Embodiments of the present invention will now be described, by way of example only, with reference to the following drawings, in which:
In the following paragraphs, the present invention will be described in detail by way of example with reference to the attached drawings. Throughout this description, the preferred embodiment and examples shown should be considered as exemplars, rather than as limitations on the present invention. As used herein, the “present invention” refers to any one of the embodiments of the invention described herein, and any equivalents. Furthermore, reference to various feature(s) of the “present invention” throughout this document does not mean that all claimed embodiments or methods must include the referenced feature(s).
The present invention is directed to a lifeboat disengagement system for supporting and releasing twin fall boats, wherein the disengagement system provides positive locking under load until the tension is removed from the falls and the release handle is pulled to disengage the pair of hooks simultaneously. Unlike conventional systems, the lifeboat disengagement system of the present invention features a pair of stable hooks, wherein the load of the lifeboat locks the hooks such that they do not release under load. In other words, the disengagement system is designed so the load of the boat is not employed to open the hook. This locking design protects the occupants of the boat while it is being lowered into the water or while it is being lifted out of the water. Even if an operator, in error, attempts to pull on the hook release lever while the boat is suspended in the air, the stable hooks will not open. In addition, should a part fail or malfunction, the hooks will not open. Once the boat is afloat in the water and the load is removed from the hooks, the operator may then pull the hook release lever and open the hook.
According to the principles of the present invention, the stable hook design set forth herein permits the lifeboat floating in the water to replace, or to be used in lieu of, a troublesome conventional hydrostatic release valve. Advantageously, the hooks of the invention include less parts than conventional hooks, and are therefore less complex in design and easier to maintain. Additionally, the hooks offer the seafarer greater safety than that afforded by conventional hooks having a hydrostatic release valve. The hooks of the invention provide positive locking under load because of a load over center design, wherein the load is in line with the center of hook rotation, thereby preventing the hook from opening inadvertently and eliminating the need for a hydrostatic device. The hooks of the invention are also relatively simple to operate in that: (1) if the operator can pull the hook release handle and move it, the boat is safely afloat in the water, and the hooks will open; or (2) if the operator pulls on the hook release handle and cannot move it, either the boat is suspended in the air or a tension remains in the falls, and the hooks will not open.
Regulation requires that in an emergency the hook design provides an ability to release the hooks when under load. According to one embodiment of the invention, this is accomplished by manually installing an emergency ratchet lever onto the square end of the emergency release shaft. In the system of the invention, a pair of hooks is mounted on a top surface of a lifeboat. Each hook may include a housing comprising a metal plate manufactured or bolted to the lifeboat, wherein the housing is provided with an independent servicing or hoisting flange having a circular opening for attaching to and lifting of the lifeboat.
Each hook that is utilized as a connection between a hoist and the lifeboat is rotatably pinned between a pair of plates which form the housing. The housing may be provided with a covering to prevent environmental contamination or damage. The hook includes an engaging surface that contacts the cable or lifting link. Specifically, the engaging surface includes the shaped portion of the hook, and is positioned such that, upon release and rotation of the hook, the face of the housing assists in the positive disengaging of the link from the hook. A retaining device may be provided and positioned, such that in a released configuration, the retaining device either contacts or comes very close to contacting a small pointed end of the hook in its engaged configuration, thereby preventing the link from accidentally being separated from the hook in its no-load configuration. In addition, a biasing feature of the retaining device is positioned such that the securing function can be overcome easily by pressure during inserting of the link, but cannot be overcome by the reverse motion.
According to the invention, each hook has a pivot point positioned such that the engaging surface for the hook and the housing cooperate to produce a vertical relationship between the pivot point of the hook and the contact point of the attaching link with the hook surface. The engaging surface may be dimensioned such that the surface forms a constant radius arc, independent of rotation of the hook, about the pivot point of the hook. In operation, the hook is placed in its locked position, and a link is placed through the exposed portion of the hook. The counterweighted retaining device locks the structure preventing the hook from becoming disengaged upon accidental loss of tension in the cable/fall supporting the link and the remaining portions of the apparatus are locked in position by placing of a load on the link. The counterweighted rack remains in its locked condition under the load until such time as the load becomes sufficiently small such that the operator may pull the release handle such that the hooks disengage from the links contained therein.
Referring to
The lifeboat disengagement system 100 of the invention may be employed for a variety of purposes such as moving and servicing lifeboats together with other equipment. In operation, the lifeboat release assembly 110 is used to disengage the lifting links 120 simultaneously from stable hooks 118 of corresponding hook assemblies 115. More particularly, each hook assembly 115 comprises a hook 118 that is positioned between a pair of vertical plates 125 (which form a housing) by way of a shaft 130 such that the hook 118 is capable of rotating about the shaft 130. According to some embodiments, the housing may be provided with a covering to prevent environmental contamination or damage. The hook 118 includes an engaging surface 135 that is provided with a predetermined shape. In the illustrated embodiment, the engaging surface 135 is arcuate and is formed at a substantially constant radius from the shaft 130. The engaging surface 135 is positioned such that the face of the housing assists in the positive disengaging of the lifting link 120 from the hook 118 upon release and rotation of the hook 118.
Both of the plates 125 are drilled to form a lifting eye 145 suitable for hauling, hoisting or otherwise positioning the lifeboat or other equipment attached to the hook assembly 115. Each plate 125 is provided with a release surface 150 which is vertically extended and curved relatively toward the rearward portion of the hook 118. During disengagement, the release surface 150 acts to positively disengage the lifting link 120 or other structure held by the hook 118 on its engaging surface 135. Additionally, each plate 125 is drilled at its forward end, and a pin 155 is provided for rotatably connecting a counter weighted retaining device 160. In the engaged configuration depicted in
With further reference to
In
According to a preferred implementation, the lifeboat release assembly 110 is disposed inside the lifeboat such that the release handle 235 is an internal device. Existing lifeboats may be retrofitted by installing the lifeboat disengagement system 100 of the invention with limited modification to the existing lifeboat structure. Additionally, less motion is required to open and close the hooks 118. Specifically, the rotary motion of the handle is converted to the linear motion of the weighted rack 230. According to some embodiments, the release handle 235 must only be rotated approximately 160° to fully open the hooks 118. All moving parts of the lifeboat release assembly 110 are contained within the housing 215, thus preventing the interference of moving parts. If the operator is able to rotate the hook release handle 235 and move it, then the lifeboat is safely afloat in the water, the tension has been removed from the falls and the hooks 118 will open. However, if the operator pulls on the hook release handle 235 and cannot move it, then the lifeboat is suspended in the air, or a tension remains on the falls, and the hooks 118 will not open. To close the hooks to the normal position illustrated in
Referring to
Referring to
Referring to
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not of limitation. Likewise, the various diagrams may depict an example architectural or other configuration for the invention, which is done to aid in understanding the features and functionality that may be included in the invention. The invention is not restricted to the illustrated example architectures or configurations, but the desired features may be implemented using a variety of alternative architectures and configurations. Indeed, it will be apparent to one of skill in the art how alternative functional, logical or physical partitioning and configurations may be implemented to implement the desired features of the present invention. Also, a multitude of different constituent module names other than those depicted herein may be applied to the various partitions. Additionally, with regard to flow diagrams, operational descriptions and method claims, the order in which the steps are presented herein shall not mandate that various embodiments be implemented to perform the recited functionality in the same order unless the context dictates otherwise.
Although the invention is described above in terms of various exemplary embodiments and implementations, it should be understood that the various features, aspects and functionality described in one or more of the individual embodiments are not limited in their applicability to the particular embodiment with which they are described, but instead may be applied, alone or in various combinations, to one or more of the other embodiments of the invention, whether or not such embodiments are described and whether or not such features are presented as being a part of a described embodiment. Thus the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments.
Terms and phrases used in this document, and variations thereof, unless otherwise expressly stated, should be construed as open ended as opposed to limiting. As examples of the foregoing: the term “including” should be read as meaning “including, without limitation” or the like; the term “example” is used to provide exemplary instances of the item in discussion, not an exhaustive or limiting list thereof, the terms “a” or “an” should be read as meaning “at least one,” “one or more” or the like; and adjectives such as “conventional,” “traditional,” “normal,” “standard,” “known” and terms of similar meaning should not be construed as limiting the item described to a given time period or to an item available as of a given time, but instead should be read to encompass conventional, traditional, normal, or standard technologies that may be available or known now or at any time in the future. Likewise, where this document refers to technologies that would be apparent or known to one of ordinary skill in the art, such technologies encompass those apparent or known to the skilled artisan now or at any time in the future.
A group of items linked with the conjunction “and” should not be read as requiring that each and every one of those items be present in the grouping, but rather should be read as “and/or” unless expressly stated otherwise. Similarly, a group of items linked with the conjunction “or” should not be read as requiring mutual exclusivity among that group, but rather should also be read as “and/or” unless expressly stated otherwise. Furthermore, although items, elements or components of the invention may be described or claimed in the singular, the plural is contemplated to be within the scope thereof unless limitation to the singular is explicitly stated.
The presence of broadening words and phrases such as “one or more,” “at least,” “but not limited to” or other like phrases in some instances shall not be read to mean that the narrower case is intended or required in instances where such broadening phrases may be absent. The use of the term “module” does not imply that the components or functionality described or claimed as part of the module are all configured in a common package. Indeed, any or all of the various components of a module, whether control logic or other components, may be combined in a single package or separately maintained and may further be distributed across multiple locations.
Additionally, the various embodiments set forth herein are described in terms of exemplary block diagrams, flow charts and other illustrations. As will become apparent to one of ordinary skill in the art after reading this document, the illustrated embodiments and their various alternatives may be implemented without confinement to the illustrated examples. For example, block diagrams and their accompanying description should not be construed as mandating a particular architecture or configuration.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/742,130, filed Apr. 30, 2007, which is a continuation-in-part of U.S. patent application Ser. No. 11/539,152, filed Oct. 5, 2006, the content of both applications are included herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11742130 | Apr 2007 | US |
Child | 11841844 | US | |
Parent | 11539152 | Oct 2006 | US |
Child | 11742130 | US |