Lifting Apparatus and Method of Lifting Carbon Based Electrodes

Information

  • Patent Application
  • 20080084909
  • Publication Number
    20080084909
  • Date Filed
    August 30, 2006
    18 years ago
  • Date Published
    April 10, 2008
    16 years ago
Abstract
A lifting apparatus for transporting a carbon based electrode having a threaded male end. The apparatus comprises a casing having a top end and a bottom end. The casing defines an electrode aperture from the bottom end shaped to accept the threaded male end of the carbon based electrode to secure the lifting apparatus to the electrode. An attachment aperture is positioned in the top end while an attachment element is positioned in the attachment aperture and operatively engaging the top end of the casing. The attachment element is positioned to accept engagement from a crane or other powered lifting device, while the lifting apparatus is preferably manually attachable to the electrode.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an embodiment of a lifting apparatus made in accordance with the current disclosure



FIG. 2 is a front view of a lifting apparatus made in accordance with the current disclosure attached to the threaded male end of a carbon based electrode.



FIG. 3 is a partial cross-sectional view taken along line 3-3 in FIG. 2.



FIG. 4 is a perspective view of a lifting apparatus made in accordance with the current disclosure with the attachment element removed form the casing.



FIG. 5 is a cross-sectional view of a casing made in accordance with the current disclosure showing an example of internal threads within the casing.



FIG. 6 is a bottom view of a lifting apparatus made in accordance with the current disclosure.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring generally now to FIGS. 1-6, a lifting apparatus is shown and generally designated by the numeral 10. The lifting apparatus 10 is for attaching to and transporting a carbon based electrode 12, which can also be a graphite electrode 12. The electrode 12 includes a threaded male end 14, which preferably includes at least one thread 16.


The lifting apparatus 10 preferably includes a casing 18 having a top end 20 and a bottom end 22. The casing 18 defines an electrode aperture 24, which can also be described as an electrode opening 24, positioned in the bottom end 22 wherein the electrode aperture 24 is shaped to accept the threaded male end 14 of the electrode 12. An attachment aperture 26 is positioned in the top end 20, which can also be described as a lifting end 20, and is shaped to accept an attachment element 28 positioned in the attachment aperture 26 wherein the attachment element 28 operatively engages the top end 20.


Preferably, the casing 18, which can also be described as a tapered boundary wall 18, is tapered from the bottom end 22 to the top end 20 such that the bottom end 22, which can also be described as an electrode end 22, has a larger diameter than the top end 20. This can alternately be described as the casing 18 being substantially bell shaped.


The casing 18 can further include a length 30 and a threaded internal surface 32 substantially spanning the length 30. The threaded internal surface 32 mates with the threaded male end 14 of the electrode 12 to secure the electrode 12 to the lifting apparatus 10. Additionally, the threaded internal surface 32 is substantially conical in shape and includes a substantially circular cross-sectional shape when this cross-sectional shape is taken perpendicular to the length 30.


The attachment aperture 26, which can also be described as a lifting opening 26, further includes an aperture length 34 and attachment threads 36 substantially spanning the aperture length 34. The attachment element 28, which can also be described as a lifting element 28, further includes a clipping element 38 and casing threads 40 extending from the clipping element 38. The casing threads 40, which can also be described as a threaded extension 40, mate with the attachment threads 36, which can also be described as lifting threads 36, of the attachment aperture 36 to engage the attachment element 28 to the attachment aperture 26.


In this embodiment, the casing threads 40 are external to the attachment element 28 while the attachment threads 36 are internal to the attachment aperture 26. Alternately, the attachment element 28 could engage the external surface 50 of the casing 18 such that the attachment threads 36 are positioned external to the casing 18 while the casing threads 40 of the attachment element 28 are positioned internal to the attachment element 28.


In a preferred embodiment an indexing element 42 is positioned within the casing 18 proximate to the top end 20. The indexing element 42 is positioned to regulate movement of the electrode 12 and the casing 18 with respect to the attachment element 28. This is best exampled by FIG. 3 wherein the indexing element 42 is part of the attachment element 28 and extends from the gripping element 38, which can also be described as a connection protrusion 38. The indexing element 42 can include a ring 44 that fits within a notch 46 internal to the casing 18. The indexing element 42 can be used to index the electrode 12 being held by the lifting apparatus 10 down as that electrode 12 is being added to a column of other electrodes. The electrode 12 to be added is spaced above the column, say for example approximately 2 inches. The electrode 12 is then rotated to engage that electrode 12 to the column for screwing the two together. As the electrode 12 is rotated, the indexing element 42 allows movement of the electrode 12 and the casing 18 with respect to the attachment element 28 to limit the application of undue force on the electrode 12. Additionally, the indexing element 42 facilitates a downward travel speed that is substantially consistent with the travel speed of the electrode 12 so that as the load is substantially supported.


The casing 18 could further include a handle 48 attached to the external surface 50 of the casing 18. Preferably the handle 48 is positioned proximate to the bottom end 22 of the casing 18 and is spaced from the internal surface 50. The handle 48 can be a handle known in the art to allow proper manual gripping and manipulation of items corresponding to the lifting apparatus 10.


Also included is a lifting apparatus 10 for transporting a graphite electrode 12 having a threaded male end 14. The apparatus 10 comprises a tapered boundary wall 18 including a lifting end 20 and an electrode end 22. The tapered boundary wall 18 defines an electrode opening 24 in the electrode end 22 and a lifting opening 26 in the lifting end 20. The electrode opening 24 includes at least one electrode thread 32 shaped to securely engage the threaded male end 14 of the electrode 12 in the electrode opening 24. The lifting opening 26 includes at least one lifting thread 36. A lifting element 28 is positioned in the lifting opening 26 and includes a threaded extension 40 operatively engaging the lifting threads 36 to securely engage the lifting element 28 in the lifting opening 26.


Preferably the threaded extension 40 extends within the tapered boundary wall 18 from the lifting end 20 towards the electrode end 22. Preferably the threaded extension 40 regulates movement of the electrode 12 and the tapered boundary wall 18 with respect to the lifting element 28. A connection protrusion 38 extends from the threaded extension 40 outwardly from the tapered boundary wall 18.


The lifting opening 26 further includes an opening length 34 wherein the lifting threads 36 substantially spans the opening length 34. Additionally, the tapered boundary wall 18 further includes a length 30 wherein the electrode threads 32 substantially span the length 30.


The lifting apparatus 10 is such that a user of the lifting apparatus 10 can position the lifting apparatus 10 on an electrode 12 without the use of additional tools or equipment. The user can slide the threaded male end 14 of the electrode 12 into the electrode opening 24 and rotate the lifting apparatus 10 to engage the electrode threads 32 of the lifting apparatus 10 to the threaded male end 14 of the electrode 12. This can be accomplished without the use of a crane or other equipment in order to maximize the use of the facilities and/or of equipment in the electric arc furnace industry.


The depth of entry of the threaded male end 14 of the electrode 12 into the lifting apparatus 10 can be controlled. For example, the threaded internal surface 32 can stop at a predetermined distance of the length 30 of the casing 18 such that the threaded male end 13 of the electrode 12 no longer has electrode threads 32 to engage.


Also included is a method of lifting a carbon based electrode having a threaded male end. The method comprises providing a lifting apparatus having internal threads and attaching the internal threads of the lifting device to the threads of the threaded male end of the electrode. The method further includes indexing the carbon based electrode a secure distance within the lifting apparatus and lifting the carbon based electrode by the lifting apparatus. Preferably the method includes allowing substantially unobstructed access to the carbon based electrode below the threaded male end. Additionally the method preferably includes manually attaching the lifting apparatus to the electrode and manually indexing the carbon based electrode within the lifting apparatus.


Thus, although there have been described particular embodiments of the present invention of a new and useful Lifting Apparatus and Method of Lifting Carbon Based Electrodes, it is not intended that such references be construed as limitations upon the scope of this invention except as set forth in the following claims.

Claims
  • 1. A lifting apparatus for transporting a carbon based electrode having a threaded male end, the apparatus comprising: a casing including a top end and a bottom end, the casing defining an electrode aperture in the bottom end shaped to accept the threaded male end of the carbon based electrode and an attachment aperture in the top end; andan attachment element positioned in the attachment aperture and operatively engaging the top end.
  • 2. The lifting apparatus of claim 1, wherein the casing is tapered from the bottom end to the top end and includes a substantial conical.
  • 3. The lifting apparatus of claim 1, the casing further including a length and a threaded internal surface substantially spanning the length.
  • 4. The lifting apparatus of claim 3, wherein the threaded internal surface mates with the threaded male end of the electrode.
  • 5. The lifting apparatus of claim 1, the casing further including an external surface and a handle attached to the external surface and positioned proximate the bottom end.
  • 6. The lifting apparatus of claim 5, wherein the handle is spaced from the external surface.
  • 7. The lifting apparatus of claim 1, the casing further including a length wherein the cross-sectional shape of the casing perpendicular to the length is substantially circular.
  • 8. The lifting apparatus of claim 1, the attachment aperture further including and aperture length and attachment threads substantially spanning the aperture length.
  • 9. The lifting apparatus of claim 8, the attachment element further including a gripping element and casing threads extend from the gripping element wherein the attachment threads mate with the casing threads.
  • 10. The lifting apparatus of claim 1, further including an indexing element position within the casing proximate to the top end, the index element positioned to regulate the movement of the carbon based electrode and the casing with respect to the attachment element.
  • 11. The lifting apparatus of claim 10, wherein the indexing element extends from the attachment element.
  • 12. The lifting apparatus of claim 1, further including a fastener removably attaching the attachment element to the top end.
  • 13. The lifting apparatus of claim 1, wherein the casing is substantially bell shaped externally and substantially conically shaped internally.
  • 14. A lifting apparatus for transporting a graphite electrode having a threaded male end, the apparatus comprising: a tapered boundary wall including an lifting end and an electrode end, the tapered boundary wall defining an electrode opening in the electrode end and a lift opening in the lifting end, wherein: the electrode opening includes at least one electrode thread shaped to securely engage the threaded male end of the graphite electrode in the electrode opening; andthe lifting opening including at least one lifting thread; anda lifting element positioned in the lifting opening and including a threaded extension operatively engaging the lifting thread to securely engage the lifting element in the lifting opening.
  • 15. The lifting apparatus of claim 14, wherein the tapered boundary wall is substantially bell shaped.
  • 16. The lifting apparatus of claim 14, wherein the threaded extension extends within the tapered boundary wall from the lifting end toward the electrode end and regulates movement of the graphite electrode and the tapered boundary wall with respect to the lifting element.
  • 17. The lifting apparatus of claim 16, the lifting element further including a connection protrusion extending from the threaded extension.
  • 18. The lifting apparatus of claim 14, the lifting opening further including an opening length and the at least one lifting thread substantially spans the opening length.
  • 19. The lifting apparatus of claim 18, the tapered boundary wall further including a length and at least one electrode thread substantially spans the length.
  • 20. A method of lifting a carbon based electrode having a threaded male end, the method comprising: a) providing a lifting apparatus having internal threads;b) attaching the internal threads of the lifting device to the threads of the threaded male end;c) indexing the carbon based electrode a secure distance within the lifting apparatus; andd) lifting the carbon based electrode by the lifting apparatus.
  • 21. The method of claim 20, further including step e) allowing substantially unobstructed access to the carbon based electrode below the threaded male end.
  • 22. The method of claim 21, wherein steps b) and c) are performed manually.