1. Field of the Invention
This invention relates to drilling and servicing of wells. More particularly, improved apparatus and method for lifting blowout preventers or other heavy loads below the floor of a drilling rig or the main deck of a platform are provided.
2. Description of Related Art
Blowout preventers (BOPS) are used on drilling rigs to prevent continued influx of subsurface fluids into a drilling well, displacing the drilling fluid from the wellbore. As drilling fluid is displaced from the well at the surface of the earth, the hydrostatic pressure available to control influx of subsurface fluids is decreased, allowing influx of subsurface fluids at an even higher rate. If subsurface fluids flow to the surface of the earth, a “blowout” has occurred. Such occurrences are normally avoided by closing one or more of the BOPs in a BOP “stack” upon detection of significant flow of drilling fluid at the surface of a wellbore and then taking other steps to control influx of subsurface fluid.
The BOP stack is attached to the top of a casing that is cemented in the wellbore and the stack normally extends vertically to a few feet below the drilling rig floor. During the drilling process, it is often necessary to lift the BOP off the casing—to set casing slips or drilling spools, for wellhead change-outs or for other purposes. In recent years, with deeper and higher pressure wells being drilled, the weight of BOP stacks has continued to increase. At present, stacks may be used that weigh over 80 tons. Other needs may arise for lifting loads of more than 100 tons below the floor of a drilling rig or the main deck of a platform such as for salvage or recovery of equipment.
A compact winch unit placed on the drilling rig floor to lift blowout preventers is disclosed in U.S. Pat. No. 4,305,467. This patent describes the placement of two winches on a base frame, positioning the base frame on the rotary table and lifting blowout preventers by the winches. U.S. Pat. No. 5,816,565 discloses a lifting apparatus for blowout preventers in which a sliding sheave assembly is mounted to a frame assembly. The sliding sheave assembly has a first shaft with a plurality of sheaves mounted on it and a second sheave with a plurality of sheaves mounted on the second shaft. A heavy object such as a BOP stack is lifted by extending the rod end of a cylinder to increase the distance between the first and second sheaves. U.S. Pat. No. 6,053,255 discloses multiplying the safety factor of wire rope used on winch apparatus in lifting blowout preventers by employing multiple segments of cable on each of the drums of the winch units.
There is a continuing need to lift such heavy loads with equipment that can be easily mobilized and de-mobilized in the confined space of a drilling rig floor or platform and that has lifting capacity to provide a satisfactory safety factor while lifting the heaviest of BOP stacks.
Apparatus and method are disclosed for increasing the lifting capacity of apparatus used for lifting blowout preventers below the floor of a drilling rig by employing four simultaneously operated winches to perform the lifting operation. The winches are supported in two levels by a frame that is adapted for easy transport and installation on a drilling rig. The winches are controlled at a single or dual operating point.
Referring to
When a blowout preventer or other heavy equipment is to be lifted under the drilling floor, kelly joint 14 and the connected drill string are removed from the well. Master bushing 16 can then be removed, leaving a flat surface of rotary table 12 at about the level of rig floor 17. Horizontal room on the floor is limited by equipment such as shown in FIG. 1. Referring to
Referring to
Apparatus disclosed herein may be assembled and employed as follows. Referring to
In one embodiment, winch lines 72 (
In an alternate procedure, after winches 70 are set in place on the rotary floor the sheaves are placed on the rotary floor, pins and shackles are removed, and one winch is unspooled with enough slack to pass through the sheave. The sheave is then picked up with an air hoist attached to a pad eye on the sheave. The sheave is moved towards the rotary, pulling the winch lines to remove slack. A second air hoist is tied to the dead end of the winch line and the sheave is lowered through the rotary with the dead man side on the button end of the drum, or where the cable ties into the drum. The sheave is lowered just past the double line bar and the dead end is attached to the double line bar, placing a shackle over the bar. A shackle pin is then placed through the eye of the socket on the dead end of the winch line. A second air hoist is slacked off and disconnected. The first air hoist is then disconnected from the sheave and the sheave is lowered down to the BOPS for connection.
Four slings are to be used on a BOP. The top winches of
While lifting, each lifting line should maintain an equal and consistent tension. If this is not done, the bolts on the flange of the BOP will be difficult to remove.
The BOP is then nippled down preparatory to lifting. The winch operator must pick up on one side while watching the bell nipple attached to the BOP. Lifting is performed such that the bell nipple remains centered and the weight distribution is equalized. Lifting is continued on the BOP winches for two or three inches and stopped. All winch lines are checked to insure that lifting is straight and all slings, sheaves and winch lines are clear. Lifting will continue 3 or 4 inches until the desired separation and clearance is achieved. Lowering of the BOP is performed in a conventional manner.
While particular embodiments of the present invention have been described, it is not intended that these details should be regarded as limitations on the present invention, except as to the extent that they are included in the appended claims. It should be understood that various changes, substitutions and alterations can be made hereto without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2984455 | Fischer | May 1961 | A |
3716993 | Sumner | Feb 1973 | A |
3838836 | Asseo et al. | Oct 1974 | A |
4003435 | Cullen et al. | Jan 1977 | A |
4305467 | Villines | Dec 1981 | A |
5467833 | Crain | Nov 1995 | A |
5509639 | Ellis | Apr 1996 | A |
5662434 | Khachaturian | Sep 1997 | A |
5816565 | McGuffin | Oct 1998 | A |
5957431 | Serda, Jr. | Sep 1999 | A |
6053255 | Crain | Apr 2000 | A |
6318931 | Khachaturian | Nov 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20040045721 A1 | Mar 2004 | US |