The present invention relates generally to lift assemblies, such as those used to raise and lower scenery, props, and lighting on a stage.
Performance venues such as theaters, arenas, concert halls, auditoriums, schools, clubs, convention centers, and television studios can employ battens or trusses to suspend, elevate, and/or lower lighting, scenery, draperies, and other equipment that can be moved relative to a stage or floor. These battens are often raised or lowered by lift systems.
Conventional lift systems commonly include an overhead pulley, or loft block, supported by an overhead building support. Ropes or cables extend from the batten and through the loft blocks to a drive mechanism that facilitates movement of the cables. Such drive mechanisms often include a motor-driven drum that winds and unwinds the cables.
In order to insure that the lift system does not exceed capacity, some lift systems include means for measuring the load on the system. In the event that the load is exceeded, the motor can be deactivated or a warning can be generated.
The present invention provides a lift assembly comprising a base, a drive mechanism, a flexible drive element driven by the drive mechanism and extending from the drive mechanism along a fleet axis, and a sheave directing the drive element from the fleet axis to an output axis different than the fleet axis. The sheave is coupled to the base at a first sheave mount aligned with the fleet axis. In one embodiment, the assembly further includes a second sheave mount aligned with the fleet axis, the second sheave mount being configured to be coupled to the sheave to thereby allow the sheave to be de-coupled from the first sheave mount and coupled to the second sheave mount. The second sheave mount is positioned such that coupling of the sheave to the second sheave mount results in substantially no change in a fleet angle of the fleet axis. Preferably, the sheave is positioned on a first side of the fleet axis when coupled to the first sheave mount, and the sheave is positioned on a second side of the fleet axis when coupled to the second sheave mount, the second side being substantially opposite the first side.
In one embodiment, the fleet axis substantially bisects the first and second sheave mounts. Preferably, the first and second sheave mounts are positioned on first and second sheave plates, respectively. For example, the first sheave plate can be positioned at least partially directly below the second sheave plate.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.
The base 12 further includes a first side 22, a second side 24, a first end 26, and a second end 28 that are defined by the frame 18 and the panels 20. The first side 22 and the second side 24 are parallel and face opposite directions and the first end 26 and the second end 28 are parallel and face opposite directions. The first and second sides 22, 24 extend along the length of the assembly 10 and a longitudinal axis or centerline 30 of the assembly 10 extends midway between the sides 22, 24 and bisecting the ends 26, 28. A length or longitudinal extent of the assembly 10 is the distance from the first end 26 to the second end 28 along the axis 30.
The base 12 further includes a first outlet 34 and a second outlet 36, the purpose of which will be discussed in more detail below. The first outlet 34 is located through the first end 26 of the base 12 and is positioned closer to the first side 22 than to the second side 24. Alternatively stated, the first outlet 34 is offset from the centerline 30 toward the first side 22 of the base 12. The second outlet 36 is located through the second end 28 of the base 12 and is positioned closer to the first side 22 of the base 12 than the second side 24. Similar to the first outlet 34, the second outlet 36 is offset from the centerline 30 toward the first side 22 of the base 12.
Referring to
As illustrated in
Referring to
Referring to
The drum segments 60A-60H are coupled to the drive shaft 58 as best seen in
The drum segments 60A-60H all includes grooves 76A-76H, respectively, that extend circumferentially around the drum segments 60A-60H. The grooves 76A-76H receive the respective flexible drive elements 40A-40H to facilitate winding the flexible drive elements 40A-40H around the drum assembly 52.
Referring to
With continued reference to
In operation, the motor 54 rotates the drive shaft 58 to wind and unwind the flexible drive elements 40A-40H around the drum assembly 52 to raise and lower the free portions 44A-44H of the flexible drive elements 40A-40H, which raises and lowers an article, such as scenery, props, lighting, and the like that are attached to the free portions 44A-44H. As best seen in
The flexible drive element 40B is wrapped onto the small diameter portion 72B of the drum segment 60B to define an outer profile or outer diameter that is substantially flush with the large diameter portion 70A of the drum segment 60A. As the flexible drive element 40A continues to wind onto the drum segment 60A, the additional stored portion 42A moves in a direction toward the drum segment 60B because the drum assembly 52 moves relative to the frame 18 along the longitudinal axis 30. Eventually, the flexible drive element 40A wraps around the drum segment 60A until it reaches the second end 64A of the drum segment 60A, and as the flexible drive element 40A continues to wind around the drum assembly 52, the flexible drive element 40A overlaps onto the outer profile created by the flexible drive element 40B. As discussed above, the outer profile of the drive element 40B is flush with the second end 64A of the drum segment 60A, and therefore the drive element 40A smoothly transitions from wrapping around the segment 60A and onto the segment 60B. As illustrated in
As illustrated in
With continued reference to
The second end 228 of the base 212 of the third lift assembly 210 abuts the first end 26 of the first lift assembly 10 and the first end 126 of the second lift assembly 110 to define a pyramid arrangement with the third lift assembly 210 forming a peak of the pyramid. The third lift assembly 210 is positioned so that the cable path 246 is between in the cable paths 46, 146 and located in the space 100. The cable path 246 extends in the same direction as the cable paths 46, 146 and parallel to the paths 46, 146 and the cable paths 46, 146, 246 are co-planar. Together the cable paths 46, 146, 246 define a total cable path width 102. In the illustrated embodiment that includes three lift assemblies 10, 110, 210, the total cable path width 102 is only about 3.6 times greater than the width 48 of a single cable path 48, 148, 248. In other embodiments, the total cable path width is between about 3.3 to 3.9 times greater than the width of a single cable path. In yet other embodiments, the total cable path width is between about 3.1 to 4.1 times greater than the width of a single cable path.
The base 12 of the first lift assembly 10 and the base 112 of the second lift assembly 110 are side-by-side to define a total width 104 (
The first, second, and third lift assemblies 10, 110, 210 can be coupled using any suitable fastener or method such as bolts, welding, and the like. Also, although the illustrated third lift assembly 210 abuts both ends 26, 126 of the lift assemblies 10, 110, respectively, in other embodiments, the end 226 of the third lift assembly 210 may abut only one of the ends 26, 126.
The nested arrangement of the lift assemblies 10, 110, 210, described above, reduces the total cable path width 102 (compared to positioning the three lift assemblies In a side-by-side orientation). Reducing the total cable path width 102 is desirable because it reduces the distance required between articles lifted by the lift assemblies 10, 110, 210. Or, if the lift assemblies 10, 110, 210 are lifting the same article, the distance between all the flexible drive elements 40, 140, 240 is reduced, which reduces the horizontal spacing required between any loft blocks that redirect the flexible drive elements 40, 140, 240 down to the article being raised and lowered.
Referring to
The load plate assembly 308 rests in a pocket 310 formed in an upper frame 312 that is part of the frame 18. The upper frame 312 includes a bottom plate 314, two longitudinal members 316, two cross members 318, and two side rails 320 secured to opposing outer surfaces of the longitudinal members 316. The bottom plate 314 includes openings 322 through which the sheave brackets 300 are positioned. The side rails 320 include upper and lower side bearings 324,326 (e.g., roller bearings,
The load plate assembly 308 includes a lower bearing plate 328 positioned on the bottom plate 314, a lower sheave plate 330 positioned on the lower bearing plate 328, an upper bearing plate 332 positioned on the lower sheave plate 330, and an upper sheave plate 334 positioned on the upper bearing plate 332. In this manner, it can be seen that the lower sheave plate 328 is positioned directly below the upper sheave plate 332. The upper and lower bearing plates 332,328 each includes roller bearings 336 positioned under each plate to facilitate longitudinal movement of the upper and lower sheave plates 334,330 relative to the upper frame 312. The upper and lower side bearings 324,326 reduce friction between the upper and lower sheave plates 334,330 and the upper frame 312.
The load plate assembly 308 further includes upper and lower load cells 340,342 and upper and lower end caps 344,346 sandwiched between the upper and lower sheave plates 334,330 and the upper and lower load cells 340,342, respectively. In this manner, the upper load cell 340 senses a horizontal load to the right (in the Figures) on the upper sheave plate 334, and the lower load cell 342 senses a horizontal load to the left (in the Figures) on the lower sheave plate 330.
Each of the upper and lower bearing plates 332,328 and upper and lower sheave plates 334,330 includes openings 348 through which the upper portion of corresponding sheave brackets 300 can be inserted. For example, when a sheave bracket 300 is secured to the upper shave plate 334, an upper end of the sheave bracket 300 will protrude through the opening 348 in the upper shave plate (see, e.g.,
Adjacent each opening 348 in the upper and lower sheave plates 334,330 there is provided a sheave mount (e.g., threaded holes 350 in the sheave plate 330,334 spaced from the corresponding opening 348) that facilitates the securing of one of the sheave pins 306. In the illustrated embodiment, the sheave mount further includes bolts 352 inserted through orifices 354 in the ends of each sheave pin 306 and threaded into the corresponding threaded holes 350 in the corresponding sheave plate 334,330 to secure the sheave brackets 300 to one of the sheave plates.
Each sheave bracket 300 can be secured to either the upper sheave plate 334 or the lower sheave plate 330, depending on which direction the corresponding cable is directed. In the illustrated embodiment, four sheaves are mounted to each of the upper and lower sheave plates 334,330. In particular, sheaves 80E-H that direct cables 40E-H to the right are mounted to the upper sheave plate 334, and sheaves 80A-D that direct cables 40A-D to the left are mounted to the lower sheave plate 330. Even though each sheave plate 334,330 is only supporting four sheave brackets 300, each of the illustrated sheave plates 334,330 includes eight sheave mounts (threaded holes 350 in the sheave plates 334, 330) that are aligned vertically with the eight sheave mounts of the other sheave plate 334,330. In this regard, each of the sheave brackets 300 can be mounted to either the upper sheave plate 334 or the lower sheave plate 330. When switching a particular sheave bracket 300 from one sheave plate to the other, the sheave bracket 300 is rotated 180 degrees about a vertical axis so that the corresponding sheave 80 is positioned to direct the corresponding cable 40 in the opposite direction.
Referring to
The upper and lower load cells 340,342 are coupled to a processor that determines the horizontal load on each of the upper and lower sheave plates 334,330. These loads can be summed and/or individually monitored for a given loading arrangement in order to sense deviations from a standard or expected load profile.
Various features and advantages of the invention are set forth in the following claims.
This application is a Continuation of U.S. patent application Ser. No. 15/033,804, filed May 2, 2016, which is national stage filing under 35 U.S.C. §371 of International Application No. PCT/US2014/066573, filed Nov. 20, 2014, which claims priority to U.S. Provisional Patent Application No. 61/907,786, filed Nov. 22, 2013, the entire contents of which are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61907786 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15033804 | May 2016 | US |
Child | 15716830 | US |