This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present disclosure, which are described below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
Heating, ventilation, and air conditioning (HVAC) systems are generally configured to provide temperature controlled air to one or more internal spaces of a building. For example, various temperature and pressure control devices of the HVAC system may be controlled to generate an air flow having a particular temperature and to direct the conditioned air flow having the particular temperature to the one or more internal spaces. In certain embodiments, an air handling unit (AHU) may be used to regulate and circulate the conditioned air flow to the one or more internal spaces of the building. For example, the AHU may supply the conditioned air flow to ductwork that distributes the conditioned air flow to the various internal spaces. The AHU may include a number of features, such as one or more blowers, one or more fans, one or more filters, one or more motors, one or more heating and/or cooling coils, and the like contained in a housing.
Certain AHUs may be large and may require machinery to lift and transport the AHU. Further, in certain traditional embodiments, the AHU may not be designed for lifting and transportation via standard systems (e.g., standard systems configured to lift shipboard containers). Thus, in certain traditional embodiments, lifting and transportation systems may be customized or tailored to facilitate lifting of the AHU onto the transportation system (e.g., a truck), and to facilitate safe transport of the AHU via the transportation system (e.g., the truck). Customization and/or tailoring of the lifting and transportation systems and other aspects of traditional systems may contribute to a cost of the AHU, the lifting procedure, the transportation procedure, or a combination thereof. Accordingly, improved AHUs configured to interface with standard lifting and transportation systems are desired.
A summary of an embodiment disclosed herein is set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of one embodiment and that these aspects are not intended to limit the scope of this disclosure. Indeed, this disclosure may encompass a variety of aspects that may not be set forth below.
An embodiment of the present disclosure includes a heating, ventilation, and/or air conditioning (HVAC) unit including a base plate having a receptacle configured to receive a lifting lug, a bracket having a mounting plate coupled to the base plate proximate the receptacle, and a ledge of the bracket extending away from the mounting plate and offset from the receptacle such that a distal portion of the ledge is configured to block the lifting lug from contacting an outer surface of the HVAC unit when the lifting lug is in an engaged configuration with the receptacle.
Another embodiment of the present disclosure includes a heating, ventilation, and/or air conditioning (HVAC) unit. The HVAC unit includes a housing configured to house components of the HVAC unit, a base plate configured to support a weight of the housing and the components of the HVAC unit, the base plate including a plurality of receptacles configured to receive a plurality of lifting lug, and a plurality of brackets corresponding to the plurality of receptacles. Each bracket includes a mounting plate coupled to the base plate proximate a corresponding receptacle of the plurality of receptacles. Each bracket also includes a ledge extending away from the mounting plate and offset from the corresponding receptacle of the plurality of receptacles such that a distal portion of the ledge is configured to block a corresponding lifting lug of the plurality of lifting lugs from contacting a first outer surface of the housing, a second outer surface of the base plate, or both the first surface and the second surface when the corresponding lifting lug is engaged with the corresponding receptacle.
Another embodiment of the present disclosure includes an air handling unit (AHU). The AHU includes a base plate including a receptacle configured to receive a lifting lug, a bracket including a mounting plate configured to be coupled to the base plate proximate the receptacle, and a ledge of the bracket. The ledge extends away from the mounting plate such that a distal portion of the ledge is configured to block the lifting lug from contacting an outer surface of the HVAC unit when the lifting lug is in an engaged configuration with the receptacle and when the mounting plate of the bracket is coupled to the base plate proximate the receptacle
Various aspects of this disclosure may be better understood upon reading the following detailed description and upon reference to the drawings in which:
One or more specific embodiments of the present disclosure will be described below. These described embodiments are only examples of the presently disclosed techniques. Additionally, in an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present disclosure, the articles “a,” “an,” and “the” are intended to mean that there are one or more of the elements. The terminals “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Additionally, it should be understood that references to “one embodiment” or “an embodiment” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
The present disclosure is directed to an air handling unit (AHU) having a base plate and corresponding features configured to enable the AHU to be interfaced with standard lifting and transportation systems used, for example, with standard shipboard containers. The base plate of the AHU may include outer rails having receptacles configured to receive first ends of standard lifting lugs utilized in the standard lifting systems. Second ends of the standard lifting lugs, which oppose the first ends engaged with the receptacles of the base plate, may be coupled to chains, ropes, or the like that are used to lift the AHU (e.g., via a winch, crane, and/or other lifting mechanism).
Brackets may be mounted to outward facing surfaces of the outer rails of the base plate and adjacent to the receptacles in the base plate, each bracket including a ledge extending outwardly from the outward facing surfaces. As the AHU is lifted, the second ends of the lifting lugs may tend to rotate inwardly toward the outward facing surfaces of the base plate and/or outward facing surfaces of a housing of the AHU, the housing resting atop the base plate. The ledges of the brackets may be configured to block the second ends of the lifting lugs from contacting the outward facing surfaces of the base plate and/or housing, thereby blocking the lifting lugs from scratching, denting, or otherwise damaging the outward facing surfaces.
After the AHU is lifted and placed on a platform (e.g., a truck bed) for transportation, the lifting lugs may be removed and a clevis associated with the standard transportation system may be employed to interface with openings in the bracket. The clevis may be connected to chains and or ropes utilized to tie the AHU down to the platform to facilitate safe transportation of the AHU. Other features of the present disclosure (e.g., of the base plate, the bracket, and the like) will be described in detail below with reference to the drawings. In general, presently disclosed embodiments may reduce a cost of the AHU, a cost of lifting the AHU, and/or a cost of transporting the AHU.
Turning now to the drawings,
The HVAC unit 12 may be an air cooled device that implements a refrigeration cycle to provide conditioned air to the building 10. Specifically, the HVAC unit 12 may include one or more heat exchangers across which an airflow is passed to condition the airflow before the airflow is supplied to the building. In the illustrated embodiment, the HVAC unit 12 is an AHU, such as a rooftop unit (RTU), that conditions a supply air stream, such as environmental air and/or a return airflow from the building 10. Outdoor units, indoor units, or other conditioning schemes are also possible. After the HVAC unit 12 conditions the air, the air is supplied to the building 10 via ductwork 14 extending throughout the building 10 from the HVAC unit 12. For example, the ductwork 14 may extend to various individual floors or other sections, such as rooms, of the building 10. Terminal units 20 associated with the floors, rooms, or other sections of the building 10 may be connected to the ductwork 14 and may be configured to distribute the airflow to the floors, rooms, or other sections of the building 10. In some embodiments, the terminal units 20 may include air conditioning features in addition to, or in the alternate of, the air conditioning features of the HVAC unit 12.
In certain embodiments, the HVAC unit 12 may be a heat pump that provides both heating and cooling to the building with one refrigeration circuit configured to operate in different modes. In other embodiments, the HVAC unit 12 may include one or more refrigeration circuits for cooling an air stream and a furnace for heating the air stream. Additionally or alternatively, other HVAC equipment may be installed at the terminal units 20 or in another area of the building, such as a basement 21 (e.g., a boiler may be installed in a basement of the building 10). A control device 16, one type of which may be a thermostat, may be used to designate the temperature of the conditioned air. The control device 16 also may be used to control the flow of air from the HVAC unit 12, through the ductwork 14, to the terminal units 20, or any combination thereof. For example, the control device 16 may be used to regulate operation of one or more components of the HVAC unit 12 and/or terminal units 20. In some embodiments, other devices may be included in the system, such as pressure and/or temperature transducers or switches that sense the temperatures and pressures of the supply air, return air, and so forth. Moreover, the control device 16 may include computer systems that are integrated with or separate from other building control or monitoring systems, and even systems that are remote from the building 10.
As previously described, the HVAC unit 12 of
After the AHU is lifted and placed on a platform (e.g., a truck bed) for transportation, the lifting lugs may be removed and a clevis of a standard transportation system may be employed to interface with openings in the bracket. The clevis may be connected to chains and or ropes utilized to tie the AHU down to the platform to facilitate safe transportation of the AHU (e.g., via a truck having the truck bed). Other features of the present disclosure (e.g., of the base plate, the bracket, and the like) will be described in detail below with reference to
In the illustrated embodiment, the AHU 100 is being lifted via the standard lifting system 108 onto the platform 102. In accordance with present embodiments, the AHU 100 may include a base plate 106 configured to be interfaced with standard lifting equipment of the standard lifting system 108. For example, the base plate 106 may include outer rails 107 and 109 having receptacles configured to be engaged by aspects of the standard lifting system 108. In some embodiments, the outer rails 107 and 109 may be coupled via additional outer rails 111 and 113 (e.g., via welding) traversing between the outer rails 107 and 109 to form a frame of the base plate 106. Additionally or alternatively, the base plate 106 may include a cross-member plate extending across the outer rails 107 and 109 and the additional outer rails 111 and 113 (e.g., across tops of the outer rails 107 and 109 and the additional outer rails 111 and 113). In general, the base plate 106 is configured to support a weight of a housing 105 of the AHU 100 and any components of the AHU 100 disposed in the housing 105.
The standard lifting system 108 may include standard lifting lugs 110 configured to engage the base plate 106 (e.g., at receptacles of the outer rails 107 and 109, as previously described), standard ropes, chains, or cables 112 coupled to the standard lifting lugs 110, and a standard winch 114 (and/or other lifting mechanism, such as a crane) coupled to the standard ropes, chains, or cables 112. Together, the standard lifting lugs 110, the standard ropes, chains, or cables 112, and the standard winch 114 (and/or other lifting mechanism, such as a crane) are utilized to lift the AHU 100 onto the platform 102 (e.g., such that the base plate 106 of the AHU 100 rests on or against the platform 102). In general, the base plate 106 and corresponding features described in detail below may be configured to block aspects of the standard lifting system 108, such as the standard lifting lugs 110, from scratching, denting, or otherwise damaging the AHU 100. Further, the base plate 106 and corresponding features described in detail below may be configured to enable safe transport of the AHU 100 via a vehicle (e.g., a truck) associated with the platform 102 (e.g., after the AHU 100 is disposed on the platform 102 and the above-described features of the standard lifting system 108 are removed). These features are illustrated in
The bracket 134 includes a mounting plate 142 (e.g., mounting portion) that abuts the outer rail 107. The mounting plate 142 includes the above-described mounting openings 140 formed therein. The bracket 134 also includes a central ledge 144 extending transverse to (e.g., outwardly from) the mounting plate 142. In some embodiments, the central ledge 144 of the bracket 134 extends perpendicular to the mounting plate 142 of the bracket 134. As will be appreciated below with reference to later drawings, a distal end or portion of the central ledge 144 of the bracket 134 may be configured to block a standard lifting lug, when engaged with the receptacle 120, from rotating inwardly toward and into an outward facing surface 146 of the outer rail 107 and/or an outward facing surface of a housing resting atop the base plate 106. In some embodiments, the bracket 134 may be integrally formed with the outer rail 107 of the base plate 106. For example, the bracket 134 may not include the mounting plate 142, and may instead include the central ledge 144 and other features (e.g., second and third ledges 148, 150 described below) extending directly from the outer rail 107 of the base plate 106.
The bracket 134 also includes a second ledge 148 and a third ledge 150 between which the central ledge 144 is disposed. The second ledge 148 may include a clevis opening 152 and the third ledge 150 may include an additional clevis opening 154. The clevis openings 152, 154 may be configured to receive respective arms of a clevis after the AHU having the base plate 106 is lifted onto a transportation platform (e.g., a bed of a truck), where the clevis is interfaced with ropes, chains, cables, or the like configured to secure the AHU having the base plate 106 to the transportation platform. In some embodiments, the standard lifting lug configured to engage the receptacle 120 of the outer rail 107 of the base plate 106 may be removed from the receptacle 120, and the clevis having the respective clevis arms may be engaged with the clevis openings 152, 154.
The second ledge 148 may include a chamfered edge 160 and the third ledge 150 may include an additional chamfered edge 162. The chamfered edge 160 and the additional chamfered edge 162 may define a mouth configured to enable engagement of the standard lifting lug with the receptacle. That is, the chamfered edge 160 and the additional chamfered edge 162 may permit some side-to-side movement of the standard lifting lug as the standard lifting lug is moved toward the receptacle 120 for engagement. A flat edge 164 may connect the chamfered edge 160 of the second ledge 148 to the central ledge 144, and an additional flat edge 166 may connect the chamfered edge 162 of the third ledge 150 to the central ledge 144. The bracket 134 also includes arms 171 and 172 extending between the mounting plate 142 of the bracket 134 and the second and third ledges 148, 150, respectively, enhancing a structural rigidity of the bracket 134. Further, the bracket 134 includes a curvilinear surface 179 that corresponds in shape to a curvature of the receptacle 120 formed in the outer rail 107 of the base plate 106. It should be noted that the bracket 134 may include a single-piece construction, or the bracket 134 may include multiple parts coupled together (e.g., via welding, adhesives, fasteners, etc.).
Fasteners 178 may be utilized to mount the bracket 134 to the outer rail 107 of the base plate 106. For example, the fasteners 178 extend through the mounting openings 140 illustrated in
Nuts 204 may be employed to receive the fasteners 178 illustrated in
Once the lifting lug 170 is in an engaged position, the lifting lug 170 may be utilized to lift the base plate 106. As previously described, the outer rail 107 of the base plate 106 may include a plurality of receptacles configured to receive a plurality of lifting lugs. Further, an additional outer rail of the base plate 106 (e.g., the outer rail 109 illustrated in
One or more of the disclosed embodiments, alone or in combination, may provide one or more technical effects useful in lifting and transporting an AHU. For example, presently disclosed embodiments enable a base plate of the AHU to be interfaced with (or by) standard lifting equipment (e.g., lifting equipment designed for standard shipboard containers). In general, presently disclosed embodiments may reduce a cost of the AHU relative to traditional embodiments, a cost of lifting the AHU relative to traditional embodiments, and/or a cost of transporting the AHU relative to traditional embodiments
While only certain features and embodiments of the disclosure have been illustrated and described, many modifications and changes may occur to those skilled in the art, such as variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters including temperatures and pressures, mounting arrangements, use of materials, colors, orientations, etc., without materially departing from the novel teachings and advantages of the subject matter recited in the claims. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the disclosure. Furthermore, in an effort to provide a concise description of the exemplary embodiments, all features of an actual implementation may not have been described, such as those unrelated to the presently contemplated best mode of carrying out the disclosure, or those unrelated to enabling the claimed disclosure. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation specific decisions may be made. Such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure, without undue experimentation.