This disclosure is directed toward power machines. More particularly, this disclosure is directed toward bucket or implement leveling systems for lift arms of power machines such as front-end loaders.
Power machines, for the purposes of this disclosure, include any type of machine that generates power for accomplishing a particular task or a variety of tasks. One type of power machine is a work vehicle. Work vehicles are generally self-propelled vehicles that have a work device, such as a lift arm (although some work vehicles can have other work devices) that can be manipulated to perform a work function. Work vehicles include loaders, excavators, utility vehicles, tractors, and trenchers, to name a few examples.
Different types of power machines, such as loaders and utility vehicles, include a lift arm structure having an implement carrier pivotally coupled at a distal end of the arm. Often, a bucket or other implement is coupled to the lift arm by mounting the bucket to the implement carrier. As the lift arm is raised and lowered, it can be advantageous to maintain the bucket at a substantially constant orientation relative to the ground, which can require a changing orientation of the bucket relative to the lift arm. Mechanical bucket leveling systems exist for maintaining a substantially constant bucket orientation relative to the ground. Some of these systems require a significant number of additional linkages or components or have disadvantages or limitations in their operation.
The discussion above is merely provided for general background information and is not intended to be used as an aid in determining the scope of the claimed subject matter.
Disclosed embodiments include power machines, such as front-end loaders and utility vehicles, with a telescoping lift arm assembly and a bucket leveling system. The bucket leveling systems utilize geometries that allow optimized or improved bucket leveling performance with two four-bar linkages. For example, disclosed embodiments allow the bucket leveling to be mechanically implemented without the use of additional linkages required in some systems.
In exemplary embodiments, a first or constant length leveling link is pivotally coupled to the lift arm and to a tilt cylinder. A leveling cylinder, or a variable length leveling link, is pivotally coupled to a frame and to the first leveling link. Two four-bar linkages providing the bucket leveling are formed using the frame, the lift arm, the leveling link, the leveling cylinder or variable length leveling link, the implement carrier, and the tilt cylinder.
In some exemplary embodiments, a first four-bar linkage includes two variable length links. A first of the variable length links is provided by a leveling cylinder. A second of the variable length links is provided by a telescoping lift arm. In some exemplary embodiments, a pivot on a frame for a leveling cylinder is positioned above and rearward of a pivot on the frame for the lift arm. In some exemplary embodiments, a pivot on the leveling link is positioned rearward of a line of action formed between pivots on the leveling link for a tilt cylinder and for an implement carrier.
Disclosed embodiments include power machines, and lift arm assemblies for power machines, having improved mechanical self-leveling features. One general aspect includes a lift arm assembly (350-2; 450) of a power machine (100; 200; 300; 400) having an attachment structure for securing an implement (436) thereto, the lift arm assembly including: a lift arm including a main lift arm portion (316-2; 416) pivotally attached to a frame (110; 310; 410) of the power machine at a first pivot attachment (312; 412) and a telescoping portion (318; 418) that is extendable and retractable relative to the main lift arm portion; a variable length link (328-2; 428) pivotally attached to the frame (110; 310; 410) at a second pivot attachment (326; 426); and a fixed length link (322; 422) pivotally attached to the telescoping portion of the main lift arm portion at a third pivot attachment (314; 414) and pivotally attached to the variable length link (328-1; 328-2; 428) at a fourth pivot attachment (320; 420); where the lift arm, frame, variable length link and fixed length link form a lift arm four-bar linkage with two variable length links.
Implementations may include one or more of the following features. The lift arm assembly and further including: a tilt cylinder (235; 340; 440) pivotally attached to the fixed length leveling link (322; 422) at a fifth pivot attachment (338; 438); and implement connection points (334; 434) for mounting one of the implement (436) and an implement carrier to the lift arm assembly, including a sixth pivot attachment (330; 340) on the lift arm and a seventh pivot attachment (332; 432) on the tilt cylinder (235; 340; 440); where the fixed length link (322; 422), the tilt cylinder (235; 340; 440), the one of the implement (436) and the implement carrier, and the lift arm form a tilt control four-bar linkage (352-1; 352-2), and where the lift arm four-bar linkage and the tilt control four-bar linkage provide mechanical self-leveling of the implement (436) coupled to the lift arm assembly as the lift arm assembly is pivotally raised and lowered relative to the frame. The lift arm assembly where the lift arm assembly is configured such that when the main lift arm portion (316-2; 416) is in a fully lowered position and the telescoping portion (318; 418) is retracted within the main lift arm portion, a first line of action (462) between the first pivot attachment (312; 412) and the third pivot attachment (314; 414) is approximately parallel to a second line of action (460) between the second pivot attachment (326; 426) and the fourth pivot attachment (320; 420).
The lift arm assembly where the telescoping portion (318; 418) of the main lift arm is configured to extend and retract relative to a main lift arm portion (316-2; 416) under power of a telescoping actuator (319). The lift arm assembly where the one of the implement and the implement carrier is pivotally attached to the telescoping portion (318; 418) of the lift arm at the sixth pivot attachment (330; 430). The lift arm assembly where the variable length link (328-2; 428) is hydraulically coupled to the telescoping actuator (319) such that the variable length link extends and retracts as the telescoping portion (318; 418) of the lift arm extends and retracts. The lift arm assembly where the variable length link (328-2; 428) is a cylinder.
The lift arm assembly where the second pivot attachment (326; 426), between the variable length link (328-2; 428) and the frame (110; 310; 410) is positioned above and rearward of the first pivot attachment (312; 412) between the lift arm and the frame. The lift arm assembly where the second pivot attachment (326; 426), between the variable length link (328-2; 428) and the frame (110; 310; 410), and the first pivot attachment (312; 412) between the lift arm and the frame, are arranged such that a line of action (324) extending between the first and second pivot attachments forms an angle relative to a horizontal direction of at least approximately 105 degrees.
The lift arm assembly where the lift arm assembly is configured such that the fourth pivot attachment (320; 420) is positioned rearward of a line of action (480) extending between the third pivot attachment (314; 414) and the fifth pivot attachment (338; 438). The lift arm assembly and further including a port relief valve (502) configured to couple the tilt cylinder (235; 340; 440) to a tank (504) to limit a stroke of the tilt cylinder when one of the tilt cylinder, the implement (436) and an implement carrier encounters interference with the lift arm.
One general aspect includes a power machine (100; 200; 300; 400) configured to provide mechanical self-leveling of an implement (436), the power machine including: a frame (110; 310; 410); a power source (222) mounted to the frame; a power conversion system (224) operably coupled to the power source; a lift arm (316-1; 316-2; 416) pivotally attached to the frame at a first pivot attachment (312; 412); a lift actuator (238; 415) in communication with the power conversion system and coupled between the frame and the lift arm and the lift actuator selectively operable to raise and lower the lift arm relative to the frame; a first leveling link (328-1; 328-2; 428) pivotally attached to the frame (110; 310; 410) at a second pivot attachment (326; 426); a second leveling link (322; 422) pivotally attached to the lift arm at a third pivot attachment (314; 414) and pivotally attached to the first leveling link (328-1; 328-2; 428) at a fourth pivot attachment (320; 420); a tilt actuator (235; 340; 440) in communication with the power conversion system and pivotally attached at a fifth pivot attachment (338; 438) to the second leveling link (322; 422); and an implement attachment mechanism (334; 434) configured to mount the implement (436) to the lift arm, so that a combination of the implement and the implement attachment mechanism is pivotally attached to the lift arm (316-1; 316-2; 416) at a sixth pivot attachment (330; 430) and pivotally attached to the tilt actuator (235; 340; 440) at a seventh pivot attachment (332; 432); where the frame (110; 310; 410), the lift arm (316-1; 316-2; 416), the second leveling link (322; 422) and the first leveling link (328-1; 328-2; 428) form a first four-bar linkage (354-1; 354-2), where the second leveling link (322; 422), the tilt actuator (235; 340; 440), the implement attachment mechanism and the lift arm (316-1; 316-2; 416) form a second four-bar linkage (352-1; 352-2), and where the first and second four-bar linkages provide mechanical self-leveling of the implement (436) mounted to the lift arm as the lift arm is pivotally raised and lowered relative to the frame.
Implementations may include one or more of the following features. The power machine where one of the first and second four-bar linkages includes two bars with variable lengths. The power machine where the lift arm (316-2; 416) is a telescoping lift arm having a telescoping portion (318; 418) that selectively extends and retracts relative to a main lift arm portion (316-2; 416) under power of a telescoping actuator (319). The power machine where the implement attachment mechanism is pivotally attached to the telescoping portion (318; 418) of the lift arm (316-2; 416)) at the sixth pivot attachment (330; 430). The power machine where the second leveling link (322; 422) is pivotally attached to the telescoping portion (318; 418) of the lift arm (316-2; 416) at the third pivot attachment (314; 414). The power machine where the first leveling link (328-2; 428) is a variable length leveling link. The power machine where the first leveling link (328-2; 428) is operably coupled to the telescoping actuator (319) such that the first leveling link extends and retracts as the telescoping portion (318; 418) of the lift arm (316-2; 416) extends and retracts. The power machine where the first leveling link (328-2; 428) is a cylinder. The power machine where the lift arm assembly is configured such that when the lift arm (316-2; 416) is in a fully lowered position and the telescoping portion (318; 418) is retracted within the lift arm, a first line of action (462) between the first pivot attachment, (312; 412) and the third pivot attachment (314; 414) is approximately parallel to a second line of action (460) between the second pivot attachment (326; 426) and the fourth pivot attachment (320; 420). The power machine where the second pivot attachment (326; 426) and the first pivot attachment (312; 412) are arranged such that a line of action (324) extending between the first and second pivot attachments forms an angle relative to a horizontal direction of at least approximately 100 degrees. The power machine where the second pivot attachment (326; 426) is positioned above and rearward of the first pivot attachment (312; 412). The power machine where the second pivot attachment (326; 426) and the first pivot attachment (312; 412) are arranged such that a line of action (324) extending between the first and second pivot attachments forms an angle relative to a horizontal direction of between about 100 degrees and 110 degrees. The power machine where the lift arm assembly is configured such that the fourth pivot attachment (320; 420) is positioned rearward of a line of action (480) extending between the third pivot attachment (314; 414) and the fifth pivot attachment (338; 438). The power machine where the tilt actuator is a tilt cylinder, and further including a port relief valve (502) configured to couple the tilt cylinder (235; 340; 440) to a tank (504) in order to limit a stroke of the tilt cylinder when one of the tilt cylinder and the implement (436) encounters interference with the lift arm.
This Summary and the Abstract are provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
The concepts disclosed in this discussion are described and illustrated with reference to exemplary embodiments. These concepts, however, are not limited in their application to the details of construction and the arrangement of components in the illustrative embodiments and are capable of being practiced or being carried out in various other ways. The terminology in this document is used for description and should not be regarded as limiting. Words such as “including,” “comprising,” and “having” and variations thereof as used herein are meant to encompass the items listed thereafter, equivalents thereof, as well as additional items.
Disclosed embodiments include power machines, such as front-end loaders and utility vehicles, with a lift arm and a bucket leveling system. The bucket leveling system utilizes geometries that allow optimized or improved bucket leveling performance with two four-bar linkages, as compared to conventional bucket leveling systems which utilized additional components. For example, disclosed embodiments allow the bucket leveling to be mechanically implemented without the use of additional linkages required in some systems to facilitate a third four-bar linkage. In exemplary embodiments, a first or constant length leveling link is pivotally coupled to the lift arm and to a tilt cylinder. A leveling cylinder, or a variable length leveling link, is pivotally coupled to a frame and to the first leveling link. Two four-bar linkages providing the bucket leveling are formed using the frame, the lift arm, the leveling link, the leveling cylinder or variable length leveling link, the implement carrier, and the tilt cylinder.
These concepts can be practiced on various power machines, as will be described below. A representative power machine on which the embodiments can be practiced is illustrated in diagram form in
Certain work vehicles have work elements that can perform a dedicated task. For example, some work vehicles have a lift arm to which an implement such as a bucket is attached such as by a pinning arrangement. The work element, i.e., the lift arm can be manipulated to position the implement for performing the task. The implement, in some instances can be positioned relative to the work element, such as by rotating a bucket relative to a lift arm, to further position the implement. Under normal operation of such a work vehicle, the bucket is intended to be attached and under use. Such work vehicles may be able to accept other implements by disassembling the implement/work element combination and reassembling another implement in place of the original bucket. Other work vehicles, however, are intended to be used with a wide variety of implements and have an implement interface such as implement interface 170 shown in
On some power machines, implement interface 170 can include an implement carrier, which is a physical structure movably attached to a work element. The implement carrier has engagement features and locking features to accept and secure any of a number of implements to the work element. One characteristic of such an implement carrier is that once an implement is attached to it, it is fixed to the implement (i.e. not movable with respect to the implement) and when the implement carrier is moved with respect to the work element, the implement moves with the implement carrier. The term implement carrier as used herein is not merely a pivotal connection point, but rather a dedicated device specifically intended to accept and be secured to various different implements. The implement carrier itself is mountable to a work element 130 such as a lift arm or the frame 110. Implement interface 170 can also include one or more power sources for providing power to one or more work elements on an implement. Some power machines can have a plurality of work element with implement interfaces, each of which may, but need not, have an implement carrier for receiving implements. Some other power machines can have a work element with a plurality of implement interfaces so that a single work element can accept a plurality of implements simultaneously. Each of these implement interfaces can, but need not, have an implement carrier.
Some power machines can have implements or implement like devices attached to it such as by being pinned to a lift arm with a tilt actuator also coupled directly to the implement or implement type structure. A common example of such an implement that is rotatably pinned to a lift arm is a bucket, with one or more tilt cylinders being attached to a bracket that is fixed directly onto the bucket such as by welding or with fasteners. Such a power machine does not have an implement carrier, but rather has a direct connection between a lift arm and an implement.
Frame 110 includes a physical structure that can support various other components that are attached thereto or positioned thereon. The frame 110 can include any number of individual components. Some power machines have frames that are rigid. That is, no part of the frame is movable with respect to another part of the frame. Other power machines have at least one portion that can move with respect to another portion of the frame. For example, excavators can have an upper frame portion that rotates with respect to a lower frame portion. Other work vehicles have articulated frames such that one portion of the frame pivots with respect to another portion for accomplishing steering functions.
Frame 110 supports the power source 120, which is configured to provide power to one or more work elements 130 including the one or more tractive elements 140, as well as, in some instances, providing power for use by an attached implement via implement interface 170. Power from the power source 120 can be provided directly to any of the work elements 130, tractive elements 140, and implement interfaces 170. Alternatively, power from the power source 120 can be provided to a control system 160, which in turn selectively provides power to the elements that capable of using it to perform a work function. Power sources for power machines typically include an engine such as an internal combustion engine and a power conversion system such as a mechanical transmission or a hydraulic system that is configured to convert the output from an engine into a form of power that is usable by a work element. Other types of power sources can be incorporated into power machines, including electrical sources or a combination of power sources, known generally as hybrid power sources.
Power machine 100 includes an operator station 150 that includes an operating position from which an operator can control operation of the power machine. In some power machines, the operator station 150 is defined by an enclosed or partially enclosed cab. Some power machines on which the disclosed embodiments may be practiced may not have a cab or an operator compartment of the type described above. For example, a walk behind loader may not have a cab or an operator compartment, but rather an operating position that serves as an operator station from which the power machine is properly operated. More broadly, power machines other than work vehicles may have operator stations that are not necessarily similar to the operating positions and operator compartments referenced above. Further, some power machines such as power machine 100 and others, whether or not they have operator compartments or operator positions, may be capable of being operated remotely (i.e. from a remotely located operator station) instead of or in addition to an operator station adjacent or on the power machine. This can include applications where at least some of the operator-controlled functions of the power machine can be operated from an operating position associated with an implement that is coupled to the power machine. Alternatively, with some power machines, a remote-control device can be provided (i.e. remote from both of the power machine and any implement to which is it coupled) that can control at least some of the operator-controlled functions on the power machine.
The arrangement of drive pumps, motors, and axles in power machine 200 is but one example of an arrangement of these components. As discussed above, power machine 200 can be a utility vehicle or can be a front-end loader, such as a skid-steer loader, a track loader, or an articulated loader, and thus includes tractive elements on each side of the power machine. For example, in skid-steer loaders, the tractive elements are controlled together via the output of a single hydraulic pump, either through a single drive motor or with individual drive motors. Various other configurations and combinations of hydraulic drive pumps and motors can be employed as may be advantageous. Further, disclosed embodiments can be used on other types of power machines.
The power conversion system 224 of the power machine also includes a hydraulic implement pump 224C, which is also operably coupled to the power source 222. The hydraulic implement pump 224C is operably coupled to work actuator circuit 238C. Work actuator circuit 238 includes lift cylinders 238 and tilt cylinders 235 as well as control logic (such as one or more valves) to control actuation thereof. The control logic selectively allows, in response to operator inputs, for actuation of the lift cylinders and/or tilt cylinders. In some machines, the work actuator circuit also includes control logic to selectively provide a pressurized hydraulic fluid to an attached implement.
The description of power machine 100 above is provided for illustrative purposes, to provide illustrative environments on which the embodiments discussed below can be practiced. While the embodiments discussed can be practiced on a power machine such as is generally described by the power machine 100 shown in the block diagram of
Referring now to
In each of the lift arm assemblies, the lift arm 316-1 or 316-2 is pivotally attached to a frame 310 at a pivot attachment or coupling 312. A solid leveling link 328-1 is pivotally attached to the frame 310 and pivot attachment or coupling 326 in lift arm assembly 350-1. Lift arm assembly 350-2 has a variable length level link 328-2, in the form of a leveling cylinder, that is pivotally attached to frame 310 at a pivot attachment or coupling 326. In exemplary embodiments, it has been found that improved leveling performance over a range of lift arm positions is achieved with pivot attachment 326 of leveling link 328-1 or leveling cylinder 328-2 positioned above and behind (toward an operator compartment of the power machine) pivot attachment 312 of lift arm 316. In a particular exemplary embodiment, it has been found that pivot attachment 326 of leveling link 328-1 or leveling cylinder 328-2 can advantageously be positioned above and rearward of pivot attachment 312 of the lift arm such that a line of action 324 extending between pivot attachments 312 and 326 forms an angle θ, relative to a horizontal direction, of at least approximately 105°. However, this geometrical relationship is not required in all embodiments.
A leveling link 322 is also provided in each of the lift arm assemblies to facilitate the mechanical self-leveling functions. Leveling link 322, which is a fixed length link, includes three pivot attachments. First, leveling link 322 is pivotally attached to lift arm 316 at pivot attachment 314. This pivot attachment 314 can be to a main lift arm portion in lift arm 316-1, or to the telescoping lift arm portion 318 in lift arm 316-2. A second pivot attachment on each leveling link 322 is a pivot attachment 320 between leveling link 328-1 or leveling cylinder 328-2 and the leveling link 322. The third pivot attachment on each leveling link 322 is a pivot attachment 338 between tilt cylinder 340 and the leveling link 322.
Also shown in
Leveling cylinder 328-2 can be, in the embodiment shown in
As noted above, each of the lift arm assemblies shown in
The second four-bar linkage includes leveling link 322, tilt cylinder 340, lift arm 316 and a portion of implement carrier 334. The pivot attachments for the second four-bar linkage include pivot attachment 314 between lift arm 316 and leveling link 322, pivot attachment 330 between lift arm 316 and implement carrier 334, pivot attachment 332 between tilt cylinder 340 and implement carrier 334, and pivot attachment 338 between tilt cylinder 340 and leveling link 322. A notable feature of the lift arm assemblies discussed with reference to
Referring now to
In lift arm assembly 450, lift arm 416 is pivotally attached to a frame 410 at a pivot attachment or coupling 412. A variable length leveling link 428, again in the form of a leveling cylinder, is also pivotally attached to frame 410 at a pivot attachment or coupling 426. As discussed above, pivot attachment 426 of leveling cylinder 428 is positioned above and behind pivot attachment 412 of lift arm 416, for example again with the line of action extending between pivot attachments 412 and 426 forming an angle θ, relative to a horizontal direction, of at least approximately 105° (see e.g.,
Fixed length leveling link 422 is also provided to facilitate the mechanical self-leveling functions. As was the case with leveling link 322, leveling link 422 includes three pivot attachments. First, leveling link 422 is pivotally attached to lift arm 416 at pivot attachment 414. This pivot attachment 414 can be, in the illustrated embodiment, to telescoping lift arm portion 418, giving the first four-bar linkage two separate variable length links. The second pivot attachment on leveling link 422 is a pivot attachment 420 between leveling cylinder 428 and the leveling link 422. The third pivot attachment on the leveling link 422 is pivot attachment 438 between tilt cylinder 440 and the leveling link 422.
Implement carrier or interface 434 is configured to allow a bucket 436 or other implement to be mounted on the lift arm 416. Implement carrier 434 is pivotally attached at a pivot attachment 430 to the telescoping portion of the lift arm. Implement carrier 434 is also pivotally attached, at a pivot attachment 432, to tilt cylinder 440.
As illustrated with respect to lift arm assembly 350-2 shown in
As shown in
As can be seen in
Referring now to
Referring now to
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the scope of the discussion.
This application claims the benefit of U.S. Provisional Application No. 62/725,786, which was filed on Aug. 31, 2018.
Number | Date | Country | |
---|---|---|---|
62725786 | Aug 2018 | US |