This disclosure relates generally to a system for controlling a lift arm and, more particularly, to a system for automatically controlling movement of the lift arm near a limit of travel of the lift arm.
Machines with various implements are often used in the materials handling and construction industries. These machines typically include one or more lift arms for moving an implement from a starting position to a limit of travel position in order to perform a desired task. The machines are often used for motions of some type such as lifting a load of material and dumping it at another location. The machine may then be returned to the original location and the implement lowered to the starting position in order to begin another material movement cycle. Upon reaching the dumping location as well as the starting position, it is desirable for the operator to operate input devices to slow down the movement of the lift arms to minimize the likelihood that the lift arms will being moving rapidly and then abruptly stop upon reaching their limit of travel positions. Such a sudden stop may cause wear to the machine and spillage of material being carried by the implement.
U.S. Pat. No. 7,140,830 to Berger et al. discloses an electronic control system for skid steer loaders. More specifically, the Berger et al. system provides a complex variety of modes, features, and options for controlling implement position. However, the Berger et al. system relies largely upon multiple position sensors for information about and to control the implement position which adds cost and complexity to the system.
The foregoing background discussion is intended solely to aid the reader. It is not intended to limit the innovations described herein nor to limit or expand the prior art discussed. Thus the foregoing discussion should not be taken to indicate that any particular element of a prior system is unsuitable for use with the innovations described herein, nor is it intended to indicate any element, including solving the motivating problem, to be essential in implementing the innovations described herein. The implementations and application of the innovations described herein are defined by the appended claims.
In one aspect, the described principles allow a system for a loader to control the movement of a lift arm proximate to its limit of travel. The system includes a controller operable to receive a signal indicative of the speed of an engine on the loader and to receive a signal indicative of actuation of an operator interface on the loader. The operator interface actuation signal indicates a desired movement of the lift arm. The controller receives a signal indicative of actuation of a sensor on the lift arm upon movement of the sensor past a sensor trigger on the loader at a position adjacent a limit of travel of the lift arm. Based at least upon the engine speed signal and the sensor actuation signal, the controller determines a lift arm command signal for directing movement of the lift arm. The controller then transmits the lift arm command signal to an electro-hydraulic system to control the movement of the lift arm adjacent the limit of travel of the lift arm.
The controller 15 may be a single microprocessor or a plurality of microprocessors and could also include additional circuitry and components for random access memory, storage, and other functions as necessary to enable the functionalities described herein. The lift arm actuation system 46 is an electro-hydraulic actuation system linking the controller 15 and the lift arm 21 and controlling movement of lift arm 21. The coupler actuation system 23 is an electro-hydraulic actuation system linking the controller 15 and the coupler 22 and controlling movement of coupler 22 and thus also controlling movement of implement 25. As used herein, an electro-hydraulic actuation system may include a plurality of fluid and electrical components such as hydraulic actuators or cylinders, pumps, and solenoid valves (current-controlled variable pressure valves), in order to supply a desired amount of fluid pressure to various aspects of the loader 10. The angle sensor 24 of the disclosed embodiment may be an inclinometer that determines the angle “a” of the coupler relative to a ground reference. In some situations, other types of sensors for measuring the inclination of implement 25 may also be used such as by measuring the angle of coupler 22 relative to lift arm 21 or by measuring the amount of displacement of coupler 22 relative to a base position. Although the illustrated implement 25 is a bucket, the implement may be any other type of implement attachable to the coupler 22.
Referring to
The controller 15 calculates the open loop correction signal 34 by multiplying an initial correction calculation by an engine speed factor. The initial correction calculation is associated with the commanded lift arm movement speed, whereas the engine speed factor is associated with the engine speed indicated by the engine speed signal 32. These associations may be specified in maps, lookup tables, or similar data structures that can be accessed by, or programmed into, the controller 15. Specifically, upon receiving the operator interface actuation signal 33 and discerning a commanded lift arm movement speed from the operator interface actuation signal 33, the controller 15 accesses a first map 35 that associates lift arm movement speeds with initial correction calculations and utilizes the first map 35 to determine the initial correction calculation associated with the lift arm movement speed indicated by the operator interface actuation signal 33. In addition, upon receiving the operator interface actuation signal 33, the controller 15 determines the engine speed indicated by the engine speed signal 32, accesses a second map 40 that associates engine speeds with engine speed factors, and utilizes the second map 40 to determine the engine speed factor associated with the engine speed indicated by the engine speed signal 32. Then, as mentioned above, the controller 15 multiplies the initial correction calculation by the engine speed factor to arrive at the open loop correction signal 34 to be transmitted to the coupler actuation system 23.
The closed loop subsystem 30 includes the operator interface 13, the controller 15, the coupler actuation system 23, and the angle sensor 24. Specifically, in the closed loop subsystem 30, the controller 15 receives a coupler angle signal 41 from the angle sensor 24 mounted on the coupler 22 and calculates a second angle correction signal, also referred to herein as a closed loop correction signal 42, based at least upon the coupler angle signal 41. More specifically, when the operator interface actuation signal 33 received by the controller 15 includes a command to start lift arm movement or to change the direction of lift arm movement from up to down or vice versa, the controller 15 stores the coupler angle most recently indicated by the coupler angle signal 41 as a target angle. The controller 15 then monitors the coupler angle signal 41 for deviations from the target angle. Next, the controller 15 calculates the difference between the stored target angle and the actual angle continually indicated by the coupler angle signal 41 and, based upon the calculated difference between the angles, transmits the closed loop correction signal 42 to the coupler actuation system 23 such that the coupler 22 is moved to the extent necessary for the actual angle indicated by the coupler angle signal 41 to match the target angle.
The limit subsystem 31 includes the operator interface 13, the controller 15, the coupler actuation system 23, a sensor such as a limit sensor 43 (
In one embodiment, the upper and lower sensor triggers 44, 45 may be positioned at a location approximately 10-12 inches less than the physical upper and lower limits of travel 55, 56 of lift arm 21. More specifically, referring to
When the limit sensor 43 detects the presence of one of the upper and lower sensor triggers 44, 45, the limit sensor 43 is actuated or triggered and transmits a binary signal or limit signal 50 to the controller 15. The controller 15 is configured to receive the limit signal 50 and, upon receipt of the limit signal, to discontinue transmitting the open and closed loop correction signals 34, 42 to the coupler actuation system 23. Automatic movement of the coupler 22 by the system 26 is thus discontinued near the limits of travel of the lift arm 21, thereby helping to prevent overcorrection of the angle of the coupler 22, and by extension, overcorrection of the angle of the implement 25.
The controller 15 is also configured to calculate a position of the lift arm 21 based at least upon the limit signal 50. However, due to the simplified nature of the sensor system associated with the movement of lift arm 21 (i.e., limit sensor 43 positioned on lift arm 21 and upper and lower sensor triggers 44, 45 positioned on loader 10), controller 15 determines the position of the lift arm 21 in an indirect manner. In particular, the controller 15 determines the position of the lift arm 21 by referring to the operator interface actuation signal 33 to determine in which direction the operator interface actuation signal 33 most recently commanded the lift arm 21 to move. When the controller 15 receives a limit signal 50, if the operator interface actuation signal 33 indicates that the lift arm 21 was most recently commanded to move up, the controller 15 concludes that the limit sensor 43 has sensed the presence of the upper sensor trigger 44 and, by extension, that the lift arm 21 has reached a position near the upper limit of lift arm travel. Similarly, if the operator interface actuation signal indicates that the lift arm 21 was most recently commanded to move down, the controller 15 concludes that the limit sensor 43 has sensed the presence of the lower sensor trigger 45 and, by extension, that the lift arm 21 has reached a position near the lower limit of lift arm travel.
In other words, controller 15 is able to determine when lift arm 21 is near or above upper sensor trigger 44 and when it is near or below lower sensor trigger 45 but when the lift arm is positioned such that limit sensor 43 is between the upper and lower sensor triggers, controller 15 cannot determine the exact distance of the lift arm from either of the sensor triggers. In addition, once lift arm 21 passes upper sensor trigger 44 as the lift arm moves upward or the lower sensor trigger 45 as the lift arm moves downward, the exact distance of the lift arm past the sensor triggers is unknown. As such, the only time that controller 15 can identify the exact position of lift arm 21 is when the movement of the lift arm past either of the upper or lower sensor triggers 44, 45 results in triggering of the limit sensor 43.
The movement limiting subsystem 47 includes the operator interface 13, the controller 15, the engine system 20, the limit sensor 43, and the lift arm actuation system 46. System 26 includes a movement limiting mode in which the controller 15 operates to automatically control the speed of movement of the lift arm 21 as it approaches either of its upper or lower limits of travel 55, 56. More specifically, referring to
Movement of lift arm 21 past the upper and lower sensor triggers 44, 45 is controlled by a third data map 48 (
By way of example only, if the engine is operating at 100% of its maximum speed, after lift arm 21 passes one of the upper or lower sensor triggers 44, 45, the controller 15 may apply a damping or snubbing factor of 30% so that the map-based command signals 51 reduce the lift arm speed to 30% of its maximum rate. If the engine is operating at 60% of its maximum speed, the controller 15 may apply a damping or snubbing factor of 40% so that the map-based command signals 51 reduce the lift arm speed by 24% of its maximum rate. If the engine is operating at 20% of its maximum speed, the controller 15 may not apply a damping or snubbing factor at all so that the command signals generated are not reduced by the controller and the lift arm moves at 20% of its maximum rate.
If, however, the limit sensor 43 has been triggered at stage 63, the operation of controller 15 and lift arm actuation system 46 are dependant upon the position of lift arm 21. If the lift arm 21 is near the lower sensor trigger 45 and thus stage 64 is satisfied, the controller 15 analyzes the operator input signal received at stage 61 in order to determine whether the operator is directing the lift arm 21 to move upward or downward. If the operator is not directing the lift arm 21 to move downward (and thus stage 65 is not satisfied), movement limiting subsystem 47 does not have an affect on the signals generated by the operator interface 13 and the engine speed-based command signals 52 generated by controller 15 are based upon the engine speed at stage 69.
If the operator is directing lift arm 21 downward and thus satisfies stage 65, controller 15 receives engine speed signal 32 at stage 66. The engine speed signal 32 is compared to the third data map 48 at stage 67 and if the engine speed is less than that permitted by the data map, controller 15 does not affect the desired operator input and the engine speed-based command signals 52 generated by controller 15 are based upon the engine speed at stage 69. If the engine speed is greater than that permitted by the third data map 48, controller 15 will utilize a damping or snubbing factor within the data map to generate map-based command signals 51 at stage 68 that are damped relative to the engine speed. In each instance, the command signals 51, 52 generated by controller 15 at stage 68 or stage 69 are transmitted to the electro-hydraulic lift arm actuation system 46 in order to control lift arm 21 at stage 70.
If the limit sensor 43 has been triggered and the lift arm 21 is not positioned such that sensor 43 is aligned with or below lower sensor trigger 45 (and thus does not satisfy stage 64), lift arm 21 is located at the upper sensor trigger alignment position 57, at the upper limit of travel 55 or somewhere between those two positions. In such a case, referring to flowchart 80 in
In an alternative design, the movement limiting subsystem 47 may include an additional feature to increase the stability of loader 10 when lift arm 21 is positioned at its upper limit of travel 55. If the operator interface actuation signal 33 is directing lift arm 21 downward and thus the condition at stage 81 is not met, rather than following stage 85 and generating engine speed-based command signals 52 based on the engine speed, controller 15 may be configured to follow flowchart 90 in
The industrial applicability of the system described herein will be readily appreciated from the foregoing discussion. The present disclosure is applicable to many machines and many tasks accomplished by machines. One exemplary machine for which the system is suited is a wheeled loader. However, the system may be applicable to any type of loader and any type of machine that would benefit from automated control of a lift arm near its limits of travel.
The disclosed system may modify or damp the input from an operator of a machine when a lift arm is approaching a limit of travel of the lift arm in order to slow down movement of the lift arm. If the lift arm is a spaced from the end of travel position a distance greater than a predetermined amount or if the lift arm is moving more slowly than a predetermined rate, the lift arm is controlled by commands from the operator rather than by commands modified by the system. It is generally desirable to avoid rapidly stopping the movement of the lift arm as it reaches its upper and lower limits of travel, since such a sudden stop may cause wear to the machine, spillage of any material being carried by the implement and/or instability of the machine. The system may also modify movement of the lift arm upon initial movement of the lift arm from an upper limit of travel towards a lower limit of travel.
It will be appreciated that the foregoing description provides examples of the disclosed system and technique. However, it is contemplated that other implementations of the disclosure may differ in detail from the foregoing examples. All references to the disclosure or examples thereof are intended to reference the particular example being discussed at that point and are not intended to imply any limitation as to the scope of the disclosure more generally. All language of distinction and disparagement with respect to certain features is intended to indicate a lack of preference for those features, but not to exclude such from the scope of the disclosure entirely unless otherwise indicated.
Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context.
Accordingly, this disclosure includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the disclosure unless otherwise indicated herein or otherwise clearly contradicted by context.
This patent application is a continuation-in-part of copending U.S. patent application Ser. No. 12/642,120, filed Dec. 18, 2009.
Number | Name | Date | Kind |
---|---|---|---|
4266909 | Langenfeld | May 1981 | A |
4375344 | Baum et al. | Mar 1983 | A |
4844685 | Sagaser | Jul 1989 | A |
5188502 | Tonsor et al. | Feb 1993 | A |
5234312 | Hirose | Aug 1993 | A |
5924516 | Sagaser et al. | Jul 1999 | A |
6109858 | Deneve et al. | Aug 2000 | A |
6140787 | Lokhorst et al. | Oct 2000 | A |
6205687 | Rocke | Mar 2001 | B1 |
6951067 | Dietz et al. | Oct 2005 | B1 |
7140830 | Berger et al. | Nov 2006 | B2 |
7530185 | Trifunovic | May 2009 | B2 |
20010032031 | Ufheil | Oct 2001 | A1 |
20040136821 | Berger et al. | Jul 2004 | A1 |
20050044753 | Lohnes et al. | Mar 2005 | A1 |
20060222176 | Ohishi | Oct 2006 | A1 |
20090082930 | Peters | Mar 2009 | A1 |
Entry |
---|
KIPO, International Search Report in International Application No. PCT/US2011/062521, Feb. 28, 2012, 4 pp. |
KIPO, Written Opinion in International Application No. PCT/US2011/062521, Feb. 28, 2012, 7 pp. |
Number | Date | Country | |
---|---|---|---|
20110150614 A1 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12642120 | Dec 2009 | US |
Child | 12958969 | US |