide, or other suitable release gases. It is possible that the pressurized gas source in the form of a canister could actually be placed on the exterior of the inflatable necklace. While such a design is operative, it is believed preferable to have the gas source present within the interior of the necklace to discourage children from playing or tampering with the pressurized cartridge or other gas source 80.
It is also envisioned that the pressurized gas source could be provided by a chemical reaction in which two or more reactants are combined to generate the needed volume of gas. It is envisioned that sensor 60 may be used to trigger the release of one or more chemicals into an interior of the gas source vessel 80 which, in the presence of a second reactant chemical within vessel 80, results in the formation of a gas. The quantities of the reactants may be controlled so as to achieve a sufficient combination of pressure and volume of evolved gas.
Suitable reactants may include a mixture of a catalyst with hydrogen peroxide for the release of oxygen and/or hydrogen gas or a mixture of baking soda with an acidic solution such as acetic acid. In addition, the gas propellants used in airbag technology could be present in a reaction chamber such that when activated by sensor 60 the resulting chemical reaction generates the necessary volume of evolved gas to inflate the chamber(s).
An additional embodiment of the inflatable necklace is seen in reference to
The inflatable necklace is designed for use with young children. As such, the size and volume of the respective air bladders are not as great as other self-inflating life preserver products which are designed for use with adults. Accordingly, the volume of pressurized gas that needs to be supplied to chamber is relatively small and which permits the use of compact pressurized canisters and/or smaller volumes or packages of gas producing reactants.
For embodiments which use an inner bladder 32 to provide the necessary inflation and floatation properties, the material comprising outer bladder 30 may be provided by a variety of flexible materials and may include various fabrics which are not necessarily airtight. Accordingly, the fabric for bladder 30 may be similar to or different from the materials used to provide an inflatable bladder 32 though the two materials should be compatible for the purposes of sonic welding or otherwise fastening the materials together in a sealed manner.
If desired, the outer bladder 30 may be of a very porous material through which water may easily enter and drain. In addition, there may be benefits to placing periodic eyelets within the outer bladder 30 of necklace 10 so as to allow the easy entry and drainage of water.
It is also envisioned that necklace 10 may incorporate an alarm indicator 90 (
Further, the outer bladder 30 may be provided with distinctive, high visibility color or markings to assist in locating an individual in distress. It is also envisioned that upon activation and inflation, a series of lights 92 such as diodes may flash along with an audible alarm to assist in locating a child in darkness or low visibility conditions such as fog.
Although preferred embodiments of the invention have been described using specific terms, devices, and methods, such description is for illustrative purposes only. The words used are words of description rather than of limitation. It is to be understood that changes and variations may be made by those of ordinary skill in the art without departing from the spirit or the scope of the present invention which is set forth in the following claims. In addition, it should be understood that aspects of the various embodiments may be interchanged, both in whole, or in part. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred versions contained therein.
Number | Name | Date | Kind |
---|---|---|---|
1385581 | Pallady | Jul 1921 | A |
1806786 | Claus | May 1931 | A |
2309256 | Rekersdres | Jan 1943 | A |
2742654 | Hurt | Apr 1956 | A |
3048860 | Richardson | Aug 1962 | A |
3308494 | Licher | Mar 1967 | A |
3633230 | Horton | Jan 1972 | A |
3750205 | Pfeifer | Aug 1973 | A |
4622018 | Blanc | Nov 1986 | A |
4925419 | Susanna | May 1990 | A |
5421760 | Blaga | Jun 1995 | A |
5692933 | Bradley et al. | Dec 1997 | A |
5845937 | Smith | Dec 1998 | A |
5921835 | Gordon et al. | Jul 1999 | A |
6270386 | Visocekas | Aug 2001 | B1 |
6561863 | Campbell | May 2003 | B1 |
6592098 | Kao et al. | Jul 2003 | B2 |
6659824 | McCormick | Dec 2003 | B1 |
6729599 | Johnson | May 2004 | B2 |
6966336 | Renzi | Nov 2005 | B1 |
20030070716 | Glousouf et al. | Apr 2003 | A1 |
20040029466 | Kloessing | Feb 2004 | A1 |
20040127118 | Simmons | Jul 2004 | A1 |
20040256585 | Nielsen et al. | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
02241890 | Sep 1990 | JP |