Information
-
Patent Grant
-
6186280
-
Patent Number
6,186,280
-
Date Filed
Tuesday, September 14, 199925 years ago
-
Date Issued
Tuesday, February 13, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Kramer; Dean J.
- Chin; Paul T.
Agents
-
CPC
-
US Classifications
Field of Search
US
- 187 203
- 187 207
- 187 208
- 187 209
- 187 210
- 187 213
- 187 390
- 187 216
-
International Classifications
-
Abstract
A vehicle lift assembly prevents accidental slippage of a vehicle therefrom. The vehicle lift assembly comprises a plurality of vertically disposed posts and a runway slidably coupled to the plurality of vertical posts. A hoist system supplies the force necessary for elevating the runway along the plurality of posts. A sensor arrangement detects whether the runway has tilted beyond a predetermined angular displacement. A lift control circuit controls the hoist system to elevate the runway selectively in a prescribed direction, and suspends operation of the hoist system, when necessary, to prevent the vehicle from accidentally sliding off the runway.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to lift assemblies for raising and lowering a vehicle, and, more particularly, to a safety system for use with a multi-post lift assembly used to raise and lower a vehicle.
2. Description of the Related Art
Lift assemblies are well known in the art, particularly in the automotive servicing field, where a technician must often raise an automobile to a predetermined height above the ground in order to make appropriate repairs. Automotive lift assemblies can be constructed in a variety of configurations. For example, one type of lift assembly incorporates a centrally disposed hydraulic shaft that includes a plurality of arms. The arms are extendable to support the vehicle at prescribed load bearing positions. Single post systems, however, have a disadvantage of requiring an underground tunnel within which the hydraulic post can be fully retracted to allow the vehicle to be placed in position for lifting. Such an arrangement is complicated to construct and has an additional disadvantage of being permanently fixed the location constructed.
Other vehicle lift assemblies incorporate multiple posts that are positioned at predetermined locations for raising and lowering the vehicle. For example, one such lift arrangement incorporates two posts, one on either side of the vehicle. Each post includes arms that can be extended to support the vehicle at the load bearing positions. Another system incorporates four posts located at predetermined positions that define a rectangular area. A platform assembly is attached to the four posts and functions to support the vehicle during lifting and lowering operations. Lift assemblies that incorporate multiple posts typically include a lifting mechanism coupled to each post. The lifting mechanism can be mechanical, or hydraulic in nature. For example, a screw type or hydraulic piston arrangement can be provided to apply an appropriate force and allow the posts to raise and lower the vehicle in unison. Each post can be provided with a manual lock that prevents inadvertent movement of the vehicle, or the lift assembly, while the technician services the vehicle.
During normal operations, it is imperative that the lifting mechanism of each post operate in a synchronous manner. Any deviation in the operation of one post will result in the vehicle being tilted in an unsafe manner. This situation will often place the vehicle in an unsafe or unstable orientation wherein the vehicle can be damaged and/or the technician can be injured. In general, the greater the number of posts that are used in the vehicle lift assembly, the greater the probability that one of the lifting mechanisms will malfunction, hence causing the lift assembly to tilt to an unsafe orientation.
There are several conditions that can result in a lift assembly being tilted to an unsafe orientation. One of the most common conditions occurs when a technician inadvertently forgets to disengage the manual lock at one of the posts. If the lift platform is either raised or lowered, the post (or posts) that was left locked will be unable to move, while the remaining posts will be free to move in the selected direction. Hence, the lift platform will be tilted such that the vehicle will occupy a dangerous orientation. If the technician does not detect the malfunction, the lift platform will continue to tilt until the vehicle falls off or the maximum travel distance of the posts have been reached. Further, such a condition can result in damage to the lift assembly.
Accordingly, one disadvantage of current multi-post lift assemblies is the inability to detect when the lift platform has tilted to an unsafe orientation. Another disadvantage associated with current multi-post lift assemblies is the inability to automatically suspend operation of the lift mechanism when the lift platform has tilted to an unsafe orientation.
DISCLOSURE OF THE INVENTION
There exists a need for a lift assembly capable of detecting when a lift platform has tilted to an unsafe orientation, and interrupting operation of the lifting mechanism. This and other needs are addressed by the present invention wherein a safety system for a lift assembly detects when a lift platform has tilted to an unsafe orientation and interrupts operation of the lifting mechanism, thereby providing a technician an opportunity to correct the problem.
In accordance with one aspect of the invention, a vehicle lift assembly is provided for preventing accidental slippage of a vehicle therefrom. The vehicle lift assembly comprises a plurality of vertically disposed posts, a runway, a hoist system, and a sensor arrangement. The runway is slidably coupled to the plurality of vertical posts, and configured to receive the vehicle thereon. The hoist system supplies the force necessary for elevating the runway along the plurality of posts. The sensor arrangement is used to detect whether the runway has tilted beyond a predetermined angular displacement. Furthermore, the sensor arrangement provides an indication of the orientation of the runway. A lift control circuit controls the hoist system to selectively elevate the runway in a prescribed direction. The lift control circuit also receives the tilt warning signal from the sensor arrangement. Upon receiving the tilt warning signal, the lift control circuit suspends operation of the hoist system in order to prevent the vehicle from sliding off the runway.
In accordance with another aspect of the present invention, a safety system is provided for use with a vehicle lift assembly having: a plurality of vertically disposed posts, a runway slidably coupled to the plurality of vertical posts for receiving the vehicle thereon, and a hoist system for elevating the runway relative to the plurality of posts. The safety system comprises a sensor arrangement and a lift control circuit. The sensor arrangement is used for detecting whether the runway has tilted beyond a predetermined angular displacement, and providing an indication of the orientation of the runway. The lift control circuit receives the tilt warning signal, and controls the hoist system to selectively elevate the runway in a prescribed direction. Further, upon receiving the tilt warning signal, the lift control circuit interrupts operation of the hoist system to prevent the vehicle from inadvertently sliding off the runway.
The present invention advantageously provides the ability to automatically suspend operation of the lift assembly if the sensor arrangement detects that the runway has tilted to an unsafe orientation. Hence, potential damage to the vehicle, or harm to the technician, as a result of the vehicle sliding off the runway can be minimized. Once operation of the runway has been suspended, the technician can examine the lift assembly to determine the cause of the malfunction. The lift assembly of the present invention can further include an alarm system to alert the technician when the tilt warning signal has been output by the sensor arrangement. The alarm system can be configured to provide visual and audible signals. Additionally, the hoist system can be hydraulically or mechanically driven depending on the specific implementation. Further, the safety system of the present invention can be adapted to work with various types of existing lift assemblies.
Additional advantages and novel features of the present invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention. The advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
Reference is made to the attached drawings, wherein elements having the same reference numeral designations represent like elements throughout and wherein:
FIG. 1
is a perspective view of a lift assembly constructed in accordance with an embodiment of the present invention;
FIG. 2
is a partial cross-sectional view illustrating some of the components of an exemplary hoist system for use with the lift assembly shown
FIG. 1
;
FIG. 3
is a partial cross-sectional view of an exemplary lock mechanism for use with the lift assembly of the present invention; and
FIG. 4
is a block diagram illustrating an exemplary functional control block for the present lift assembly.
DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
FIG. 1
is a perspective view of a lift assembly
100
constructed in accordance with an embodiment of the present invention. The lift assembly
100
is shown supporting a vehicle
110
in an elevated position. The lift assembly
100
includes a plurality of posts
112
, a runway
116
, a hoist system
124
, a lift control circuit
136
(shown in FIG.
2
), and a sensor arrangement
140
. As illustrated in
FIG. 1
, the posts
112
are vertically oriented and disposed at predetermined locations to define a rectangular space. The locations of the posts
112
are carefully selected to allow various sized vehicles
110
to pass therebetween.
The runway
116
is slidably coupled to the posts
112
and allows a vehicle
110
placed thereon to be raised or lowered above the ground. The runway
116
includes a plurality of protrusions
118
(shown in FIG.
3
)that extend into tracks
114
contained within the posts
112
. The runway
116
also includes a pair of running boards
122
that support the tires of the vehicle
110
. Further, as illustrated in
FIG. 1
, a pair of ramps
120
can be attached to the running boards
122
of the runway
116
in order to provide a gradual incline, thus allowing the vehicle
110
to be smoothly driven onto the runway
116
.
The hoist system
124
supplies the force necessary to raise the runway
116
, including the vehicle
110
, to a prescribed height selected by a technician. The hoist system
124
includes all of the components (not shown) necessary to generate the force required to raise the runway
116
, and can be either mechanical or hydraulically driven. Such components are well known and, accordingly, will not be described herein. According to the embodiment of the invention illustrated in
FIG. 1
, the hoist system
124
preferably is hydraulic.
FIG. 2
is a partial cross-sectional view illustrating some of the components of the exemplary hoist system
124
. With continued reference to FIG.
1
and additional reference to
FIG. 2
, the hoist system
124
includes a pump
128
that forces fluid into hydraulic cylinders (not shown) within the posts
112
. A fluid reservoir
130
is used to store the fluid used by the pump
128
. Fluid forced into the cylinders reacts against a piston (not shown), and consequently causes the runway
116
to be raised. In order to lower the runway
116
, a release port
132
is provided to allow fluid to return into the reservoir
130
. According to the disclosed embodiment of the invention, a solenoid
134
is used to control operation of the release port
132
. The solenoid
134
may, for example, be biased to maintain the release port
132
in a closed state, unless the pump
128
is operational. When placed in an open state, the release port
132
allows fluid to be drained from the hydraulic cylinders of the post
112
, hence allowing the runway
116
to be lowered. Furthermore, the release port
132
is placed in the open state when the pump
128
is operational in order to allow passage of the pressurized fluid to raise the runway
116
.
The lift control circuit
136
provides the signals and mechanical interconnections necessary to operate the hoist system
124
and selectively raise or lower the runway
116
. For example, the lift control circuit
136
is operable by the technician to force hydraulic fluid into the cylinders of the posts
112
, thereby raising the vehicle
110
. When the vehicle
110
must be lowered, the lift control circuit
136
disengages the pump
128
that forces fluid into the cylinders of the posts
112
, and energizes the solenoid
134
so that the release port
132
is placed in an open position. In the open position, the release port
132
allows fluid to be drained from the hydraulic cylinders of the posts
112
, hence lowering the runway
116
. The lift control circuit
136
, other than as modified hereinafter, is of a type implemented in existing hydraulic lift assemblies.
Referring again to
FIG. 1
, the lift assembly
100
of the present invention includes a sensor arrangement
140
that incorporates a plurality of sensors
142
. The sensors
142
are mounted on the runway
116
at prescribed locations in order to determine angular displacement about prescribed axes. For example, a first sensor
142
A can be placed along a side of the runway
116
to detect rotation about an X-axis. Similarly, a second sensor
142
B can be positioned to detect rotation of the runway
116
about the Y-axis. Together, the sensors
142
detect the degree of tilt of the runway's plane. According to one embodiment of the present invention, a third sensor
142
C can be positioned on the opposite side of the runway
116
. Such an arrangement has an advantage of detecting the degree of tilt of the runway
116
with greater accuracy.
As previously stated, the hoist system
124
according to the disclosed embodiment of the invention is hydraulically driven. The hoist system
124
forces hydraulic fluid from the reservoir
130
through a hydraulic line
126
and into the hydraulic cylinders (not shown) of the posts
112
. Furthermore, the release port
132
can be selectively closed, or opened, in conjunction with operation of the pump
128
, either to force hydraulic fluid into the hydraulic cylinders of the posts
112
, or drain fluid from the hydraulic cylinders of the post
112
into the reservoir
130
. These actions function, respectively, to raise and lower the runway
116
. According to an alternative embodiment of the invention, a hoist system
124
can be coupled to each post
112
. The pumps
128
can be operated using a single lift control switch in order to synchronously raise and lower the runway
116
.
Operation of the hoist system
124
is controlled by the lift control circuit
136
, which is operatively coupled to the pump
128
and the solenoid
134
. The lift control circuit
136
includes a manually operated lift control switch
138
that allows the technician to raise or lower the runway
116
. Further, the lift control circuit
136
synchronizes operation of the pump (or pumps)
128
and the solenoid
134
in response to the technician's desire to raise or lower the runway
116
. The lift control circuit
136
is also coupled to the sensor arrangement
140
. Hence, if the sensor arrangement
140
detects that the runway
116
has tilted to an unsafe orientation, an appropriate signal such as, for example, a tilt warning signal, is output to the lift control circuit
136
in order to suspend operation of the hoist system
124
until the situation is corrected.
According to the disclosed embodiment of the invention, the lift control circuit
136
can be coupled to an alarm system
144
that alerts the technician when the runway
116
has tilted to an unsafe orientation. The alarm system
144
can be in various configurations, as is well known in the art, so long as a sufficient warning is provided to the technician. For example, the alarm system can be in the form of a visual signal, such as a flashing light that alerts the technician to the unsafe orientation of the runway
116
. Alternatively, the alarm system can be in the form of an audible signal, such as a siren, that alerts the technician to the orientation of the runway
116
.
The lift assembly
100
of the present invention can also be provided with lock mechanisms
146
to secure the runway
116
once it has been raised, or lowered, to a desired height. Various types of lock mechanisms
146
are well known in the art for securing the runway of a lift assembly.
FIG. 3
is a partial cross-sectional view of an exemplary lock mechanism
146
that can be used in conjunction with the lift assembly of the present invention. As illustrated, the lock mechanism
146
is in the form of a pin
148
that is insertable into an aperture contained in the runway
116
. Each post
112
can be provided with corresponding apertures that receive the pin
148
at prescribed height intervals in order to secure the runway
116
. According to such an embodiment, each post
112
includes an independent lock mechanism
146
. The lock mechanism
146
can be secured by inserting the pin
148
into the aperture of its corresponding post
112
by the technician once a desired height has been obtained for the runway
116
. Alternatively, the lock mechanism
146
can be configured for automatic operation such that upon activating a single lock switch
150
by the technician, a lock control circuit (not shown) causes all of the lock mechanisms
146
to engage their respective posts
112
.
As previously stated, one of the most common situations that results in the runway
116
tilting to an unsafe orientation is when a technician inadvertently forgets to disengage one of the lock mechanisms
146
. Hence, the use of a single lock switch
150
to simultaneously engage or disengage all of the lock mechanisms
146
has an advantage of reducing the probability that a technician will inadvertently leave one of the lock mechanisms
146
engaged while attempting to raise or lower the runway
116
.
According to one embodiment of the present invention, the lift control circuit
136
can be further coupled to the lock switch
150
. Upon being notified that the runway
116
has tilted to an unsafe orientation, the lift control circuit
136
can first suspend operation of the hoist system
124
, and automatically attempt to level the runway
116
. For example, if the runway
116
tilts while being raised, the lift control circuit
136
suspends operation of the runway
116
in the upward direction. Next, the lift control circuit
136
lowers the runway
116
while monitoring the tilt warning signal from the sensor arrangement
140
. Once the lift control circuit
136
is notified by the sensor arrangement
140
that the runway
116
is level, the hoist system
124
shuts down. The lift control circuit
136
then attempts to disengage the lock mechanisms
146
by outputting an appropriate control signal to the lock switch
150
. If the adverse orientation of the runway
116
was caused by failure of one of the lock mechanisms
146
to disengage, then the use of the lock switch
150
by the lift control circuit
136
will automatically disengage all of the lock mechanisms
146
, thereby allowing the runway
116
to be safely raised by the operator.
FIG. 4
is a block diagram illustrating an exemplary functional control block for use with the safety feature of the present lift assembly
100
. As previously stated, a sensor arrangement
140
is coupled to the runway
116
to detect rotation about the X and Y axes. According to the preferred embodiment of the invention, the sensor arrangement
140
includes three individual sensors
142
A,
142
B,
142
C strategically positioned to optimally detect excessive tilting of the runway
116
. Further, the sensitivity of the sensor arrangement
140
can be programmed to output the tilt warning signal responsive to varying degrees of tilt by the runway
116
. Specifically, the sensors
142
can be configured for variable sensitivity. Hence, by adjusting the sensitivity of the sensors
142
, the technician can control the degree of tilt allowed by the runway
116
before the tilt warning signal is generated. Sensors having variable sensitivity (i.e., programmable) are well known, and thus not described in detail herein. The three sensors
142
can also, for example, be connected in series, such that detection of excessive tilt by any sensor will open the circuit and cause an interruption in the operation of the hoist system
124
.
The lift control circuit
136
is operatively coupled to the sensor arrangement
140
, and receives the tilt warning signal output by the sensor arrangement
140
. The lift control circuit
136
also controls operation of the hoist system
124
. Hence, the lift control circuit
136
controls the force required to raise or lower the runway
116
by, for example, by supplying power to the hoist system
124
. During normal operation, the lift control circuit
136
can be configured to supply the necessary output signal for supply of power to the hoist system
124
if the runway
116
is maintained level. If the runway
116
tilts excessively, the sensor arrangement
140
will output the tilt warning signal. Upon receiving the tilt warning signal, the lift control circuit
136
will interrupt operation of the hoist system
124
. The technician can then operate the hoist system
124
in the opposite direction until the sensor arrangement
140
terminates output of the tilt warning signal.
For example, if the runway
116
was being raised when it became tilted, then the lift control circuit
136
will allow the runway
116
only to be lowered. Alternatively, the lift control circuit
136
can be configured to temporarily interrupt operation of the hoist system
124
and alert the technician. Further, as previously stated, the lift control circuit
136
can be configured to operate an alarm system
144
. Once operation of the hoist system
124
has been interrupted, the technician can inspect the lift assembly
100
to determine the cause of the malfunction.
According to one embodiment of the present invention, the lift control circuit
136
can be configured such that upon receiving a tilt warning signal from the sensor arrangement
140
, only predetermined operations of the hoist system
124
are permitted. As illustrated in
FIG. 4
, such an embodiment requires that the lift control circuit
136
monitor signals output by the lift control switch
138
in order to determine the direction in which the runway
116
is travelling. For example, assume that the vehicle
110
is being raised. Upon detecting excessive tilting of the runway
116
relative to one or more of the prescribed axes, the sensor arrangement
140
will provide an appropriate indication of the runway's orientation to the lift control circuit
136
(i.e., in the form of the tilt warning signal). The lift control circuit
136
will then interrupt operation of the hoist system
124
. Furthermore, the lift control circuit
136
will only allow the lift control switch
138
to lower the vehicle
110
. For example, if the sensor arrangement
140
detects that the runway
116
has tilted to an unsafe orientation while the technician is raising the runway
116
, then the lift control circuit
136
will suspend operation of the hoist system
124
in the upward direction. However, the lift control circuit
136
will allow the hoist system
124
to operate in the downward direction, thereby lowering the movable portions of the runway
116
until the runway
116
is again level. Alternatively, if the technician is in the process of lowering the lift assembly
100
and an unsafe orientation of the runway
116
occurs, then the lift control circuit
136
will suspend operation of the hoist system
124
in the downward direction. The lift control circuit
136
will allow the hoist system
124
only to raise the runway
116
until it has again reached a level orientation.
The present invention advantageously allows a technician to determine when a vehicle lift assembly has tilted to an unsafe orientation. The technician can then examine the lift assembly to determine the cause of the malfunction. One benefit of such an arrangement is the prevention of damage to the vehicle and/or harm to the technician.
While this invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Claims
- 1. A vehicle lift assembly comprising:a plurality of vertically disposed posts; a runway slidably coupled to said plurality of vertical posts and configured for receiving a vehicle thereon; a hoist system for elevating said runway relative to said plurality of posts; a sensor arrangement for detecting whether said runway tilts beyond a predetermined angular displacement, and producing an indication of the orientation of said runway; and a lift control circuit for receiving the indication produced by said sensor arrangement and controlling said hoist system to elevate said runway in a prescribed direction; whereby the vehicle is prevented from inadvertently sliding off said runway.
- 2. The vehicle lift assembly of claim 1, further comprising an alarm system for alerting an operator of the orientation of said runway, and wherein said lift control circuit is configured to activate said alarm system to indicate that said runway has tilted beyond said predetermined angular displacement.
- 3. The vehicle lift assembly of claim 2, wherein said alarm system produces an audible alert.
- 4. The vehicle lift assembly of claim 2, wherein said alarm system produces a visual alert.
- 5. The vehicle lift assembly of claim 1, wherein the predetermined angular displacement detected by said sensor arrangement is programmable.
- 6. The vehicle lift assembly of claim 1, wherein said sensor arrangement includes at least two sensor units, and wherein a first sensor unit is configured to detect rotation of said runway about a first axis, and a second sensor unit is configured to detect rotation about a second axis perpendicular to said first axis.
- 7. The vehicle lift assembly of claim 1, further comprising at least one lock mechanism for securing said runway at a prescribed height.
- 8. The vehicle lift assembly of claim 1, wherein upon interrupted operation of said hoist system during travel in a prescribed direction, said lift control circuit, responsive to said sensor arrangement, allows operation of said hoist system in only a direction opposite to said prescribed direction.
- 9. The vehicle lift assembly of claim 1, wherein said hoist system is hydraulically driven.
- 10. A safety system for use with a vehicle lift assembly having a plurality of vertically disposed posts, a runway slidably coupled to the plurality of vertical posts for receiving the vehicle thereon, and a hoist system for elevating the runway relative to the plurality of posts, said safety system comprising:a sensor arrangement for detecting whether the runway has tilted beyond a predetermined angular displacement, and producing an indication of the orientation of the runway; and a lift control circuit for receiving the indication produced by said sensor arrangement and controlling the hoist system to elevate the runway in a prescribed direction; wherein upon receiving the indication produced by said sensor arrangement, said lift control circuit interrupts operation of the hoist system to prevent the vehicle from inadvertently sliding off the runway.
- 11. The safety system of claim 10, further comprising an alarm system for alerting an operator of the orientation of the runway, and wherein said lift control circuit is configured to activate said alarm system to indicate that the runway has tilted beyond said predetermined angular displacement.
- 12. The vehicle lift assembly of claim 10, wherein the predetermined angular displacement detected by said sensor arrangement is programmable.
- 13. The vehicle lift assembly of claim 10, wherein said sensor arrangement includes at least two sensor units, and wherein a first sensor unit is configured to detect rotation about a first axis, and a second sensor unit is configured to detect rotation about a second axis.
US Referenced Citations (14)
Foreign Referenced Citations (2)
Number |
Date |
Country |
402100999 |
Apr 1990 |
JP |
404303400 |
Oct 1992 |
JP |