This invention relates to the art of routers and, more particularly, to an improved lift mechanism for adjusting the position of a plunge router relative to the work supporting surface beneath which the router is mounted.
It is of course well known that a plunge router comprises a router base transverse to and axially slidably interengaged with the router housing for adjusting the axial distance between the router and base and thus the position of a router bit relative to the base. The base is axially slidably interengaged with the router housing by a pair of guide rods attached to the base and extending into guide rod receiving passages in the router housing, and spring components bias the guide rods and thus the router base axially outwardly of the router housing. An adjustable stop rod mechanism provides for adjusting the axial position of the base relative to the router housing and thus the plunge depth of the router bit.
It is also well known that plunge routers are used for hand held routing and are much more popular than fixed base routers. Further, many woodworkers invert their plunge routers and install them on a router table by mounting the router on the underside thereof. When so mounted, however, it becomes very difficult and awkward to adjust the router bit height in that the latter adjustment must be made from under the table. One effort to reduce the difficulty of such adjustment contemplates the use of a ratchet mechanism fastened to the threaded stop rod of a plunge router and operated by a lever. While this arrangement may decrease the awkwardness and difficulty of adjusting the router bit height relative to the table, the mechanism is structurally complex and expensive to manufacture and still requires manipulating the adjusting components from beneath the table.
In accordance with the present invention, an improved lift mechanism is provided for adjusting the router bit height of a plunge router relative to the working surface of a router table beneath which the plunge router is mounted. More particularly in this respect, the lift mechanism is operable from the top side of the router table, thereby eliminating any awkwardness with regard to making a desired adjustment and minimizing the effort required to achieve adjustment. Still further in accordance with the invention, the upper end of the lift mechanism can be provided with indicia visible at the top side of the table, thus promoting precision and accuracy with respect to adjustments of the router bit height relative to the top side of the table. A lift mechanism according to the invention comprises a threaded lift rod rotatable relative to the router table and a lift arm threadedly interengaged with the rod and having an end radially spaced from the rod and attached to the router, whereby rotation of the lift rod results in axial displacement of the lift arm and thus the router relative to the table. Accordingly, it will be appreciated that a lift mechanism according to the invention comprises a minimum number of component parts which are structurally interrelated in a manner which makes the operation thereof and thus the desired adjustment of a plunge router relative to a router table extremely efficient and easy to achieve while, at the same time, providing for incremental adjustment and the ability to optimize accuracy with respect to a given adjustment.
It is accordingly an outstanding object of the present invention to provide an improved lift mechanism for adjusting the height of a plunge router bit relative to a router table beneath which the plunge router is mounted.
Another object is the provision of a lift mechanism of the foregoing character which is operable from the top side of the router table.
A further object is the provision of a lift mechanism of the foregoing character which is structurally simple, easy to operate and efficient in operation.
Yet another object is the provision of a lift mechanism of the foregoing character by which the height of a router bit relative to the router table can be incrementally adjusted with accuracy.
The foregoing objects, and others, will in part be obvious and in part pointed out more fully hereinafter in conjunction with the written description of a preferred embodiment of the invention illustrated in the accompanying drawings in which:
Referring now in greater detail to the drawings, wherein the showings are for the purpose of illustrating a preferred embodiment of the invention only, and not for the purpose of limiting the invention,
Generally, plunge routers are hand operated and, for this purpose, housing 10 is provided with a pair of diametrically opposed handles 22. It will be appreciated that
As shown in FIG. 2 and described in detail hereinafter, router R is mounted on the underside of a router table plate 34 in conjunction with a lift mechanism 36 according to the present invention. In the disclosed embodiment, table plate 34 is adapted to be inserted into an opening provided therefor in the top of a router table, but it will be appreciated that router R and lift mechanism 36 could be incorporated as an integral part of a router table with the router and lift mechanism suspended beneath the table top as opposed to a table plate. Preferably, table plate 34 is of cast aluminum and has top and bottom sides 38 and 40, respectively, and an opening 42 therethrough having an axis 44. Opening 42 is adapted to receive any one of a plurality of removable ring members 46 having different sized openings therethrough coaxial with axis 44 for accommodating a particular router bit. While not shown, the inner periphery of opening 42 and the outer periphery of rings 46 are provided with interengaging twist-lock components, and the ring members are provided with diametrically opposed openings 48 for accommodating a spanner wrench by which a ring is mounted and removed from the table plate. The peripheral edge of plate 12 is provided with a plurality of openings 50 therethrough for receiving threaded fasteners by which the plate is adapted to be leveled relative to the tabletop.
With reference to
As will be best appreciated from
Lift arm 62 includes a body member 92, preferably of mild steel, which extends transverse to axis 58 and has inner and outer ends 94 and 96, respectively. Inner end 94 is provided with a bore 98 therethrough, and the lift arm further includes a bronze bushing 100 which is press fit in bore 98 and which is internally threaded for threaded interengagement with lift rod 64. Outer end 96 of body member 92 is provided with an opening 102 therethrough which is parallel to axis 58. In the embodiment illustrated, opening 102 is internally threaded for interengagement with a threaded fastener by which the lift arm is attached to the router as set forth hereinafter. Bushing 100 has an axial length greater than the axial thickness of body portion 92 of the lift arm to optimize the area of threaded interengagement between the bushing and lift screw.
With regard to router R herein illustrated and described, the latter is mounted on the underside of plate 34 after lift mechanism 36 is mounted thereon as described above. Then, sub-base 18 is removed from base 14 of the router and base 14 is attached to plate 34 using threaded fasteners 52 which interengage with the threaded openings in base 14 for the fasteners 20 by which sub-base 18 was attached thereto. More particularly in this respect, stop rod mechanism 24 is first removed from base 14 and housing 10 by unthreading rod 26 from the base. When router R has been mounted on the underside of table plate 34 in the foregoing manner, axis A thereof is coaxial with axis 44 of opening 42 in plate 34. To complete the mounting, end 96 of lift arm 62 is attached to abutment 28 on the router housing by means of a bolt 104 having a head 106 engaging the underside of abutment 28 together with a washer 108 and having a threaded shank 110 extending through the abutment and into threaded interengagement with opening 102 of the lift arm. When the router and lift mechanism are so mounted, rotation of lift screw assembly 60 in opposite directions about axis 58 displaces lift arm 62 and thus housing 10 of router R axially toward and away from table plate 34 for adjusting the height of a router bit relative to top side 38 of the table plate. Preferably, lift screw 64 has a ½-32 thread, whereby one revolution of the screw displaces lift arm 62 and thus router housing 10 and a router bit mounted in the router 1/32 inch relative to top side 38 of plate 34. The graduation marks 78 on flange 70 of cap member 66 preferably represent approximately 0.001 inch of axial displacement of the lift arm. Thus, extremely small and precise adjustments of a router bit relative to top side 38 of the table plate are possible.
While considerable emphasis has been placed herein on the structures and structural interrelationships between the component parts of the lift mechanism herein illustrated and described, it will be appreciated that other embodiments can be made and that many changes can be made in the disclosed embodiment without departing from the principles of the invention. In this respect in particular, it will be appreciated that the lift arm could be permanently attached to the router as opposed to being removably fastened thereto. Further, in connection with the latter it will be appreciated that opening 102 through the arm could be an unthreaded bore and the arm connected to the router through the use of a nut and bolt or other fastening arrangement. Still further, it will be appreciated that the opening, whether threaded or unthreaded could extend through the arm transverse to the screw axis rather than parallel thereto. Moreover, while the invention is illustrated and described herein in connection with a Hitachi Model M12V plunge router, the invention is applicable to many other plunge routers including, for example, and without excluding others, routers marketed by Porter Cable, Makita, Freud, and DeWalt. These and other modifications of the embodiment disclosed herein as well as other embodiments of the invention will be obvious or suggested to those skilled in the art from the disclosure herein, whereby the foregoing descriptive matter is to be interpreted merely as illustrative of the present invention and not as a limitation.
Number | Name | Date | Kind |
---|---|---|---|
3710833 | Hammer et al. | Jan 1973 | A |
4454898 | Pavnica | Jun 1984 | A |
4456042 | Clark et al. | Jun 1984 | A |
4537234 | Onsrud | Aug 1985 | A |
5139061 | Neilson | Aug 1992 | A |
5590989 | Mulvihill | Jan 1997 | A |
5725036 | Walter | Mar 1998 | A |
5772368 | Posh | Jun 1998 | A |
6318936 | McFarlin et al. | Nov 2001 | B1 |
6374878 | Mastley et al. | Apr 2002 | B1 |
6505659 | Hummel | Jan 2003 | B1 |
6550154 | Smith | Apr 2003 | B1 |
6725892 | McDonald et al. | Apr 2004 | B2 |
20020020466 | Mc Farlin et al. | Feb 2002 | A1 |
20020189713 | Fontaine | Dec 2002 | A1 |
Number | Date | Country |
---|---|---|
2314653 | Jan 2001 | CA |
Number | Date | Country | |
---|---|---|---|
20030223835 A1 | Dec 2003 | US |